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Summary
Background: Non-alcoholic steatohepatitis (NASH) is a severe form of non-alcoholic 
fatty liver disease (NAFLD) characterised by liver fat accumulation, inflammation and 
progressive fibrosis. Emerging data indicate that genetic susceptibility increases risks 
of NAFLD, NASH and NASH-related cirrhosis.
Aims: To review NASH genetics and discuss the potential for precision medicine ap-
proaches to treatment.
Method: PubMed search and inclusion of relevant literature.
Results: Single-nucleotide polymorphisms in PNPLA3, TM6SF2, GCKR, MBOAT7 and 
HSD17B13 are clearly associated with NASH development or progression. These ge-
netic variants are common and have moderate-to-large effect sizes for development 
of NAFLD, NASH and hepatocellular carcinoma (HCC). The genes play roles in lipid 
remodelling in lipid droplets, hepatic very low-density lipoprotein (VLDL) secretion 
and de novo lipogenesis. The PNPLA3 I148M variant (rs738409) has large effects, 
with approximately twofold increased odds of NAFLD and threefold increased odds 
of NASH and HCC per allele. Obesity interacts with PNPLA3 I148M to elevate liver 
fat content and increase rates of NASH. Although the isoleucine-to-methionine 
substitution at amino acid position 148 of the PNPLA3 enzyme inactivates its lipid 
remodelling activity, the effect of PNPLA3 I148M results from trans-repression of an-
other lipase (ATGL/PNPLA2) by sequestration of a shared cofactor (CGI-58/ABHD5), 
leading to decreased hepatic lipolysis and VLDL secretion. In homozygous Pnpla3 
I148M knock-in rodent models of NAFLD, targeted PNPLA3 mRNA knockdown re-
duces hepatic steatosis, inflammation and fibrosis.
Conclusion: The emerging genetic and molecular understanding of NASH paves the 
way for novel interventions, including precision medicines that can modulate the ac-
tivity of specific genes associated with NASH.
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1  | INTRODUC TION

Non-alcoholic fatty liver disease (NAFLD) affects about 25% 
of the global population.1 NAFLD includes non-alcoholic fatty 
liver (NAFL) and non-alcoholic steatohepatitis (NASH). Patients 
whose NAFL develops into NASH have increased overall and 
liver-specific mortality1,2 and increased risks of cirrhosis, liver 
failure and hepatocellular carcinoma (HCC).3-5 The burden of 
NASH is expected to increase in line with the global epidemic of 
obesity, type 2 diabetes and metabolic syndrome.6 NASH is fast 
becoming the leading cause of chronic liver disease, and is set to 
overtake hepatitis C as the leading cause of liver transplantation 
in the US.7,8

Hepatic steatosis in people with NAFL is characterised by sub-
stantial accumulation of lipid droplets within hepatocytes. The 
progression to NASH is marked by hepatic inflammation and hepa-
tocellular injury, with or without hepatic fibrosis, in histological ex-
aminations of liver biopsies.3-5 Limited evidence suggests that NAFL 
progresses to NASH in up to 44% of patients undergoing random 
or voluntary biopsy,1,9 with higher rates in those referred for biopsy 
because NASH is suspected.1 Progressive fibrosis drives poor liv-
er-related clinical outcomes, and develops in 35%-41% of patients 
with NASH, according to meta-analyses of paired biopsy studies.1,2 
About 20% of patients with NASH develop end-stage cirrhosis or 
HCC.10

Advances in human genetics present new opportunities to ad-
dress the unmet need for NASH therapeutics, based on improved 
understanding of the multifactorial pathogenesis of NASH and the 
interaction between genetic and environmental risk factors. These 
new findings have opened up the possibility of precision medicine 
for patients with NASH based on inherited genetic variants. In this 
approach, the identification of people who carry a specific genetic 
variant predisposing them to NASH allows targeting of the same 
specific gene or molecular pathway to halt or reverse their hepatic 
steatosis, inflammation and fibrosis.

Here, we review the associations of five key genetic variants 
with NASH and discuss the potential for targeted interventions in 
particular disease pathways (Section 3). We then focus on a vari-
ant in the gene patatin-like phospholipase domain-containing pro-
tein 3 (PNPLA3), a common and strong genetic risk factor for NASH 
(Section 4). We assess the extensive genetic, molecular and cell 

biological evidence that therapies able to modulate PNPLA3 expres-
sion levels may represent precision medicine approaches in patients 
with NASH.

2  | METHODS

This was not a formal systematic review, but a comprehensive search 
strategy was used to identify and prioritise published findings for 
inclusion. A PubMed search was performed without language or 
date restrictions, aiming to identify publications on known genetic 
variants associated with NASH including genetic, epidemiological, 
clinical, pre-clinical and molecular cell biological studies. Search 
terms included ‘non alcoholic fatty liver disease’ or ‘non alcoholic 
steatohepatitis’ and ‘genetic’ or ‘genetics’ or ‘PNPLA3’ or ‘TM6SF2’ 
or ‘MBOAT7’ or ‘HSD17B13’ or ‘GCKR’ or ‘epidemiology’ or ‘preva-
lence’ or ‘treatment’ or ‘insulin resistance’ or ‘risk factors’. Hits were 
refined based on the relevance of the title and abstract to the aims of 
the review. Following peer-review, 24 articles were added, of which 
four were suggested directly by the peer-reviewers. A total of 163 
articles were included in the final review.

3  | IDENTIF YING TARGETABLE PATHWAYS 
FOR PRECISION MEDICINE

3.1 | Environmental risk factors

Modern sedentary lifestyles and the overconsumption of food 
drive a consistent positive energy balance and fuel the obesity 
epidemic, with subsequent increases in incidence of type 2 dia-
betes, metabolic syndrome and NAFLD. In the US, the estimated 
prevalence of NASH rises from 12% in middle-aged adults to 22% 
among those with diabetes and 33% among those with obesity.11,12 
Worldwide, NASH prevalence increases from 15% to 30% in people 
with obesity to up to 70% in those with morbid obesity.10 Among 
patients with NASH worldwide, a reported 31%-89% have obesity 
and 33%-56% have diabetes.10 Lifestyle interventions are the cor-
nerstone of NAFLD management, and are discussed in Section 4.3. 
Not all obese individuals with fatty liver develop NASH, however, 
and some lean individuals do develop NASH,1 indicating interaction 
with heritable risk factors.
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3.2 | Genetic risk factors

Hepatic steatosis and fibrosis cluster in families, with a heritability 
value of about 0.5 in a twin study, after adjustment for age, sex and 
ethnicity.13 In a familial cohort study, the risk of advanced fibrosis 
was 12 times higher in first-degree relatives of people with NAFLD 
and cirrhosis than in population controls, even after adjustment for 
other risk factors.14 Of over 100 loci examined in genome-wide as-
sociation studies and candidate gene studies,15 genetic variations in 
five genes have emerged as reproducibly and robustly predispos-
ing individuals to development of NASH (PNPLA3, TM6SF2, GCKR, 
MBOAT7 and HSD17B13), as previously reviewed.16 Unexplained 
variance remains despite these discoveries, indicating that future 
genome-wide studies may reveal additional associations.13

Table 1 shows published allele frequencies for the five principal 
genetic variants associated with NAFLD, NASH and HCC, together 
with allelic odds ratios for each disease. Odds ratios from different 
cohorts are not comparable with one another, and those from pop-
ulations with liver disease may represent overestimates (eg liver bi-
opsy cohorts). Nevertheless, published allelic odds ratios provide a 
useful indication of the approximate magnitude of the effects of the 
five principal variants on liver disease.

The genetic variants associated with NASH are common, with 
minor allele frequencies of 7%-37%, but nevertheless have moder-
ate to large effect sizes for NAFLD, NASH and HCC (Table 1). This 
observation contrasts with the evolutionary theory that decreased 
reproductive fitness should select against genetic variants that 
confer disease risk.17 Present-day reproductive fitness may not, 
however, reflect the pressures that have shaped genetic variation 
throughout evolution.17 The five genes known to be associated with 
NASH (Table 1) are all involved in glucose and fat homeostasis regu-
latory pathways. The modern obesogenic environment may expose 
a disease risk associated with genetic variants that are advantageous 
when food supplies are erratic. Increased liver fat levels in people 
with the genetic variation in PNPLA3 that predisposes to NASH may 
represent just such an example.

3.2.1 | PNPLA3

The first genetic variant found to be associated with NASH is a 
nonsynonymous single-nucleotide polymorphism (SNP) in PNPLA3 
known as rs738409 c.444 C > G p.I148M.18 The C to G substitu-
tion at nucleotide position 444 of PNPLA3 encodes an isoleucine 

TA B L E  1   Published allele frequencies and odds ratios for the principal genetic variants associated with NAFLD, NASH and HCC

Gene SNP

Minor allele 
frequency, 1000G 
(max)

NAFLD allelic odds 
ratioa (95% CI)

NASH allelic odds 
ratioa (95% CI)

HCC allelic odds 
ratioa (95% CI)

PNPLA3 rs738409
c.444 C > G p.I148M

0.26 (0.72)33 1.91 (1.64, 2.21)24 2.54 (2.03, 3.16)24 5.9 (1.5, 23.8)b,26

2.68 (1.01, 7.26)c,25

TM6SF2 rs58542926
c.499 G > A p.E167K

0.07 (0.16)41 1.82 (1.59, 2.08)d,39 1.37 (1.11, 1.72)d,e,39 1.72 (1.27, 2.38)d,f,39

GCKR rs1260326
c.1337 C > T p.P446L

0.29 (0.59)46 1.38 (1.25, 1.53)44

1.49 (1.09, 2.05)45
1.55 (1.10, 2.17)45 1.84 (1.23, 2.75)f,44

MBOAT7/
TMC4

rs641738
g.54173068 C > T/
c.50 G > A p.G17E

0.37 (0.63)51 1.42 (1.07, 1.91)g,47 1.18 (1.00, 1.40)g,47 2.10 (1.33, 3.31)h,48

HSD17B13 rs72613567i

c.704/812 + 2dup (usually 
referred to as T to TA insertion)j

0.18 (0.40)58 0.84 (0.78, 0.91)k,52 0.86 (0.72, 1.02)k,52 0.67 (0.45, 1.00)k,l ,52

0.77 (0.64, 0.93)m,56

Abbreviations: 1000G, 1000 Genomes Project phase 3; CI, confidence interval; HCC, hepatocellular carcinoma; NAFLD, non-alcoholic fatty liver 
disease; NASH, non-alcoholic steatohepatitis; NR, not reported; SNP, single-nucleotide polymorphism.
aNote that odds ratios are from different cohorts and are not comparable across variants or diseases. 
bIn people with obesity; liver fibrosis not assessed. 
cIn patients with NAFLD (76.2% with NASH and 34.4% with fibrosis stage 3 and 4). 
dCalculated as reciprocal of published odds ratio for the protective allele.39 
eNASH cirrhosis. 
fSeverity of liver fibrosis not assessed. 
gLiver biopsy cohort. 
hUK/Italian cohort without advanced fibrosis/cirrhosis. 
iOther liver disease-associated SNPs in HSD17B13 are rs72613567 (linkage with rs72613567), rs143404524 and rs62305723. 
jTA to TAA insertion on the chromosomal forward strand is a TA to TTA duplication in HDS17B13 on the opposite strand, affecting introns of two 
transcripts. 
kData shown from Geisinger Health System cohorts; generally similar results in Dallas Heart Study cohort. 
lSeverity of liver fibrosis not assessed. 
mAdjusted for age, sex, fibrosis stage and aetiology. 
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to methionine substitution at amino acid position 148 of PNPLA3 
protein (also known as adiponutrin). This genetic variant (herein 
referred to as PNPLA3 I148M) is associated with hepatic steatosis, 
steatohepatitis, elevated plasma liver enzyme levels, hepatic fibrosis 
and cirrhosis.18-22 Associations between PNPLA3 I148M and NAFLD 
have been demonstrated in multiple different geographical regions 
and ethnicities22 and in populations of all ages including children and 
adolescents.23

PNPLA3 I148M has allelic odds ratios of approximately two to 
three for risks of NAFLD, NASH and HCC (Table 1).24-26 Compared 
with allelic odds ratios, genotypic odds ratios are lower in PNPLA3 
148IM heterozygotes and higher in PNPLA3 148MM homozygous 
risk allele carriers.25-27 In a meta-analysis of 13 817 patients, the al-
lelic odds ratio for NASH was 2.54 (2.03, 3.16) and the genotypic 
odds ratios were 1.75 (1.24, 2.46) for heterozygotes and 4.44 (2.92, 
6.76) for homozygotes.24

Elevated risks of hepatic decompensation and liver-related death 
were also associated with PNPLA3 I148M in a recent Italian prospec-
tive study.25 PNPLA3 I148M was strongly associated with liver-related 
death in an analysis of the US National Health and Nutrition Examination 
Survey with a median follow-up of 23 years.28 Genetic association stud-
ies have established PNPLA3 I148M as a strong genetic determinant 
of NAFLD in multiple populations worldwide.29-31 The penetrance of 
PNPLA3 I148M in 148MM homozygotes in Europeans is similar to that 
of mutations causing canonical monogenic liver disorders.32 The PNPLA3 
I148M allele is common, with a frequency of 26% in the 1000 Genomes 
Project phase 3 combined population.33 The minor allele frequency rises 
to 50% or higher in Latin American populations, contributing to explana-
tion of the high incidence of NASH in this ethnic group (Table 1).33

3.2.2 | TM6SF2

A SNP in transmembrane 6 superfamily member 2 (TM6SF2) is as-
sociated with increased liver fat content,34 NASH, advanced hepatic 
fibrosis and cirrhosis.35,36 Rs58542926 c.499 G > A p.E167K is a G to 
A substitution encoding a glutamate to lysine substitution at amino 
acid position 167 of TM6SF2 protein (E167K), leading to a loss of its 
function in the hepatic very low-density lipoprotein (VLDL) secre-
tion pathway.34,37

TM6SF2 variants have a moderate to large effect on the risk of 
NAFLD,36,38 with the 167K allele having an allelic odds ratio of 1.82 
for steatosis (Table 1).39 Consistent with these findings, the 167EE 
homozygous ancestral genotype was associated with a significantly 
reduced risk of NAFLD in recent meta-analyses.39,40 The TM6SF2 
E167K allele has a frequency of 7% in the 1000 Genomes Project 
phase 3 combined population (Table 1).36,41

3.2.3 | GCKR

Variations in the glucokinase regulator (GCKR) gene are associated 
with histological NAFLD30 and have a modest effect on the risk of 

NAFLD.38 A SNP in GCKR, rs1260326 c.1337 C > T p.P446L, is a C 
to T substitution encoding a proline to leucine substitution at amino 
acid position 446 of GCKR protein (P446L).42 GCKR P446L is a loss-
of-function variant that increases de novo lipogenesis by inducing 
glycolysis.43 This variant is associated with increased susceptibility 
to NAFLD, NASH and NASH-derived HCC (Table 1).44,45 The minor 
allele frequency of GCKR P446L in the 1000 Genomes Project 
phase 3 combined population is 29%.46 GCKR P446L interacts with 
PNPLA3 I148M in elevating susceptibility to NASH in people with 
both risk alleles.45

3.2.4 | MBOAT7

A SNP downstream of the gene encoding membrane bound 
O-acyltransferase domain-containing 7 (MBOAT7) has been linked 
with an increased risk of NAFLD, inflammation and fibrosis, and may 
predispose to HCC (Table 1).38,47,48 The rs641738 g.54173068 C > T 
variant may be associated with downregulation of MBOAT7 at an 
mRNA and protein level.38 The same SNP also affects another gene, 
TMC4 (rs641738 c.50 G > A p.G17E), with a resulting glycine to glu-
tamate substitution in transmembrane channel-like protein 4. Unlike 
MBOAT7, TMC4 lacks any known function related to lipid metabo-
lism.49 Rs641738 was identified first as a susceptibility locus for cir-
rhosis in alcohol abusers,50 then for NAFLD47 and HCC.48 The minor 
allele frequency of rs641738 in the 1000 Genomes Project phase 3 
combined population is 37% (Table 1).51

3.2.5 | HSD17B13

Inactivating variants in the HSD17B13 gene, which encodes the he-
patic lipid droplet protein hydroxysteroid 17-β dehydrogenase 13, 
have recently been linked with a reduced risk of chronic liver dis-
ease.52-54 The rs72613567 T to TA insertion variant adjacent to the 
donor splice site downstream of exon 6 of HSD17B13 may affect 
mRNA splicing and lead to the production of a truncated protein.52 
Rs72613567 is in strong linkage disequilibrium with rs6834314, 
which is associated with decreased steatohepatitis and serum liver 
enzyme levels.54 Another variant in HSD17B13 (rs143404524) is 
a deletion and frameshift that also leads to production of a trun-
cated protein, and is associated with a reduced risk of chronic liver 
disease.53 Finally, rs62305723 is a missense variant (c.778 C > T 
p.P260S) that also confers loss of enzymatic activity and is associ-
ated with decreased steatohepatitis.54

Compared with ancestral allele homozygotes (T/T), HSD17B13 
rs72613567 insertion variant allele heterozygotes (T/TA) have an 
83% odds ratio and homozygotes (TA/TA) have a 70% odds ratio for 
developing non-alcoholic liver disease.52 In a bariatric surgery cohort, 
the prevalence of NASH decreased with each TA allele, and there 
was evidence of reduced progression from simple steatosis to NASH 
or fibrosis in patients carrying the insertion variant.52 Associations 
between the variant and reduced odds of HCC have been reported 
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in three different populations (Table 1).55,56 Rs72613567 TA has also 
been reported to protect against histological steatohepatitis and fi-
brosis and to reduce plasma alanine aminotransferase (ALT) levels 
in people with NAFLD.54,55,57 Rs72613567 interacted with PNPLA3 
I148M in one cohort studied, such that additional HSD17B13 TA 
alleles reduced the effect of additional PNPLA3 I148M alleles on 
serum ALT levels.52

The minor allele frequency of rs72613567 in the 1000 
Genomes Project phase 3 combined population is 18% (Table 1).58 
The rs143404524 frameshift variant in HSD17B13 has a minor al-
lele frequency of 6% in the 1000 Genomes Project phase 3 com-
bined population, rising to 2.9% in Latin America and up to 33% in 
Africa.59 Reported allelic odds ratios for chronic liver disease are 
0.24 (95% confidence interval [CI]: 0.07, 0.76) in black populations 
and 0.10 (0.01, 0.79) in Hispanic children in the US.53 HSD17B13 
P260S (rs62305723) has a frequency of 2% in the 1000 Genomes 
Project phase 3 combined population.60

3.3 | Interaction of genetic and environmental 
risk factors

3.3.1 | Interaction of obesity with genetic 
risk factors

Obesity exposes the association of PNPLA3 I148M with increased 
liver fat levels and risk of NASH, as revealed by studies in children, 
adolescents and adults61-63 soon after its discovery.18 PNPLA3 I148M 
has a more extreme effect on liver injury in people with obesity than 
in lean individuals, and confers genetic susceptibility from a young 
age.61-63 Odds ratios for elevated ALT levels in PNPLA3 I148M ho-
mozygous children with obesity increased with abdominal fat levels 
in an Italian cohort study, from 1.2 (95% CI: 0.7, 2.4) to 4.9 (3.2, 7.8) 
in subgroups of low and high waist-to-height ratio, respectively.64

Liver fat levels increased dramatically with each additional 
PNPLA3 I148M allele in people with high visceral abdominal fat levels, 
but there was no association in those with low visceral abdominal fat 
levels, in a European-American cohort study.65 The effect of PNPLA3 
I148M on liver fat significantly increased with body mass index (BMI) 
in the Dallas Heart Study cohort.66 In lean individuals (BMI <25 kg/
m2), liver fat content was only about 50% higher in PNPLA3 148MM 
than in 148II homozygotes, but in those with obesity (BMI >35 kg/
m2), liver fat content was 300% higher in PNPLA3 148MM than in 
148II homozygotes.66 The effect of high BMI in amplifying the risk 
of steatosis in carriers of PNPLA3 148M may be mediated by insu-
lin resistance.67 The prevalence of NASH ranged from 9% in lean 
148II homozygotes to 84% in 148MM homozygotes with obesity.66 
Adiposity also amplified the interaction of PNPLA3 I148M with ALT 
levels and cirrhosis in other cohorts.66 Interactions of obesity with 
TM6SF2 E167K and GCKR P446L have also been reported.66,68

Taken together, published evidence indicates that the common 
PNPLA3 I148M variant is usually benign in lean individuals, perhaps 
reflecting a selective advantage of increased liver fat storage in our 

evolutionary past.69,70 In people with lipodystrophy, however, im-
paired expansion of adipose tissue may lead to lipid accumulation at 
ectopic sites (including the liver).71,72 A polygenic risk score for lipo-
dystrophy has been associated with increased hepatic steatosis and 
fibrosis.73 Whether PNPLA3 I148M plays any pathophysiological role 
in a subset of lean patients with NAFLD requires further investigation.

In contrast, an obesogenic environment transforms PNPLA3 
I148M into a major factor in NAFLD and NASH pathophysiol-
ogy. Furthermore, evidence presented in Section 4.3.1 suggests 
that PNPLA3 I148M may modify the response to treatments that 
can lower body weight and liver fat levels in patients with NAFLD 
(omega-3 fatty acids, lifestyle modification and bariatric surgery).

3.3.2 | Insulin resistance and NAFLD genetic 
risk factors

Insulin resistance and type 2 diabetes are both significant risk factors 
for development of NASH. The identified genetic risk factors for el-
evated liver fat and NASH do not associate with insulin resistance, 
except in individuals with severe obesity.18,61,74 In liver lipidomic anal-
yses, NAFLD associated with PNPLA3 I148M was characterised by 
high levels of hepatic polyunsaturated triacylglycerols,75,76 but NAFLD 
associated with insulin resistance was characterised by high levels of 
saturated and mono-unsaturated triacylglycerols, free fatty acids and 
ceramides.76 The altered lipid composition in the liver in carriers of 
PNPLA3 148M is reflected in reduced polyunsaturated triglyceride 
levels in very low-density lipoprotein particles.77 Furthermore, hepatic 
diacylglycerols are implicated in the development of insulin resistance, 
and were elevated in PNPLA3 ancestral allele carriers but not I148M 
carriers in another lipidomic study of people with hepatic steatosis.78

PNPLA3 I148M was, however, associated with a small increase 
in the risk of type 2 diabetes in a very large genome-wide associa-
tion study of type 2 diabetes (allelic odds ratio 1.04 [95% CI: 1.01, 
1.07]).79,80 A phenome-wide analysis confirmed the association of 
PNPLA3 I148M with increased risk of type 2 diabetes (odds ratio 
1.08)81 reported in a fine-mapping meta-analysis (odds ratio 1.05 
[95% CI: 1.03, 1.07]).82 In a Mendelian randomisation study, the ge-
netic risk score for hepatic fat accumulation showed a causal relation-
ship with insulin resistance, but this relationship disappeared when 
the model was adjusted for liver fibrosis.79 This suggests that insu-
lin resistance is not caused by genetically determined high liver fat 
levels per se, but rather that it develops as subsequent liver disease 
progresses and may be related to the inflammatory and pro-fibrotic 
environment. A limitation of Mendelian randomisation approaches 
is that they do not provide insights on the underlying mechanisms.79

The causes and consequences of liver steatosis and inflammation 
in patients with NASH may differ between PNPLA3 I148M carriers 
and those lacking the variant. The effect of PNPLA3 I148M on reti-
nol metabolism in hepatic stellate cells (detailed in Section 4.2) may 
trigger or exacerbate hepatic inflammation in carriers with other risk 
factors for NASH. Further research into NASH pathophysiology in 
the presence and absence of specific genetic risk factors is needed 
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to understand the relationships between NAFLD, fibrosis and insulin 
resistance in different patients.

3.3.3 | Interaction of cardiovascular 
disease and NAFLD

Although advanced forms of NAFLD associate with increased risk of 
coronary artery disease, there is no evidence proving that accumula-
tion of liver fat causes atherosclerosis, as recently reviewed in depth by 
one of the authors.83 Indeed, PNPLA3 I148M may be associated with 
a very small reduction in the risk of ischaemic heart disease, with odds 
ratios of 0.98 (95% CI: 0.96, 1.00; P = 0.79) in a recent large meta-
analysis (N = 279 013)84 and 0.96 (0.94, 0.97; P = 4 × 10−8) in a recent 
large exome-wide lipidomic study (N > 300 000).85 PNPLA3 I148M was 
associated with liver-related and all-cause mortality but not with car-
diovascular mortality, in a retrospective US general population survey 
with median follow-up of 23 years.28 Circulating triglyceride and LDL 
cholesterol levels are reduced or unchanged in PNPLA3 I148M carri-
ers compared with noncarriers in multiple studies.85-88 Furthermore, 
NAFLD itself increases mortality, at least in populations with high rates 
of obesity.89 The evidence therefore indicates that the association of 
NAFLD with coronary artery disease is mainly due to shared underlying 
risk factors, depending on the pathophysiology of NAFLD.

3.4 | Potential pathways for targeted therapeutic 
manipulation

The genetic variants most robustly associated with development of 
NAFLD (Table 1) highlight pathophysiological processes that may 
represent new targets for therapeutic intervention in patients with 
NASH. These include lipid remodelling in lipid droplets, hepatic 
VLDL secretion and de novo lipogenesis.

3.4.1 | PNPLA3 and lipid droplet remodelling

The molecular mechanisms underpinning the strong association of 
the common PNPLA3 I148M variant with NAFLD are the most well 
characterised among the genetic associations identified to date. 
Section 4 is entirely devoted to PNPLA3 I148M and the rationale 
for a precision medicine that can modulate PNPLA3 expression in 
patients with NASH carrying the variant. PNPLA3 148M protein 
acts as a trans-repressor of hepatocyte lipid droplet lipase activity 
by competing for a shared co-activator, leading to lipid accumulation 
in hepatocytes.90,91 PNPLA3 I148M also impairs retinol production 
by hepatic stellate cells.90 Section 4.2 and Figure 1 present current 
understanding of how PNPLA3 I148M drives the pathogenesis of 
NASH in people with overweight or obesity.

Evidence that reduced expression of PNPLA3 attenuates the ef-
fect of the I148M variant on liver fat levels is also provided by genetic 
association studies. Another SNP in PNPLA3 associated with NAFLD 

(rs2294918 c.1300 G > A p.E434K) encodes a glutamate to lysine sub-
stitution in PNPLA3 protein (E434K).92 In vitro, E434K has no effect 
on the enzymatic activity of PNPLA3, but it is associated with reduced 
levels of PNPLA3 mRNA. People who inherit E434K together with 
I148M variant are partially protected from the NASH-promoting effect 
of I148M, as seen in a genetic study of associations with ALT levels.92

3.4.2 | TM6SF2 and VLDL secretion

TM6SF2 plays a role in the pathway for hepatic VLDL secre-
tion.34,38 Selective knockdown of TM6SF2 protein expression in 
mice led to a threefold increase in liver triglyceride content and 
a 50% decrease in VLDL secretion, indicating that TM6SF2 nor-
mally promotes VLDL secretion.34 In people with the TM6SF2 
E167K variant, loss of function of TM6SF2 may lead to increased 
hepatic triglyceride content.34 TM6SF2 E167K protein was asso-
ciated with increased de novo lipogenesis and reduced secretion 
of apolipoprotein B particles in a recent study using 3D spheroid 
cultures of primary human hepatocytes.37 A precision medicine 
able to restore deficient TM6SF2 activity in E167K carriers with 
NASH might also increase hepatic VLDL secretion and reduce 
triglyceride levels in the liver. This approach might, however, el-
evate the risk of adverse cardiovascular events, which is reduced 
in E167K carriers.35 The modest odds ratios for the association of 
TM6SF2 E167K with NASH suggest that any potential therapeu-
tic benefit associated with restored function may also be modest. 
Furthermore, TM6SF2 E167K is rare, so only a small population of 
patients would be targetable (Table 1).

3.4.3 | GCKR and de novo lipogenesis

GCKR is a fructose-6-phosphate-dependent inhibitor of glucokinase 
involved in regulating de novo lipogenesis.42,93 The GCKR P446L vari-
ant disrupts negative regulation of glucokinase by GCKR in response 
to fructose-6-phosphate, leading to constitutive glucokinase activa-
tion.38,42 This increases hepatic glucose uptake, glucose metabolism 
and malonyl CoA production.38,42 Malonyl CoA is a substrate for de 
novo lipogenesis and blocks fatty acid oxidation (via inhibition of car-
nitine-palmitoyltransferase), and thereby favours hepatic fat accumu-
lation.38,42 These findings may explain the association of GCKR P446L 
with hepatic steatosis and increased susceptibility to NASH.45 In vitro 
and animal model data on whether this pathway may be amenable to 
modulation with a precision medicine are currently lacking.

3.4.4 | MBOAT7 and phospholipid remodelling

MBOAT7 is a membrane-anchored enzyme with six transmembrane 
domains and is involved in remodelling endomembrane phospholipid 
acyl chains.47,94 MBOAT7 expression levels are reduced in people with 
obesity and in rodent models of obesity compared with controls.95 
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The rs641738 variant of MBOAT7 may predispose to NAFLD and 
NASH by changing the acyl remodelling of phospholipids in the 
liver.47 Some genetic studies have failed to detect an association of 
this variant with NAFLD, most likely because they were underpow-
ered to detect the small effect size.40 The details of the enzymatic 
activity of MBOAT7, including the preferential acyl donor and phos-
pholipid substrate, are subjects of research.94 Recent findings in 
rodent models suggest that acetylation of lysophosphatidylinositol 

lipids by MBOAT7 may play a protective role against development of 
liver steatosis in an obesogenic environment.95

3.4.5 | HSD17B13 and lipid droplets

HSD17B13 has been identified as a hepatic lipid droplet-associated 
protein with retinol dehydrogenase activity, and the variants that 

F I G U R E  1   Role of PNPLA3 in the pathophysiology of NASH. Abbreviations: ATGL, adipose triglyceride lipase; HCC, hepatocellular 
carcinoma; MMP, matrix metalloproteinase; NASH, non-alcoholic steatohepatitis; RE, retinol esters; TIMP, tissue inhibitor of 
metalloproteinase; VLDL, very low-density lipoprotein. aLiu et al27
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protect against NAFLD confer loss of this enzymatic activity.52,54 
The physiological function of HSD17B13 is not well characterised, 
but other members of the hydroxysteroid 17-β dehydrogenase fam-
ily are involved in steroid and fatty acid metabolism.52,96 A role for 
HSD17B13 in oestradiol metabolism has been proposed, and it has en-
zymatic activity against bioactive lipid mediators, such as leukotriene 
B4, which are involved in lipid-mediated inflammation.52 Whether loss 
of HSD17B13 retinol dehydrogenase activity directly affects retinoic 
acid homeostasis within hepatocytes to modulate retinol levels is the 
subject of ongoing research.54 Section 4.2 provides further detail on 
the role of retinol in modulating hepatic stellate cell fibrogenesis.

Significant upregulation of HSD17B13 protein expression has 
been observed in the livers of patients with NAFLD, and hepatic 
overexpression of human HSD17B13 led to a fatty liver phenotype 
in C57BL/6 mice.97 The rs72613567 TA loss-of-function variant of 
HSD17B13 was associated with a reduced risk of NASH in human 
liver samples.52 It also mitigated liver injury in people genetically pre-
disposed to hepatic steatosis by PNPLA3 I148M and was associated 

with reduced PNPLA3 mRNA expression.52 In patients with func-
tional variants of HSD17B13, carriers of PNPLA3 I148M might be a 
relevant subpopulation for potential therapeutic inhibition of the 
activity or expression of HSD17B13.52

4  | PNPL A3 PRECISION MEDICINE IN 
PATIENTS WITH NA SH

4.1 | Global prevalence of NASH and PNPLA3 
I148M

An increasingly large number of people could benefit from precision 
medicine approaches to treating NASH in carriers of PNPLA3 I148M. 
NASH prevalence is predicted to rise from 2.4% in China, 3.6%–4.4% 
in five European countries and 5.3% in the US in 2016 to 3.4% in 
China, 5.0%–6.3% in five European countries and 7.6% in the US in 
2030,6 with a similar rise predicted in Saudi Arabia (4.2% to 6.8% 

F I G U R E  2   Worldwide prevalence of NASH and PNPLA3 I148M genotypes approximated from their frequencies in patients with NAFLD. 
Abbreviations: NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis; PNPLA3 I148M, rs738409 c.444 C > G 
p.I148M. Green: only NASH prevalence data available. Blue: only PNPLA3 genotype data available. Red: NASH prevalence and PNPLA3 
genotype data available. Data are approximations based on published NASH prevalence estimates and genotype frequencies in patients 
with NAFLD as follows: Africa, 1000 Genomes Project (general population)33; Argentina, calculated from allele frequency21,99; China, data 
from Peng6,99; France6; Germany, data from Kantartzis99,100; India, calculated from allele frequency101; Italy, data from Valenti6,99; Japan, 
data from Kitamoto6,99; Mexico102; Saudi Arabia, data from 201798; Spain6; UK103; US, data from Rotman and Speliotes and calculated from 
allele frequency.6,99 Africa includes Esan in Nigeria (II, 78%; IM, 19%; MM, 3%), Gambia (II, 81%; IM, 18%; MM, 2%), Luhya in Kenya (II, 85%; 
IM, 13%; MM, 2%), Mende in Sierra Leone (II, 80%; IM, 18%; MM, 2%), Yoruba in Nigeria (II, 78%; IM, 21%; MM, 1%), Afro-Caribbean in 
Barbados (II, 76%; IM, 22%; MM, 2%) and African ancestry in south-west US (II, 72%; IM, 21%; MM, 7%)33
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from 2017 to 2030).98 Figure 2 combines these data with current 
PNPLA3 genotype frequencies, based on the 1000 Genomes Project 
and other published data.6,21,33,98-103 In China, Japan, Germany, Italy, 
the UK and the US, the total population of PNPLA3 148MM homozy-
gotes with NASH will increase from about 12.5 million to over 18 
million by 2030 (Figure 2).

South America and the Middle East have the highest preva-
lence of NAFLD globally (>30%).1,104 The frequency of PNPLA3 
I148M genotypes is particularly high in Mexico and Latin America 
(Figure 2), and in populations of Latin American origin in the US (48% 
MM, 42% IM, 10% II).99 Further epidemiological and genetic studies 
are needed to understand the increasing prevalence of NASH and 
the contribution of genetic variability in the many different heritage 
groups in South America105 and elsewhere.

4.2 | PNPLA3 structure and function in 
health and disease

PNPLA3 is a member of a family of patatin-domain containing lipid 
hydrolases with specificity for an array of different substrates, includ-
ing triacylglycerols, phospholipids and retinol esters.106 PNPLA3 ex-
pression levels are highest in hepatocytes and hepatic stellate cells in 
humans and in adipocytes in mice, followed by the retina and other tis-
sues in both species.22 High carbohydrate levels upregulate PNPLA3 
levels in mice107,108 and in human hepatocytes109,110 by increasing 
transcription and reducing protein turnover. In contrast, fasting down-
regulates PNPLA3 levels.111 Knockdown of wild-type Pnpla3 expres-
sion in rats on a high-fat diet reduced liver fat content by diminishing 
fatty acid esterification,112 consistent with data showing that Pnpla3 
overexpression can promote lipogenesis in mammalian cells in vitro.113

In vitro studies indicate that PNPLA3 localises to the surface of 
lipid droplets,114 has triglyceride lipase activity,115-117 and is involved 
in lipid remodelling and hepatic retention of polyunsaturated fatty 
acids (Figure 1).77,118 Recent data indicate that the enzymatic activ-
ity of PNPLA3 also mediates the transfer of polyunsaturated fatty 
acids from triglycerides to phospholipids in hepatocytes,119 with 
potentially broad effects on hepatic lipid metabolism. Furthermore, 
PNPLA3 has retinyl-palmitate lipase activity in vitro and is involved 
in retinol release by hepatic stellate cells.120

Evidence indicates that the NASH-associated I148M substitu-
tion abolishes the enzymatic activity of PNPLA3. This includes both 
the in vitro triglyceride lipase activity114,117,121 and the ex vivo lipid 
remodelling activity.119 Molecular dynamics simulations show that 
the substitution of methionine for isoleucine at position 148 pre-
vents access of fatty acid substrates to the catalytic dyad (serine 47 
and aspartate 166).122

Although lipolysis and VLDL secretion are reduced in PNPLA3 
I148M hepatocytes,110,123 hepatic fat accumulation cannot be ex-
plained by an absence of PNPLA3 protein. Instead, impairment of he-
patic triglyceride mobilisation results from build-up of PNPLA3 on lipid 
droplets (Figure 1). Genetic deletion of the mouse Pnpla3 gene from 
conception does not influence hepatic fat accumulation.124,125 Hepatic 

steatosis develops in mice overexpressing exogenous human PNPLA3 
148M, but not those overexpressing the ancestral 148I protein.126 
Hepatic steatosis also develops in knock-in mice carrying the I148M 
variant in endogenous mouse Pnpla3 when they are fed a high-sucrose 
diet,127 and this can be ameliorated by silencing Pnpla3 expression with 
antisense oligonculeotides.128 Furthermore, PNPLA3 protein levels on 
the surface of lipid droplets are higher for 148M than 148I in both the 
PNPLA3-overexpressing and knock-in mouse models (Figure 1). This 
difference results from decreased ubiquitination and proteasomal deg-
radation of PNPLA3 148M,129 not from increased mRNA levels.126,127

Increased PNPLA3 levels on lipid droplets appear to reduce he-
patic lipolysis via sequestration of a lipase cofactor, CGI-58 (also 
known as 1-acylglycerol-3-phosphate O-acyltransferase, or ABHD5). 
Enzymatically inactive PNPLA3 148M is still able to bind CGI-58 and 
prevent it from activating other lipases present on lipid droplets.91 
Competition for CGI-58 between PNPLA3 and adipose triglyceride 
lipase (ATGL, encoded by PNPLA2) has been reported in brown adipo-
cytes.130 Furthermore, a loss-of-function variant in ABHD5 (encoding 
CGI-58) is associated with a rare autosomal dominant form of inher-
ited NAFLD.131 A ubiquitination-resistant but fully enzymatically ac-
tive variant of PNPLA3 has recently been shown to accumulate on 
lipid droplets and increase hepatic triglyceride levels in transgenic 
mice.132 Increased de novo lipogenesis does not appear to be involved 
in the effect of PNPLA3 148M.133,134 Reduced degradation of lipid 
droplets via autophagy is one potential mechanism for the increase in 
hepatic triglyceride levels in the presence of PNPLA3 148M.135

Current understanding is therefore that the association of 
PNPLA3 I148M with hepatic steatosis may result less from direct 
loss of PNPLA3 lipase/lipid remodelling activity than from indirect 
reduction of CGI58-mediated ATGL activity. PNPLA3 148M acts as 
a trans-repressor of lipid droplet lipase activity by competing for a 
shared co-activator, and this trans-repression is what causes hepatic 
lipid accumulation (Figure 1), rather than the loss of PNPLA3 enzy-
matic activity itself.91

PNPLA3 I148M may also disrupt retinol release by hepatic stel-
late cells, potentially leading to fibrosis (Figure 1). PNPLA3 promotes 
release of retinol by hepatic stellate cells in response to insulin and 
transforming growth factor β in vitro.120,136 The I148M variant is as-
sociated with a loss of retinyl-palmitate lipase activity and a result-
ing impairment in retinol production by hepatic stellate cells.120,136 
Impaired retinoid production may lead to reduced secretion of ma-
trix metalloproteinases and tissue inhibitors of metalloproteinase, 
resulting in extracellular matrix deposition (Figure 1).136,137 Hepatic 
stellate cells expressing PNPLA3 148M also secrete elevated levels 
of pro-inflammatory cytokines, which may potentiate their fibro-
genic potential compared with ancestral PNPLA3 148I.137 In agree-
ment with these in vitro findings, PNPLA3 I148M was associated 
with reduced circulating retinol and increased intrahepatic retinol 
levels in individuals with NAFLD or obesity.138,139 Furthermore, re-
duced levels of retinoic acid metabolites in the liver may promote 
activation of hepatic stellate cells by macrophages in response 
to internalisation of apoptotic cells (mediated by c-mer tyrosine 
kinase).140
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The effects of PNPLA3 I148M on lipid droplet remodelling in he-
patocytes and retinol production by hepatic stellate cells (Figure 1) 
suggest that a precision medicine able to reduce PNPLA3 levels 
could provide therapeutic benefits to I148M-carrying patients with 
NASH. Silencing of Pnpla3 expression with hepatocyte-targeted N-
acetylgalactosamine-conjugated antisense oligonucleotides amelio-
rated steatohepatitis and liver fibrosis in homozygous Pnpla3 148MM 
knock-in mice, but not in wild-type Pnpla3 148II littermates fed a 
NASH-inducing diet.128 Furthermore, liver steatosis was reduced in 
Pnpla3 148MM knock-in mice fed a high-fructose diet following either 
knockdown of Pnpla3 expression with short hairpin RNA (expressed 
from an adeno-associated virus vector), or lowering of PNPLA3 pro-
tein levels with a proteolysis-targeting chimera (PROTAC).132,141

Modulating levels of PNPLA3 or its interaction with lipase cofactors 
with these or other approaches could provide routes to therapeutic 
intervention in PNPLA3 I148M-carrying patients with NASH, as previ-
ously suggested.142 Reduced levels of PNPLA3 148M protein may, how-
ever, have broad effects on lipid metabolism or may be compensated for 
by multiple mechanisms. Improved understanding of downstream medi-
ators could also provide potential routes to therapeutic intervention in 
patients with NASH, including those not carrying PNPLA3 I148M.

4.3 | Impact of PNPLA3 I148M on 
treatment of NASH

4.3.1 | PNPLA3 I148M and response to treatment

No pharmacological therapies are approved for the treatment of NASH, 
and liver transplantation is the only available treatment for cirrhosis.143,144 
Guidelines recommend reducing body weight through lifestyle interven-
tions, dietary restriction and physical activity,145 but the effectiveness 
of lifestyle interventions is often limited and short term.146,147 Bariatric 
surgery can significantly reduce hepatic steatosis, steatohepatitis and 

fibrosis in patients with obesity, as detailed in two recent meta-analy-
ses,148,149 but it carries a significant risk of complications.145

Very limited evidence suggests that PNPLA3 I148M may mod-
ulate the response to treatment in patients with NASH. Lifestyle 
modification and bariatric surgery have been reported to be more 
effective in reducing liver fat levels in PNPLA3 I148M carriers than 
in noncarriers (Table 2).61,150-152 In contrast, omega-3 fatty acid 
supplementation may be less effective in decreasing liver fat levels 
in PNPLA3 I148M carriers than in noncarriers in randomised-con-
trolled trials (Table 3).153-156 An increased effect of high dietary 
omega-6 to omega-3 polyunsaturated fatty acid ratio on liver fat 
levels has also been reported in homozygotes (Table 3).157 The 
modest effect size of omega-3 fatty acids on liver fat levels in clin-
ical trials and the small number of homozygous participants make 
the magnitude of the genotypic effect difficult to quantify.

Associations of PNPLA3 I148M with reduced protective effects of 
statins on steatosis and NASH in clinical trials have been reported.156,158 
PNPLA3 I148M has also been associated with an increased risk of ALT 
elevation in patients receiving potentially hepatotoxic medications, 
such as asparaginase for acute lymphoblastic leukaemia,159,160 or dia-
betes medications that can increase liver fat levels.161,162

Although patients with NASH carrying PNPLA3 I148M may lose 
more liver fat than noncarriers after a successful intervention, they 
are also likely to start from a worse pre-treatment baseline. Patients 
may benefit most from personalised therapies that act upstream to 
reduce the liver fat accumulation associated with the variant.

4.3.2 | Risk stratification based on PNPLA3 
I148M genotype

Guidelines recommend that people with important risk factors 
such as type 2 diabetes, insulin resistance, obesity and metabolic 
syndrome should be screened for NASH because of its prognostic 

TA B L E  2   Interaction of weight-loss interventions with PNPLA3 genotype in NAFLD or obesity

Reference Participants Interventions Study design Main liver-related outcome
PNPLA3 I148M 
association

Shen et al150 Adults with NAFLD 
(N = 154)

12-mo dietician-led 
programme or 
standard care

Parallel-group Greater decrease in liver fata than 
standard care

Increased reduction 
in liver fata in the 
intervention group

Krawczyk 
et al151

Adults with suspected 
NAFLD (N = 143)

4-mo dietician-led 
programme

Prospective, 
observational

Significant decrease in liver fatb 
from baseline

None

Krawczyk 
et al152

Adults with obesity 
(N = 84)

Bariatric surgery Prospective, 
observational

Decrease from baseline in liver fatc Increased reduction in 
liver fatc

Palmer et al61 Adults with obesity 
(N = 3473)

Bariatric surgery Parallel-group Reduced BMI and serum 
triglycerides in surgery group 
onlyd

Increased reduction 
in BMI and serum 
triglycerides

Abbreviations: BMI, body mass index; NAFLD, non-alcoholic fatty liver disease.
aMagnetic resonance spectroscopy. 
bUltrasonography. 
cMagnetic resonance imaging proton density fat fraction. 
dLiver fat not assessed. 
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implications.145 While recognising that PNPLA3 I148M may allow risk 
stratification for tailored HCC surveillance, guidelines do not recom-
mend routine genotyping of any variant.145 The recent association 
of PNPLA3 I148M with both liver-related and all-cause mortality in a 
general US population sample highlights the unmet need for effec-
tive targeted therapies to prevent disease progression and death in 
carriers.28,89

Polygenic risk scores adjusted for conventional risk factors may, 
in the future, have the potential to guide care of patients with NAFLD. 
Age, sex, BMI, fasting glucose levels and risk variants in PNPLA3, 
TM6SF2 and MBOAT7 all emerged as independent predictors of liver 
damage in a logistic regression analysis, with an additive effect of 
the genetic variants on hepatic triglyceride content.47 Polygenic 
risk scores for coronary artery disease, however, are the furthest 
advanced but have still not yet entered routine clinical practice.163 
Additional studies and evidence are needed before speculating on 
whether genotyping could be used to guide treatment decisions in 
patients at risk of NASH.

5  | CONCLUSION

The identification of genes associated with development and pro-
gression of NASH provides important insights into the pathophysi-
ology that may in time provide novel opportunities for therapeutic 
intervention. Genetic discoveries provided the impetus for cell and 
molecular biological studies aiming to elucidate the mechanism re-
sponsible for the association between genetic variants and liver dis-
ease progression. PNPLA3 148M acts as a trans-repressor of lipid 
droplet lipase activity by competing for a shared co-activator. This 

indicates that reducing PNPLA3 expression levels could potentially 
attenuate its negative effect on hepatic lipolysis. Consistent with 
this possibility, people with a genetic variant that reduces PNPLA3 
expression levels are less susceptible to the effect of I148M on liver 
fat than those without the expression-reducing variant. Knowledge 
of the underlying mechanisms remains incomplete, with current re-
search focusing on cofactor recruitment to lipid droplets and lipid-
omic analyses of alterations to lipid metabolism in hepatocytes and 
hepatic stellate cells. Despite these uncertainties, an aetiological 
distinction can be drawn between NASH associated with PNPLA3 
I148M and other forms of NASH that are primarily driven by insulin 
resistance. This possibility presents opportunities for the develop-
ment of a precision medicine that can modulate the activity of a spe-
cific gene (PNPLA3) in a specific organ (the liver) of a specific group 
of patients (I148M carriers with NASH). Other genes associated with 
NASH, including HSD17B13, may provide future targets for inter-
vention strategies. All novel therapies require extensive assessment 
of safety and efficacy in clinical trials. Progress towards proof-of-
concept studies of a precision medicine for patients with NASH is 
ultimately driven by the robust human genetic and molecular and cell 
biological evidence base.
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TA B L E  3   Interaction of omega-3 fatty acid intake with PNPLA3 genotype in NAFLD

Reference Participants Interventions Study design
Main liver-related 
outcome

PNPLA3 I148M 
association

Oscarsson 
et al155

Adults with NAFLD 
and lipidaemia 
(N = 78)

ω-3 carboxylic acids, 
fenofibrate or placebo

Randomised, double-
blind, parallel-group

No significant effect 
on liver fata versus 
placebo

No effect on response to 
either treatment

Eriksson 
et al156

Adults with NAFLD 
and T2DM (N = 84)

Dapagliflozin, ω-3 
carboxylic acids, both, 
or placebo

Randomised, double-
blind, parallel-group

Decreased liver 
fata with all active 
treatments versus 
placebo

Trend towards reduced 
response to treatment 
with ω-3 carboxylic acids

Scorletti 
et al154

Adults with NAFLD 
(N = 103)

ω-3 ethyl esters 
(EPA + DHA) or placebo

Randomised, double-
blind, parallel-group

Association between 
DHA enrichment and 
decreased liver fatb

Reduced response to 
treatment

Nobili 
et al153

Children with NAFLD 
(N = 60)

DHA or placebo Randomised, double-
blind, parallel-group

Decreased liver fatc 
versus placebo

Reduced response to 
treatment

Santoro 
et al157

Children and 
adolescents with 
obesity (N = 127)

None Genetic and dietary 
association

Dietary ω-6/ω-3 PUFA 
ratio associated with 
liver fata

Increased effect of high 
dietary ω-6/ω-3 PUFA 
ratio in homozygotes

Abbreviations: DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; NAFLD, non-alcoholic fatty liver disease; PUFA, polyunsaturated fatty acid; 
ω, omega.
aMagnetic resonance imaging proton density fat fraction. 
bMagnetic resonance spectroscopy. 
cUltrasonography. 
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