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ABSTRACT Residing in the islets of Langerhans in the pancreas, b cells contribute to glucose homeostasis by managing the
body’s insulin supply. Although it has been acknowledged that healthy b cells engage in heavy cell-to-cell communication to
perform their homeostatic function, the exact role and effects of such communication remain partly understood. We offer a novel,
to our knowledge, perspective on the subject in the form of 1) a dynamical network model that faithfully mimics fast calcium os-
cillations in response to above-threshold glucose stimulation and 2) empirical data analysis that reveals a qualitative shift in the
cross-correlation structure of measured signals below and above the threshold glucose concentration. Combined together,
these results point to a glucose-induced transition in b-cell activity thanks to increasing coordination through gap-junctional
signaling and paracrine interactions. Our data and the model further suggest how the conservation of entire cell-cell conduc-
tance, observed in coupled but not uncoupled b cells, emerges as a collective phenomenon. An overall implication is that
improving the ability to monitor b-cell signaling should offer means to better understand the pathogenesis of diabetes mellitus.
SIGNIFICANCE Distributed into about a thousand to a million separate micro-organs called islets, pancreatic b cells
keep a delicate metabolic balance known as glucose homeostasis via heavy cell-to-cell communication within the physical
limits of an islet. Such communication implies that both nutrient sensing and controlled insulin release emerge as collective
processes instead of being encoded directly into individual b cells. We used dynamical networks to obtain simulated cell
activity that faithfully mimics empirical signals and to show that network nodes, as the theoretical equivalent of cells,
preserve their statistical properties during normal operation. From a mechanistic standpoint, the results corroborate that
living cell systems, just like modeled dynamical networks, ensure sensitivity to threshold glucose stimulation through
coordinated action.
INTRODUCTION

On a fundamental level, living tissues comprise genetically
identical cells of the same differentiation fate that work
cooperatively to support homeostasis and other physiolog-
ical functions (1). Cooperation, however, is susceptible to
cheating unless there is a mechanism for mutual recognition
of cooperators referred to as positive assortment (1). Cell-to-
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cell communication is perhaps the most obvious means of
positive assortment, employed even by cancer cells—quin-
tessential cheaters from the perspective of normal tissue
functioning—to successfully metastasize (2). A key ques-
tion in this context is how, in large clusters of cells (e.g., tis-
sues or organs), cluster-wide functionalities emerge as
collective phenomena from local cellular interactions (e.g.,
communication and cooperation) encoded into individual
cells. Endocrine cells in pancreatic islets, in particular,
form well-defined cellulosocial clusters, each �100 mm in
size. Intriguingly, islet size is persistent across multiple
vertebrate species (3,4), thus fueling conjectures that
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Collective b-Cell Operation
cross-species size persistence plays a vital role in the collec-
tive functioning of a healthy islet (5,6).

b cells are a type of pancreatic cell that participate in
glucose homeostasis by producing, storing, and releasing
the hormone insulin (7–9). When the glucose blood level
is high, a state known as hyperglycemia, b cells respond
with a release of insulin into the bloodstream to promote
nutrient import and storage in a variety of cells in support
of anabolic metabolism (10). When the glucose blood level
is low, a state known as hypoglycemia, or glucose is other-
wise in demand, e.g., because of physical activity, b cells
switch off insulin secretion to allow catabolic metabolism.
b cells thus employ a negative feedback mechanism to
help maintain the blood glucose within a safe range. In com-
parison, therapeutic administration of insulin in diabetic pa-
tients lacks the precision of the internal regulatory
processes, yielding either too high or too low plasma
glucose levels (11). Hypoglycemic episodes arising in rela-
tion to insulin therapy are a common adverse effect of anti-
diabetic therapies (12). Although the basic outline of
glucose homeostasis is conceptually clear, complexity
quickly escalates when looking for a microscopic under-
standing of the negative feedback mechanism employed
by b cells. We herein attempt to better understand this
complexity, focusing in particular on cell-to-cell communi-
cation in the face of mounting evidence that such communi-
cation is important for insulin secretion and, by extension,
glucose homeostasis (8,9,11).

Illustrating microscopic complexity, cellular nutrient-
sensing mechanisms (13,14) have been shown to intermix
metabolic signals, electrical activity, and cytosolic cal-
cium signaling (15–18). This complex intermix prevents
b cells of a healthy pancreas from oversecreting insulin
despite huge intracellular insulin stores (19), which
exceed the lethal dose by two to three orders of magnitude
if released at once. A possible answer to how b cells regu-
late their secretion may lie in a response of b-cell collec-
tives to above-threshold glucose concentrations (>7 mM
in mice (20,21)), at which electrical and calcium activities
flip between nonstimulatory and stimulatory phases. Here,
the term collective is used to denote the fact that b cells,
in addition to engaging in paracrine interactions (22,23),
are coupled to neighboring b cells via gap junctions
(comprising two connexons of Cx36 protein) to form a
communicating functional syncytium (24). This func-
tional syncytium as a whole reacts to nutrients (e.g.,
glucose) or pharmacological substances (e.g., sulphony-
lureas) in a fundamentally different manner from isolated
cells (25) or partially ‘‘uncoupled’’ cells, i.e., those lack-
ing the Cx36 protein (26–28). Specifically, after closing
ATP-sensitive Kþ channels in a coupled configuration,
the remaining entire cell-cell conductance varies among
individual cells but stays constant and relatively high islet
wide. This happens throughout the timeframe of a typical
experiment (>10 min) and despite the concurrent dynamic
interchange of nonstimulatory and stimulatory collective
phases (26).

A series of models describing fast Ca2þ oscillations in the
electrical activity of b cells have been constructed since the
first minimal model over three decades ago (29). The pri-
mary purpose of these models, however, has been to
generate the saw-tooth time profile characteristic of slow
processes underlying the observed electrical bursting
(30,31). By contrast, there seem to have been much less
concern with the oscillatory response of b cells to the
threshold glucose concentration, and the relationship of
this response to communication within the functional syncy-
tium or the conservation of entire cell-cell conductance (32).

We demonstrate that a cell-to-cell communication model
based on a dynamical network approach (33,34) captures
the essential features of fast Ca2þ signaling and that within
such a model, the simulated equivalent of the entire cell-cell
conductance remains conserved in a statistical sense after
the network transitions from an inactive to an active state,
thus suggesting that the same mechanism may be at work
in a living cell system as well. To provide empirical support
for these results, we proceed with probing correlations in
fast Ca2þ signaling as a measure of cell-to-cell communica-
tion, and present evidence of a shift in the correlation struc-
ture between nonstimulatory and stimulatory conditions.
This shift is consistent with expectations from the modeled
dynamical network and the idea that sensitivity to glucose
stimulation via collective action differs substantially from
the sensitivity of individual cells. Note that we are not trying
to contrast our model and its outputs to the existing models
of coupled deterministic oscillators derived from the pre-
vailing Hodgkin-Huxley paradigm. In fact, there is no con-
flict between the two approaches, at least not conceptually.
We simply show that in a collection of cells, no special
deterministic mechanism is needed to generate collective re-
sponses that come remarkably close to the empirically
observed patterns.
METHODS

We analyzed a data set obtained by Ca2þ imaging of acute pancreatic tissue

slice (35,36) comprising rodent pancreatic oval-shaped islet (approximate

dimensions: 370 � 200 m). We recorded Ca2þ signals with a functional

multicellular imaging technique at 10 Hz and 256 � 256 pixel resolution

in eight-bit grayscale color depth. The data set consisted of 65,536 traces

of calcium signals, each 23,873 time steps long. During the recording,

we increased glucose concentration in the chamber containing the tissue

sample from 6 to 8 mM and then decreased it back to the initial concentra-

tion near the end of the experiment. We chose these two physiological

glucose concentrations to induce a transition from a nonstimulatory to a

stimulatory b-cell phase. The typical threshold for this transition in mice

is around 7 mM (20,21). Further methodological details, including an ethics

statement, are available in the Supporting Materials and Methods.

Individual Ca2þ traces, as well as the ensemble-averaged signal, exhibit

1) slow calcium oscillations with a period of�5 min but also superimposed

2) fast calcium oscillations (Fig. 1 A). We detrended all traces as a part of

signal preprocessing to exclude the effect of systematic slow diminishing of
Biophysical Journal 118, 2588–2595, May 19, 2020 2589
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FIGURE 1 b-cell Ca2þ signaling is faithfully mimicked by a cell-to-cell communication model. (A) Examples of the detrended experimental traces of

Ca2þ signaling, including the ensemble average (top trace), are shown. Vertical red lines denote the time interval during which we perfused the tissue slice

with 8 mM glucose solution. Otherwise, we kept the tissue slice in 6 mM glucose solution, which is below the typical threshold for glucose-stimulated activity

of b cells. (B) The ensemble average of the measured fast Ca2þ signaling is shown. The transitions from a nonstimulatory glucose to a stimulatory glucose

phase and vice versa are clearly visible. (C) A detail of the ensemble average of the measured fast Ca2þ signaling in the stimulatory phase is shown. Spikes of

exceptionally high activity are interspersed among somewhat quieter periods. (D) The probability distribution of time interval Dt between

two consecutive þ1 states in the binarized signal (Fig. S2 C) is shown. Open dots represent the empirical distribution for the ensemble-averaged fast

Ca2þ signaling component in a semilog plot. The dashed line is a theoretical distribution function, rexp(�rt), with mean rate r ¼ 10 s. Among our primary

goals was to reproduce the described empirical patterns using a cell-to-cell communication model (details in the main text). Solid dots thus represent the

distribution of interval Dt for the simulated fast b-cell activity. (E) Our cell-cell communication model with N ¼ 100 cells successfully mimics fast

Ca2þ signaling (cf. B). While transitioning from a nonstimulatory (6 mM) to a stimulatory (8 mM) glucose solution in the experiment, we set the model’s

forcing parameter, i.e., cell responsivity, to a higher value. (F) A detail of the simulated fast b-cell activity is shown. Despite a somewhat higher baseline noise

compared to measurements in this particular example (cf. C), the two signals are statistically equivalent (see also Fig. S3). To see this figure in color,

go online.

Podobnik et al.
the signal with time (Fig. S1). Calcium oscillations on both timescales are

known to be accompanied with insulin release (37,38), but the saturation

kinetics of the Ca2þ-dependent insulin release suggests that faster oscilla-

tions dominate (39). The relation between slow calcium oscillations and

pulsating insulin release was comprehensively described in a recent review

(31). Here, by contrast, we focus on fast calcium oscillations, which in

acute pancreatic slice preparations, like in early microelectrode recordings

(40), directly correspond to membrane electrical bursting activity (21,41)

and are thought to be functionally relevant for glucose homeostasis (42).

To isolate fast calcium oscillations, we proceeded by removing slow os-

cillations from traces using a total-variation-based filter (https://github.

com/albarji/proxTV) (Fig. S2; (43)). The structure of the remaining fast cal-

cium signal (Fig. 1 B) clearly separates the nonstimulatory phase with little

calcium activity from the stimulatory phase with large oscillation ampli-

tudes. In both phases, the signal is stochastic in nature (Fig. 1 C), which

can be analyzed using statistical measures. We thus binarized the fast

component of the ensemble-averaged Ca2þ trace to distinguish between

large calcium spikes (markedþ1) or the lack thereof (marked�1). We sub-

sequently estimated the distribution of time interval Dt between two

consecutive þ1 states in the binarized trace (Fig. S2 C). We found that in-

terval Dt is governed by a Poisson process, implying that the corresponding

probability density function (pdf) can be approximated with exponential

distribution rexp(�rt), where the mean rate equals r ¼ 10 s (open dots

in Fig. 1 D). Interestingly, a dynamical network model of cell-to-cell

communication produces a simulated fast signal with the same statistical

characteristics (solid dots in Fig. 1 D). We next describe this model and

some of its basic properties.
2590 Biophysical Journal 118, 2588–2595, May 19, 2020
RESULTS

Emerging properties of b-cell-to-b-cell
communication

Glucose homeostasis is a complex phenomenon involving
multiple cell types and hormones. Our stylized approach,
however, focuses on b cells alone and, in particular, the
role of cell-to-cell communication in shaping the response
of these cells to the threshold glucose concentration. Specif-
ically, we constructed a dynamical network model in which
N network nodes represent individual b cells and network
links represent couplings with k neighboring cells (Fig. 2).
A node, in contrast to commonly assumed coupled oscilla-
tors (44), is stripped of any structure beside being active
or inactive. The model’s key assumption is that nodes
change their state internally or externally, with the former
being modulated by the presence or absence of stimulatory
glucose concentration, whereas the latter is due to cell-to-
cell communication. An internal transition of a node from
active to inactive state over time period dt occurs with prob-
ability pdt. Conversely, a transition prompted by mutual
communication occurs with probability rdt, but only if the

https://github.com/albarji/proxTV
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FIGURE 2 Model schematics. (A) We adapted a general dynamical

network model (33) in such a way that N network nodes represent individ-

ual b cells and network links represent couplings with k neighboring cells.

Each node can be in one of the two states, inactive or active, reflected in the

amplitude of fast calcium signal. The state of the network in a particular

time step is characterized by the fraction of active nodes. (B) Network ac-

tivity is primarily modulated by a forcing variable, assumed inverse propor-

tional to the glucose concentration, and a coupling parameter, assumed

constant to a first approximation given the conserved cell-cell conductance

(see Fig. 4 and related text). For small values of the coupling parameter, the

system’s collective property is weak, the distinction between inactive and

active phases is blurred, and a response to forcing is quasilinear. Closer

to the critical point, the collective property enables a steep, nonlinear

response to forcing. Far beyond the critical point, the collective property

would be overexpressed and the response to forcing muted. To see this

figure in color, go online.

Collective b-Cell Operation
node has less than m < k active neighbors. Nodes return to
their original state after relaxation times ti and te after an
internal or an external transition, respectively. The state of
the network is characterized by the fraction of active nodes.

Once node relaxation is defined, the network’s state is
determined by two parameters, probability rate r and the
average fraction of internally inactive nodes, which follows
from probability rate p via p*¼ 1� exp(�pti) (33). In two-
parameter phase space, (r, p*), there is a critical point that
opens a bistability region separating low- and high-activity
model equilibria (33,34). When network parameters
approach the critical point, node activity suddenly picks
up, whereas inside the bistability region, even spontaneous
phase flipping becomes possible (33,34).
To illustrate similarities between model outputs and re-
corded Ca2þ traces (cf. Fig. 1, B and C and Fig. 1, E and
F), we ran exhaustive numerical simulations (Remark 1
in the Supporting Materials and Methods). First, we created
a random regular network with N ¼ 100 nodes, each with
k ¼ 10 neighbors, in which the threshold for external inac-
tivation was set to m ¼ 4. We then chose r ¼ 0.78, ti ¼ 10,
and te ¼ 1 as the parameter values that faithfully reproduce
the characteristics of recorded Ca2þ traces (Fig. S3).
Finally, we began simulations with p* ¼ 0.90 to place
the network into the inactive part of the phase space but
subsequently decreased this value to p* ¼ 0.28 to position
the network close enough to the critical point for the activ-
ity to pick up substantially (Fig. S4; see also Fig. S5 for
some additional model properties near the critical point).
The decrease of p* follows a decrease in probability rate
p, which in turn is a response to an increased glucose con-
centration. As mentioned, the presence or absence of stim-
ulatory glucose concentration modulates the response of
individual b cells, whereas the response of the b-cell col-
lective remains muted until a certain critical threshold of
individual cell activity is reached. This behavior mimics
the idea, first proposed by modeling studies (45) and then
empirically validated (26), that the concentration response
of an average electrical activity in b-cell collectives is
steep with respect to glucose sensing. Cell-cell coupling
thus narrows the glucose concentration range that induces
or stops insulin secretion, which is in sharp contrast with
Cx36-deficient mice, whose inability to synchronize b-
cell activation, activity, and deactivation leads to increased
basal insulin release (26,28,46).

As with the recorded fast calcium oscillations, we calcu-
lated the pdf of time interval Dt between two
consecutive þ1 states in the binarized network activity
and found the same Poisson process as in the recorded
data (cf. open and solid dots in Fig. 1 D). This calculation,
in particular, shows that the similarities between measure-
ments and simulations are not just superficial but extend
into the statistical domain, as well.

To strengthen the case for similarity between measure-
ments and simulations in the statistical domain, we
compared additional statistics implied by the data and pre-
dicted by the model. To this end, we first differenced both
measurements and simulations to generate more stationary
time series of fluctuations. Differencing is a standard tool
in time-series analysis that produces a new time series by
taking differences between successive—possibly with a
small time lag—terms in the original time series. We sub-
sequently estimated the pdf of obtained fluctuations and
looked for an underlying theoretical distribution that fits
the results well (Fig. 3). We found a remarkable correspon-
dence between the pdf estimated from the data and the one
estimated from the model predictions. The underlying
theoretical distribution is strongly non-Gaussian and
consistent with a L�evy a-stable distribution with parameter
Biophysical Journal 118, 2588–2595, May 19, 2020 2591
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FIGURE 4 Conserved entire cell-cell conductance of coupled b-cells in

stimulatory glucose phase is an emergent collective property. (A) Shown

is the simulated dynamical network activity in the stimulatory phase using

the same parameters as in Fig. 1 E. In simulations, b cells are represented by

nodes and cell coupling by links. Each link has a different coupling strength

that varies depending on the dynamical network’s activity. (B) The conser-

vation of coupling strength emerges collectively. Coupling between any

pair of linked nodes can either decrease or increase in strength (green solid

paths), but the ensemble average (red dashed path) remains unchanged

within the limits of statistical fluctuations. (C) Empirical data qualitatively

confirm the model results. For the purpose of measuring the time-varying

residual conductance, the individual mouse b cell in an intact islet in a

pancreatic slice has been dialyzed with 5 mM ATP solution to block the

KATP channels (n¼ 10). The red dashed path represents the running average

of all shown measurements. To see this figure in color, go online.

FIGURE 3 Cell-to-cell communication model predicts statistical

properties of measured signals. Denoting the original time series by X(t),

the estimated probability density functions (pdfs) of fluctuations Z(t) ¼
X(t) � X(t � Dt) are shown, where Dt ¼ 10 time steps is delay time. Sim-

ilarity between the pdfs estimated from empirical calcium signals and

network model activity is remarkable. Furthermore, the two pdfs are

strongly non-Gaussian, which, in complex systems such as the studied func-

tional b-cell syncytium, signifies important nonlinearities and couplings.

The solid curve is a L�evy a-stable distribution with parameter a ¼ 1.3,

whereas the dashed curve is a Gaussian distribution with a zero mean

and a unit variance. To see this figure in color, go online.
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a z 1.3 (Fig. 3). The L�evy a-stable distribution is a signa-
ture of nonlinearities and couplings in complex systems
that arise when a system’s components coordinate action
and function in unison (47). We thus see that our model
is capable of predicting the statistical properties of
measured signals and that these predictions theoretically
underpin the collective operation of b cells.

A link between any node pair in the dynamical network
corresponds to coupling between b cells. This coupling en-
ables cell-to-cell communication and collective sensing (5),
during which a b cell communicates with its neighboring b

cells through gap junctions and, within a limited range, us-
ing paracrine signals (5). A basic description of the need for
communication among heterogeneous b cells in an islet has
been around for some time (48) but has only recently been
revived in the light of efficient high-throughput analyses.
Such analyses enabled the identification of a number of
functional and nonfunctional cell subpopulations with their
characteristic genetic and expression profiles, incidences,
and diabetes-related changes (14,49–51).

Here, we could naturally model the heterogeneity of b-
cell communication channels with the strength of links be-
tween neighboring cells. Following the ideas proposed for
interneuronal dynamics and synaptic strength (34), in each
time step, we strengthened the link between two active no-
des in the network by ε with probability ps and weakened
by zε with probability 1 � ps. If either of the nodes is inac-
2592 Biophysical Journal 118, 2588–2595, May 19, 2020
tive, we weakened link strength by zε. Surprisingly, this
simple local rule leads to the emergence of a statistical
conservation law for the strength of network links as a col-
lective phenomenon (34). We demonstrated this using the
same set of parameters as in Fig. 1 E and setting
ε ¼ 0.001 and z ¼ 0.07. We additionally set the initial
values of link strengths by drawing randomly from an
exponential distribution with unit mean and sufficient stan-
dard deviation to capture the heterogeneity of entire cell-
cell conductances between pairs of b cells (52). When
the network is highly active (Fig. 4 A), link strengths in-
crease or decrease depending on the activity of individual
nodes, creating a wide range of possible outcomes
(Fig. 4 B). The ensemble average link strength, however,
is conserved, thus showing that the collective exhibits a
property, namely the statistical conservation of link
strength, that is not embedded into any individual node.
This modeled property corresponds to the islet-wide
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conservation of the entire cell-cell conductance seen in ex-
periments (Fig. 4 C; (26)).
FIGURE 5 Cross-correlation of Ca2þ traces reflects a collective b-cell

response to the threshold glucose concentration. (A) Shown is the ratio

C(d)/C(0) in nonstimulatory and stimulatory phases. For a large range of

distances, the empirical cross correlation is interpretable as a combination

of power law and faster-than-exponential decay but with different scaling

exponents and correlation distances, mirroring in part a muted collective

behavior in the nonstimulatory phase. (B) The linear relationship between

the mean and the variance of empirical cross correlations is a signature

of the Poisson process, yet the process differs below and above the threshold

glucose concentration, as revealed by two distinct lines that fit the data. This

linear relationship starts to break down for smaller cross-correlation means

and thus larger distances at which faster-than-exponential cutoff kicks in

(cf. A). To see this figure in color, go online.
Empirical evidence of b-cell collective behavior

If the response of cells to glucose is indeed a collective phe-
nomenon, this should be visible in cell-to-cell communica-
tion patterns below and above the threshold glucose
concentration. Taking into account that the intensity of
cell-to-cell communication is mirrored by the cross-correla-
tion structure of measured signals (Remark 2 in the Support-
ing Materials and Methods; see also Fig. S6), we explored
this structure by randomly selecting 4000 Ca2þ traces and
calculating cross correlations

Cij ¼
�
sisj

�� hsii
�
sj
�

sisj

(1)

between two traces si and sj at positions i ¼ (xi, yi) and j ¼
(xj, yj), where si and sj are the standard deviations of the
traces. To cancel noise, we turned individual cross correla-
tions into a function of distance C(d) ¼ hCi;ji, where h ,i in-
dicates averaging over all distances dij ˛ [d � d0, d þ d0]
with d0 ¼ 5 pixels. We calculated C(d) separately for the
nonstimulatory and stimulatory phases, focusing especially
on the differences between them.

In the limit of short distances, which are typical distances
between the pixels inside a single b cell, the cross correla-
tions in both phases are similar. Important quantitative dif-
ferences emerge at pixel distances above 10. Interpreting
function C(d) as a power-law decay with a faster-than-expo-
nential cutoff

CðdÞ � d�hexp

"
�
�
d

dc

�3
#
; (2)

we found that in the stimulatory phase, the correlation
scaling exponent is h ¼ 0.42 and the characteristic correla-
tion distance in pixels is dc ¼ 102 (Fig. 5 A). In the nonsti-
mulatory phase, the scaling exponent is lower, h¼ 0.33, and
the correlation distance is shorter, dc ¼ 90. A shorter corre-
lation distance in the nonstimulatory phase reflects the fact
that below the threshold glucose concentration, the collec-
tive response of b cells is still muted.

Because the cross-correlation function is an expectation
of pair cross correlations, C(d) ¼ hCiji ¼ E[Cij], we could
also calculate the associated variances, Var[Cij]. We found
that the relationship between Var[Cij] and E[Cij] is linear,
where two distinct lines corresponding to nonstimulatory
and stimulatory phases have the same slope, c0 z 0.25
(Fig. 5 B). This result provides additional insights into
the nature of fast calcium oscillations. Intuitively, the
cross correlation gets stronger if simultaneous spiking is
more frequent. That Var[Cij] and E[Cij] are linearly
related is a signature of a Poisson process, thus indicating
that the number of simultaneous spikes in two signals re-
corded at a given distance is a Poission-distributed
random variable. We further hypothesize that the number
of simultaneous spikes is proportional to the number of
gap junctions between nearby cells, in which case slope
c0 is interpretable as an elementary contribution of each
cell-cell interaction to the cross correlation (53), whereas
the estimated value of c0 z 0.25 is in broad agreement
with a previous report on collective chemosensing in mi-
cropatterned fibroblast cell colonies (53). The two distinct
lines below and above the threshold glucose concentration
are yet another sign that cell-to-cell communication
within b-cell collectives qualitatively changes in response
to glucose. The distinction between the two phases fades
only at large distances at which cross correlations are
very weak (bottom left corner in Fig. 5 B).
DISCUSSION

This work attempts to understand the activity of insulin-
secreting b cells as dynamical networks in which observed
oscillatory phenomena emerge from cell-to-cell interactions
within the spatial constraints of a typical islet rather than
from the properties of single cells alone. On a spectrum of
mathematical models mimicking b-cell function, our
approach using simple coupled units (i.e., cells) sits at the
opposite end of highly complex single units described with
a system of differential-algebraic equations and subjected
to deterministic coupling. In between, there are many
possible model formulations that use more or less complex
single unit dynamics or more or less stochastic couplings,
Biophysical Journal 118, 2588–2595, May 19, 2020 2593
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yet we steer clear of examining to what extent such more
complex models account for the observations. We feel that
it is important to emphasize this because our approach con-
tains elements that some may find contentious (e.g., Heb-
bian-learning-like response to activity), although well-
known models from the literature (45,54) may also be able
to explain the distinct features of b-cell collectives (e.g.,
sensitivity to glucose stimulation that differs from the sensi-
tivity of individual cells). In other words, our work should be
seen as an attempt to offer a novel, to our knowledge, and
simpler perspective on the documented phenomena, rather
than invalidate previous work on which we, in fact, build.

In view of a rapid development of electrophysiological
probes capable of detecting electrical (55,56) or optical
(57) activities in pancreatic b cells, a further upgrade of
our approach may eventually help to better understand phys-
iology and pathophysiology of b-cell collectives and yield
important cues for diagnosis, therapy, and prevention of dia-
betes mellitus (Remark 3 in the Supporting Materials and
Methods). Away forward in this context would be to extract
statistical properties of recorded signals, compare them with
similar properties of simulated signals, and finally infer the
model’s parameter values for which recorded and simulated
signals statistically best match each other. Inferred param-
eter values close to the critical point would then suggest a
healthy b-cell function. Deviations from the critical point,
by contrast, would serve as an early warning signal of a
potentially degenerative condition (Fig. S7).

Particularly in relation to b-cell transplantation or better
regeneration paradigms in type 1 diabetes mellitus, it is crit-
ical to understand to what extent b-cell collectives have to
be replaced or regenerated to reestablish the healthy condi-
tion. Much more than just to transplant or regenerate an
adequate b-cell mass, it is important to enable b-cell collec-
tives to express dynamical cell-to-cell communication abil-
ity with a certain relative coupling strength. Our results
could thus stimulate the development of novel diagnostic
protocols to assess the improving function of b-cell collec-
tives until full recovery. Although it is too early to decide on
the merit of these specific ideas, the future does seem to be
in the right intermix of affordable sensing technologies to
acquire data, computational-statistical methods to analyze
data, and—as much as complexity allows—mechanistic
modeling to interpret data.
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