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Abstract

Background

Autism spectrum disorder (ASD) is characterized by impaired social communication and

behavioral problems. An increased risk of premature mortality has been observed in individ-

uals with ASD. Therefore, we hypothesized that biological aging is accelerated in individuals

with ASD. Recently, several studies have established genome-wide DNA methylation

(DNAm) profiles as ‘epigenetic clocks’ that can estimate biological aging. In addition, ASD

has been associated with differential DNAm patterns.

Methods

We used two independent datasets from blood samples consisting of adult patients with

high-functioning ASD and controls: the 1st cohort (38 ASD cases and 31 controls) and the

2nd cohort (6 ASD cases and 10 controls). We explored well-studied epigenetic clocks such

as HorvathAge, HannumAge, SkinBloodAge, PhenoAge, GrimAge, and DNAm-based telo-

mere length (DNAmTL). In addition, we investigated seven DNAm-based age-related

plasma proteins, including plasminogen activator inhibitor-1 (PAI-1), and smoking status,

which are the components of GrimAge.

Results

Compared to controls, individuals with ASD in the 1st cohort, but not in the 2nd cohort,

exhibited a trend for increased GrimAge acceleration and a significant increase of PAI-1 lev-

els. A meta-analysis showed significantly increased PAI-1 levels in individuals with ASD

compared to controls.
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Conclusion

Our findings suggest there is no epigenetic age acceleration in the blood of individuals with

ASD. However, this study provides novel evidence regarding increased plasma PAI-1 levels

in individuals with high-functioning ASD. These findings suggest PAI-1 may be a biomarker

for high-functioning ASD, however, larger studies based on epigenetic clocks and PAI-1 will

be necessary to confirm these findings.

Introduction

Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder character-

ized by impaired social communication and behavioral problems that affects about 1% of the

worldwide population [1]. Brain structural and diffusion magnetic resonance imaging studies

have consistently found disrupted neuronal connectivity due to abnormal neuronal migration

in individuals with ASD [2]. However, there is no useful biomarker to confirm the diagnosis of

ASD or evaluate the efficacy of treatments [3]. In addition, an increased risk of premature

mortality has been observed in individuals with ASD, which results from both natural causes

and suicide [4–6]. Even after adjusting for comorbid psychiatric disorders such as intellectual

disability, the mortality risk in individuals with ASD is elevated for natural causes but not for

suicide [5]. Therefore, as a putative explanation for these observations, we propose a hypothe-

sis that ASD is associated with accelerated biological aging.

Aging research has progressed markedly in the past decade. Among six potential estimators

(i.e., epigenetic clocks; telomere length; transcriptomic-, proteomic-, and metabolomic-based

predictors; composite markers), ‘epigenetic clocks’ are the most promising predictors for bio-

logical aging [7]. A number of epigenetic clocks have been established based on genome-wide

DNA methylation (DNAm) profiles [8–13]. Such measures have been revealed an association

of epigenetic age acceleration with various conditions including Down syndrome [14], Werner

syndrome [15], Alzheimer’s disease [16], schizophrenia [17, 18], bipolar disorder [19, 20],

depressive disorder [21, 22], suicide [23], alcohol related disorders [24, 25], and posttraumatic

stress disorder [26, 27].

Several epigenetic clocks have been established based on the specific CpG sites selected

from different DNAm datasets. The first generation of epigenetic clocks such as DNAm Hor-

vathAge [9], HannumAge [8], and SkinBloodAge [10] were developed to predict chronological

age, and showed weak associations with clinical phenotypes [28]. Subsequently, PhenoAge

[11] and GrimAge [12] were developed to capture physiological status and mortality, respec-

tively. GrimAge is constructed from 10 clinical characteristics related to ‘grim’ news: chrono-

logical age, sex, seven DNAm-based age-related plasma proteins including plasminogen

activator inhibitor-1 (PAI-1), and DNAm-based smoking status [12]. GrimAge components,

such as DNAmPAI-1, can also be calculated [12]. GrimAge outperforms other epigenetic

clocks in the prediction of age-related clinical phenotypes and all-cause mortality [29]. In con-

trast, DNAm telomere length (DNAmTL) was established to predict telomere length, which is

also a biomarker of aging, from a DNAm profile [30].

Previous studies have reported altered DNAm profiles in the blood of individuals with ASD

[31, 32]. Furthermore, Pediatric-Buccal-Epigenetic clock acceleration was found in buccal epi-

thelium cells of children with ASD compared to typically developing children [13]. However

epigenetic clock analysis using blood samples has not been reported in individuals with ASD.
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Here, we performed epigenetic clock analysis using blood samples to compare individuals

with ASD and controls. We investigated five measures of epigenetic age (HorvathAge, Hannu-

mAge, SkinBloodAge, PhenoAge, and GrimAge) and DNAmTL, as well as GrimAge compo-

nents including DNAm-based age-related plasma proteins and smoking status. We focused on

adults with high-functioning ASD, because the high mortality of ASD is associated with

comorbid psychiatric disorders including intellectual disability [5].

Materials and methods

Participants

This study was conducted in accordance with the Declaration of Helsinki, and was approved

by the ethics committee of Kyoto University Graduate School and Faculty of Medicine. Writ-

ten informed consent was obtained from all participants.

The participants are from our previously published study [32]. Briefly, we used two inde-

pendent cohorts consisting of adult patients with high-functioning ASD and controls; the 1st

cohort comprised 38 ASD cases and 31 controls, and the 2nd cohort was six ASD cases and 10

controls. All participants were of Japanese descent and there are no racial differences in the

samples. We recruited patients with ASD from the Department of Psychiatry at Kyoto Univer-

sity Hospital as well as healthy volunteers. The diagnosis of ASD was evaluated using the Diag-

nostic and Statistical Manual of Mental Disorders 5th Edition (DSM-5), followed by the

Autism Diagnostic Observation Schedule (ADOS) instrument and Japanese version of the

high-functioning Autism Spectrum Screening Questionnaire (ASSQ-R) [33, 34]. Intelligence

quotient (IQ) was assessed according to the Wechsler Adult Intelligence Scale 3rd Edition

(WAIS-III). We excluded participants with an IQ < 80, additional psychiatric/neurologic dis-

orders, other medical disorders, history of cigarette smoking, or use of psychotropic medica-

tion for at least three months before the blood collection in both ASD and control groups.

Age, sex, and IQ were matched between the ASD and control groups in both the 1st and 2nd

cohorts. The 2nd cohort consisted of only male individuals.

Epigenetic clocks

Genome-wide DNAm profiles of blood samples were measured using the Illumina Infinium

450 K platform as described elsewhere [32]. The Beta Mixture Quantile Dilation (BMIQ)

method was used for array normalization [35]. We investigated HorvathAge, HannumAge,

SkinBloodAge, PhenoAge, GrimAge, and DNAmTL, as well as GrimAge components, includ-

ing DNAm-based plasma proteins and smoking status, using an online calculator (https://

horvath.genetics.ucla.edu/html/dnamage/) [9, 12]. Epigenetic age acceleration was defined as

the residual from regressing measurement values on chronological age. A positive or negative

acceleration value indicates a higher or lower than expected clock value based on chronological

age, respectively.

Statistics

Statistical analyses were performed using R version 3.6.1 (The R Foundation for Statistical

Computing, Vienna, Austria) with EZR version 1.41 (Jichi Medical University, Saitama,

Japan) [36]. Differences in continuous variables between groups were analyzed using the Stu-

dent’s t-test or Man-Whitney U test, as appropriate. Multiple linear regression analysis was

applied to address confounding factors such as age, sex, and phenotype. Meta-analysis was per-

formed using a fixed effect model after confirming low heterogeneity between the 1st and 2nd

cohorts by Cochran’s Q test. The relationship between continuous variables was analyzed with
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Spearman’s rank correlation coefficient. Dummy variables were used as necessary. Statistical

significance was defined as a two-tailed p-value< 0.05.

Results

In the 1st cohort, there was no significant difference in epigenetic age acceleration between the

ASD and control groups, although there was a trend for GrimAge acceleration (p = 0.101)

(Table 1 and Fig 1). Next, we investigated GrimAge components including DNAm-based

plasma proteins and smoking status and found significantly increased DNAmPAI-1 levels in

individuals with ASD compared to controls (p = 0.00385) (Table 1 and Fig 2). Using multiple

linear regression analysis to adjust confounding factors such as age and sex, there was still a

significant difference in DNAmPAI-1 levels (p = 0.0100) (S1 Table).

In the 2nd cohort, there was no significant difference in epigenetic age acceleration,

DNAm-based plasma proteins, and smoking status in individuals with ASD and the control

group (Table 1, S1 and S2 Figs, as well as S1 Table).

Table 1. Demographic and clinical characteristics as well as epigenetic clock acceleration.

1st cohort 2nd cohort

Control (n = 31) ASD (n = 38) P-value Control (n = 10) ASD (n = 6) P-value

Demographic and clinical characteristics

Sex, male / female 16 / 15 23 / 15 0.476a 10 / 0 6 / 0 NA

Age, mean (SD) 26.7 (6.7) 28.6 (6.5) 0.244b 31.2 (10.0) 27.0 (7.0) 0.383b

IQ, mean (SD) 112.8 (12.1) 107.8 (14.7) 0.139b 121.1 (10.87) 110.0 (16.1) 0.120b

ADOS total, median (IQR) 1.00 (1.00, 2.00) 6.00 (4.00, 8.50) < 0.001c 2.00 (0.25, 2.00) 8.50 (7.25,12.75) 0.00173c

ASSQR total, median (IQR) 6.00 (2.50, 9.00) 28.00 (22.00, 32.75) < 0.001c - - -

Epigenetic age acceleration

HorvathAge acceleration, mean (SD) 0.33 (4.89) −0.27 (4.31) 0.591b 1.42 (4.61) −2.36 (8.60 0.267b

HannumAge acceleration, mean (SD) −0.49 (3.88) 0.40 (3.72) 0.331b 1.42 (2.69) −2.37 (6.08) 0.104b

SkinBloodAge acceleration, mean (SD) −0.41 (3.10) 0.34 (3.06) 0.317b 0.04 (2.27) −0.07 (7.28) 0.964b

PhenoAge acceleration, mean (SD) −0.65 (5.11) 0.53 (4.98) 0.340b 2.00 (4.77) −3.34 (9.54) 0.154b

GrimAge acceleration, mean (SD) −0.46 (1.98) 0.38 (2.16) 0.101b 0.31 (2.32) −0.52 (2.65) 0.518b

DNAmTL acceleration (kbp), mean (SD) −0.01 (0.17) 0.01 (0.16) 0.600b −0.03 (0.18) 0.05 (0.09) 0.306b

GrimAge components

DNAmADM (ng/mL), mean (SD) 0.48 (0.02) 0.48 (0.02) 0.521b 0.40 (0.03) 0.38 (0.01) 0.176b

DNAmB2M (ng/mL), mean (SD) 2262.27 (89.03) 2299.12 (106.30) 0.129b 2727.06 (149.12) 2633.02 (110.27) 0.203b

DNAmCystatinC (ng/mL), mean (SD) 728.06 (22.38) 736.34 (28.19) 0.188b 543.77 (39.15) 535.37 (42.76) 0.694b

DNAmGDF-15 (ng/mL), mean (SD) 0.71 (0.11) 0.73 (0.10) 0.505b 0.37 (0.14) 0.29 (0.14) 0.283b

DNAmLeptin (ng/mL), mean (SD) −9.60 (2.13) −9.32 (2.20) 0.593b 25.33 (2.39) 23.35 (2.85) 0.158b

DNAmPAI-1 (ng/mL), mean (SD) 30.52 (1.55) 31.66 (1.59) 0.00385b 23.04 (3.17) 23.07 (1.02) 0.982b

DNAmTIMP-1 (ng/mL), mean (SD) 28.88 (1.20) 29.17 (1.08) 0.280b 26.86 (1.39) 26.03 (1.27) 0.253b

DNAmPACKYRS, mean (SD) 12.78 (4.63) 14.89 (5.67) 0.101b 8.33 (6.50) 6.07 (5.39) 0.488b

ADM, adrenomedullin; ADOS, Autism Diagnostic Observation Schedule; ASD, autism spectrum disorder; ASSQ-R, Autism Spectrum Screening Questionnaire; B2M,

beta-2-microglobulin; DNAm, DNA methylation; IQ, intelligence quotient; IQR, interquartile range; GDF-15, growth differentiation factor 15; PACKYRS, smoking

pack-years; PAI-1, plasminogen activator inhibitor-1; SD, standard deviation; TIMP-1, tissue inhibitor of metalloproteinases-1.

Boldface type indicates statistical significance.
a P-value was calculated using the Fisher’s exact test.
b P-value was calculated using the Student’s t-test.
c P-value was calculated using the Mann-Whitney U test.

https://doi.org/10.1371/journal.pone.0263478.t001
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Fig 1. Epigenetic clock analysis in the 1st cohort. (A) HorvathAge, (B) HannmuAge, (C) SkinBloodAge, (D) PhenoAge, (E) GrimAge, and (F)

DNAmTL. Scatter plots show epigenetic age vs. chronological age. Violin plots with dots show epigenetic age acceleration in the ASD and control

groups. Student’s t-tests were performed for comparisons between the groups. ASD, autism spectrum disorder; CTL, control; DNAmTL, DNA

methylation-based telomere length.

https://doi.org/10.1371/journal.pone.0263478.g001
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In addition, we performed a meta-analysis of DNAmPAI-1. DNAmPAI-1 was significantly

increased in individuals with ASD compared to controls (p = 0.0044) (S3 Fig), and showed the

Bonferroni correction level (corrected significance was defined as p-value< 0.05/7 = 0.0071).

The mean difference between the ASD and control groups indicated that individuals with

ASD are predicted to have plasma PAI-1 levels 1.02 ng/mL higher than controls.

We additionally performed correlation analysis between epigenetic age accelerations/PAI-1

levels and IQ, ADOS, and ASSQ-R scores in individuals with ASD. We found that GrimAge

acceleration was significantly positively correlated with ADOS total in both the 1st cohort

(rho = 0.415, p = 0.0131) and the 2nd cohort (rho = 0.886, p = 0.0333), but did not show the

Bonferroni correction level (corrected significance was defined as p-value< 0.05/5 = 0.01) in

either cohort (S4 Fig).

Discussion

To our knowledge, this is the first study to performed an epigenetic clock analysis of blood

between individuals with high-functioning ASD and controls. We observed a non-significant

Fig 2. DNA methylation-based age-related plasma proteins and smoking status in the 1st cohort. (A) ADM, (B) B2M, (C) Cystatin C, (D) GDF-15, (E)

Leptin, (F) PAI-1, (G) TIMP-1, and (H) PACKYRS. Student’s t-tests were performed for comparisons between the groups. ADM, adrenomedullin; ASD,

autism spectrum disorder; B2M, beta-2-microglobulin; CTL, control; GDF-15, growth differentiation factor 15; PACKYRS, smoking pack-years; PAI-1,

plasminogen activator inhibitor-1; TIMP-1, tissue inhibitor of metalloproteinases-1.

https://doi.org/10.1371/journal.pone.0263478.g002
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trend in GrimAge acceleration, and a significant difference in DNAmPAI-1 levels between

ASD and control groups in the 1st, but not the 2nd, cohort. A meta-analysis showed signifi-

cantly increased DNAmPAI-1 levels in individuals with ASD compared to controls. No bio-

marker is currently available for confirming the diagnosis and efficacy of treatments for ASD

[3]. Our findings suggest that plasma PAI-1 levels could represent potential blood biomarkers

for ASD.

We additionally observed a modest significant correlation between GrimAge acceleration

and ADOS total in both the 1st and 2nd cohorts; however, these results did not show Bonfer-

roni correction level. Therefore, it was not possible to draw a definitive conclusion. Further

studies with a larger sample size are required.

McEwen LM, et al previously reported that epigenetic age is accelerated in children with

ASD [13], which is inconsistent with our present findings. They used the Pediatric-Buccal-Epi-

genetic clock based on buccal epithelium cells. In contrast, we used other epigenetic clocks

based on blood samples. The differences between our and their findings may be due to differ-

ence in the type of tissues used for the development of each epigenetic clock.

PAI-1 is a major physiological inhibitor of tissue plasminogen activator (tPA) in plasma

and is increased in various clinical situations related to ischemic cardiovascular events and

senescence [37, 38]. Plasma PAI-1 levels are increased by hyperglycemia and hyperinsuline-

mia [39]. Recent epidemiological studies have shown that maternal diabetes is associated

with an increased prevalence of ASD [40, 41]. Based on this finding, Hoirisch-Clapauch et al.

hypothesized that neuronal dis-connectivity due to abnormal neuronal migration underlies

the development of ASD, and that fetal hyperglycemia increases PAI-1 levels causing the

inhibition of tPA activity for reelin glycoprotein, which guides neurons and glial cells from

the ventricular zone to the cortex [42]. Our finding of increased DNAmPAI-1 in individuals

with ASD may support this hypothesis. Moreover, plasma PAI-1 levels were significantly

higher in individuals with ASD and both regression and a developmental delay compared to

individuals with ASD without regression, or individuals with ASD and regression without a

developmental delay [43]. In contrast, no association was observed between ASD and the

4G/5G sequence polymorphism in the PAI-1 gene promoter that influences the level of

plasma PAI-1 [44]. Further research is required to elucidate the role of PAI-1 in the patho-

physiology of ASD.

There are several limitations to the present study. First, the sample size of the cohorts ana-

lyzed was relatively small for a definitive conclusion. Independent studies with larger sample

sizes are required in future work. Second, DNAmPAI-1 studied here is a prediction of plasma

PAI-1 levels based on the DNAm profile, and it is necessary to confirm the actual plasma PAI-

1 protein concentration. Third, this study included only Japanese individuals from a single

university hospital. Fourth, information about other diseases or metabolic problems such as

body mass index was lacking. Finally, only blood samples were analyzed. Future studies using

other tissue and cell types, such as neuronal/glial cells and buccal epithelium cells, are

required.

Conclusions

We explored the DNAm-based epigenetic age and age-related plasma proteins, and identified

increased DNAmPAI-1 in individuals with high-functioning ASD. Our findings suggest there

is no epigenetic age acceleration of blood in ASD. However, this study provides novel evidence

regarding increased plasma PAI-1 levels in individuals with high-functioning ASD. These

findings may provide applicable biomarkers for high-functioning ASD, although, larger stud-

ies based on epigenetic clocks and PAI-1 will be necessary to confirm these findings.
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Supporting information

S1 Fig. Epigenetic clock analysis in the 2nd cohort. (A) HorvathAge, (B) HannmuAge, (C)

SkinBloodAge, (D) PhenoAge, (E) GrimAge, and (F) DNAmTL. Scatter plots show the epige-

netic age vs. chronological age. Violin plots with dots show epigenetic age acceleration in the

ASD and control groups. Student’s t-tests were performed for comparisons between the

groups. ASD, autism spectrum disorder; CTL, control; DNAmTL, DNA methylation-based

telomere length.

(TIF)

S2 Fig. DNA methylation-based age-related plasma proteins and smoking status in the

2nd cohort. (A) ADM, (B) B2M, (C) Cystatin C, (D) GDF-15, (E) Leptin, (F) PAI-1, (G)

TIMP-1, and (H) PACKYRS. Student’s t-tests were performed for comparisons between the

groups. ADM, adrenomedullin; ASD, autism spectrum disorder; B2M, beta-2-microglobulin;

CTL, control; GDF-15, growth differentiation factor 15; PACKYRS, smoking pack-years; PAI-

1, plasminogen activator inhibitor-1; TIMP-1, tissue inhibitor of metalloproteinases-1.

(TIF)

S3 Fig. Meta-analyses of DNAmPAI-1. Low heterogeneity was observed between the 1st and

2nd cohorts (Cochran’s Q test p = 0.33). A significant difference was observed between the

ASD and control groups using a fixed effect model (p = 0.0044). ASD, autism spectrum disor-

der; CI, confidence interval; CTL, control; PAI-1, plasminogen activator inhibitor-1; SD, stan-

dard deviation.

(TIF)

S4 Fig. Relationship between epigenetic clock acceleration/PAI-1 and IQ, ADOS, and

ASSQ-R scores in individuals with ASD. Scatter plots show epigenetic clock acceleration/

PAI-1 vs. medical condition. The relationship was analyzed with Spearman’s rank correlation

coefficient. ADOS, the Autism Diagnostic Observation Schedule; ASD, autism spectrum disor-

der; ASSQ-R, the high-functioning Autism Spectrum Screening Questionnaire; CTL, control;

DNAmTL, DNA methylation-based telomere length; IQ, intelligence quotient; PAI-1, plas-

minogen activator inhibitor-1.

(TIF)

S1 Table. Multiple-linear regression analysis of DNAmPAI-1. B, unstandardized partial

regression coefficient; DNAmPAI-1, DNA methylation-based plasminogen activator inhibi-

tor-1; SE, standard error. Multiple linear regression analysis was performed with PAI-1 as the

response variable and phenotype, sex, and age as the explanatory variables. Dummy variables

were used as follows: phenotype, control = 0 and autism spectrum disorder = 1; sex, male = 0

and female = 1. Boldface type indicates statistical significance.
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