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Epithelial-mesenchymal transitions (EMTs), the acquisition of mesenchymal features from epithelial cells, occur dur-
ing some biological processes and are classified into three types: the first type occurs during embryonic development,
the second type is associated with adult tissue regeneration, and the third type occurs in cancer progression. EMT oc-
curring during embryonic development in gastrulation, renal development, and the origin and fate of the neural crest is
a highly regulated process, while EMT occurring during tumor progression is highly deregulated. EMT allows the solid
tumors to becomemoremalignant, increasing their invasiveness and metastatic activity. Secondary tumors frequently
maintain the typical histologic characteristics of the primary tumor. These histologic features connecting the second-
arymetastatic tumors to the primary is due to a process calledmesenchymal-epithelial transition (MET).MET has been
demonstrated in different mesenchymal tumors and is the expression of the reversibility of EMT. EMT modulation
could constitute an approach to avoid metastasis. Some of the targeted small molecules utilized as antiproliferative
agents have revealed to inhibit EMT initiation or maintenance because EMT is regulated through signaling pathways
for which these molecules have been designed.
© 2020 The Authors. Published by Elsevier Inc. on behalf of Neoplasia Press, Inc. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Epithelial cell maintains apical-basal polarity and contact with adjacent
cells through adherens junctions, tight junctions, and desmosomes. Mesen-
chymal cells on the other hand are separated with each other by the extra-
cellular matrix, do not have a basal lamina separating them from adjacent
tissue, and do not have the distinctive apical-basolateral polarity as epithe-
lial cells.

Greenburg and Hay were the first to show that when epithelial cells de-
rived from embryonic and adult anterior lens were maintained in three-
dimensional conditions using a collagen gel culture system, they lose their po-
larity and acquiremesenchymal properties, and termed this phenomenon “ep-
ithelial to mesenchymal transformation” [1]. In 1985, Stocker and Perryman
[2] demonstrated that the supernatant derived by fibroblast culture induced
the migration of epithelial Madin-Darly canine kidney. In the 1990s, the scat-
tering activity was attributed to the hepatocyte growth factor (HGF).

Epithelial-mesenchymal transitions (EMTs), the acquisition of mesen-
chymal features from epithelial cells, occur during some biological pro-
cesses and are classified into three types [3,4]: the first type occurs during
embryonic development, the second type is associated with adult tissue re-
generation, and the third type occurs in cancer progression. EMT occurring
during embryonic development in gastrulation, renal development, and the
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origin and fate of the neural crest is a highly regulated process, while EMT
occurring during tumor progression s highly deregulated.

Biological Mechanisms of EMT

The events occurring during EMT include the loss of adherents junctions
and the downregulation of cytokeratins and E-cadherin, epithelial specific
markers, and by the increase of mesenchymal markers, such as fibronectin,
N-cadherin, and vimentin, the gaining of a fibroblastoid invasive phenotype,
as well as the anoikisis/apoptosis resistance [5–7]. EMT markers are summa-
rized in Table 1. EMT is modulated through complex molecular pathways
that involve microRNAs and epigenetic and posttranslational regulators
along with alternative splicing events [8].

Transcription factors including Snail1/Snail, Snail2/Slug, Twist, and
ZEB1 are involved in the orchestration of EMT [9]. Snail1-induced EMT in-
volves the loss of E-cadherin and claudinswith concomitant upregulation of
vimentin and fibronectin, among other biomarkers [10]. Snail2-deficient
mice show delayed mammary gland tubule growth and precocious
branching morphogenesis [11]. Twist overexpression was correlated with
hepatocellular carcinoma metastasis through induction of EMT changes
and hepatocellular cell invasiveness [12]. In invasive ductal and lobular
breast cancer, upregulation of ZEB1 was coupled to cancer cell
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Table 1
EMT Markers

Increased proteins

N-cadherin
Vimentin
Fibronectin
Snail 1 (Snail)
Snail 2 (Slug)
Twist
FOX C2
SOX 10
MMP-2, MMP-3, MMP-9
N-cadherin

Decreased proteins
E-cadherin
Desmoplakin
Cytokeratin
Occludin

Functional markers
Increased migration
Increased invasion
Increased scattering
Elongation of cell shape
Resistance to anoikis
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dedifferentiation [13]. During EMT, increased expression of the mesenchy-
mal markers vimentin and N-cadherin and the downregulation of the epi-
thelial marker E-cadherin, a powerful suppressor of tumor cell invasion
and metastasis, have been observed [14,15]. However, loss of E-cadherin
alone might not be sufficient to elicit EMT associated changes [16]. In
fact, complete loss of E-cadherin expression observed in lobular carcinoma
in situ of the breast is not associated to an aggressive phenotype, but on the
other hand, the invasive type of the same breast carcinoma has a favorable
outcome with respect to invasive ductal breast carcinoma that instead ex-
presses E-cadherin [17]. β-Catenin molecule, which forms an important
membrane complex with E-cadherin, often detaches the cell membrane
and translocates to the nucleus to participate in the induction of EMT sig-
naling events [18]. As cytosolic levels of β-catenin increase, the protein is
often found to accumulate in the nucleus, where β-catenin can interact
with members of the LEF/TCF family of transcription factors to promote
EMT [19]. During gastrulation, β-catenin forms a complex with LEF-1 to
bind and inhibit the transcription of CDH1 and induce EMT [20].

EMT in Cancer

In the early 80s, the correlation between EMT and cancer was reported.
The benign tumor cells acquire infiltrating and metastasizing properties
during the tumor progression due to EMT. The vast majority of tumors un-
dergo EMT during tumor progression, somuch so that cancers derived from
epithelia are those in which the EMT process is determinant [21]. The only
exception is the carcinosarcoma, inwhich a precursor cell develops both ep-
ithelial and mesenchymal compartments able to coexist [22]. Carcinosar-
comas are rare and extremely aggressive tumors resulting in short
survival of patients and are characterized by high malignancy grade in
both epithelial and mesenchymal components.

After activation of EMT, tumor epithelial cells lose their cell polarity and
cell-cell adhesion and gain migratory and invasive properties, becoming
mesenchymal cells [21]. It has been demonstrated that transforming
growth factor beta (TGF-β)/Smads pathway is the strongest EMT inducer
by the upregulation of EMT-related transcription factors [23].

The role of EMT in the tumorigenesis of different cancers including
prostate, lung, liver, pancreatic, and breast cancers has been demonstrated
[24,25]. The decrease or loss of E-cadherin and catenins expression is con-
sidered as an unfavorable prognostic factor in non–small cell lung cancer
(NSCLC) [26,27]. In addition, vimentin and Snail have also been associated
with themalignant phenotype of NSCLC [26–28]. It has been demonstrated
that the invasive phenotype prostate cancer cell is associated with the
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decreased expression of E-cadherin influencing grade, local invasiveness,
dissemination into the blood, and tumor relapse after therapy [29–31].

In human carcinomas, among the transcription factors involved in EMT,
Snail has the major role as inducer, while Twist and Zeb ½ are principally
involved in retaining the invasive mesenchymal phenotype [32]. In partic-
ular, it was found that Snail 1 is specifically expressed at the invasive front
of colon carcinoma. In addition, the Snail 1 expression is correlated both to
the malignancy of experimentally induced breast tumors and to an in-
creased possibility of tumor relapse and poor survival in human breast can-
cer [33]. Vimentin is expressed at high levels in many epithelial tumors,
including breast cancer, prostate cancer, melanoma, and lung cancer, and
its expression is determinant for tumor growth, invasion, and poor progno-
sis and serves as potential target for cancer therapy [34] Overexpression of
vimentin inMCF7 cells increased cell stiffness, elevated cell motility and di-
rectional migration, reoriented microtubule polarity, and increased EMT
phenotypes due to the increased β1-integrin and the loss of junction protein
E-cadherin [35]. A relation between hypoxia and β-catenin in human pros-
tate cancer has been found. In this tumor, both the expression and the nu-
clear activity of β-catenin are associated with the concentration of
hypoxia inducible factor 1 alpha (HIF-1α)–induced EMT [36]. This process
can also be potentiated by Wnt3a/β-catenin pathway in hepatocellular car-
cinoma [37].

EMT and Stemness

EMT activation has been associated to the generation of cancer stem
cells (CSCs) [38]. Several studies have demonstrated a link between EMT,
stemness, and the metastatic initiating potential of tumor cells. Induction
of EMT in transformed epithelial cells was shown to culminate in endowing
cells with stem-like traits [39,40]. These stem-like traits promoted the initi-
ation of primary tumors and accelerated metastasis [41,42]. For example,
EMT-TF Zeb1 promotes stemness and inhibits epithelial differentiation by
repressing miR-200 family members [43]. Carcinoma CSCs express at the
same time phenotypic characteristics of epithelial and mesenchymal cells,
and this allows CSCs to move in alternative states during EMT. Moreover,
CSCs are involved in tumor growth, metastatic process, drug resistance,
and tumor relapse after therapy. Experimental evidences showed that a
subpopulation of CSCs included in a human mammary epithelial cell cul-
ture if stimulated by TGF-β or through Snail1/Twist1 inducer undergoes
EMT and develops mammospheres [44]. In pancreatic cancer cells, Notch
signaling is involved in the acquisition of EMT and cancer stem-like pheno-
types [45]. Since the initial discovery of the connection between breast can-
cer cells that have undergone an EMT and their entrance into a stem-cell
like state [46], a number of studies have reported acquisition of stemness
following the activation of an EMTprogram inmultiple cancer types includ-
ing pancreatic, prostate, colorectal, and ovarian cancer [47–50].CCL21/
CCR7 axis regulated EMT progress and promoted the stemness of oral squa-
mous cell carcinoma by activating the JAK2/STAT3 signaling pathway
[51]. A stemness- and EMT-based gene expression signature identifies phe-
notypic plasticity and is a predictive but not prognostic biomarker for breast
cancer [52].Using different murine pancreatic ductal adenocarcinoma and
pancreatitis models, Rhim et al. demonstrated that cells which have under-
gone a partial EMT and express E-cadherin and Zeb1 exhibit stem cell prop-
erties [53]. CD133, a surface antigen associated with CSCs in human
pancreatic ductal adenocarcinoma, mediates EMT through the regulation
of Snai2 in human pancreatic cells [54].

Overall, these studies demonstrated that EMT, along with the resulting
acquisition of stem cell-like properties, facilitates dissemination and conse-
quently the outgrowth of tumor cells at distant organs [55].

EMT and Cytokines

Different cytokines are involved in EMT induction, including HGF, epi-
dermal growth factor (EGF), and fibroblast growth factor (FGF) [56–58].
FGF acts as a chemoattractant for epithelial cells which express FGF recep-
tors, and FGF is able to induce epithelial cell growth. Cancer cells that
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undergo EMT secrete cytokines such as TGF-β, interleukin-10 (IL-10), and
thrombospondin-1 (TSP-1) that result in a generally immunosuppressive
tumor microenvironment [59]. Cytokines such as IL-8, IL-6, and tumor ne-
crosis factor alpha (TNF-α), often secreted by tumor stroma, can also pro-
mote EMT [60–62].

In human NSCLC, IL-27 through a STAT1 dominant pathway increases
the expression of epithelial markers and inhibits cell migration and the an-
giogenic activity [63]. Moreover, when lung cancer cells are stimulated
with IL-27, they increased the epithelial marker expression (E-cadherin
and γ-catenin) and reduced the expression of both Snail (transcriptional re-
pressor of E-cadherin) and mesenchymal markers (N-cadherin and
vimentin). It has been also observed that IL-27 inhibited in vitro tumor
cell migration [63]. The negative effect of IL-6 on E-cadherin expression
in breast cancer cell lines was also demonstrated [64]. Sullivan et al. [61]
demonstrated that the ectopic expression of IL-6 in MCF7 cells activated
the JAK2/STAT3 pathway and Twist, leading to the acquisition of mesen-
chymal markers and properties.

EMT and Stromal Tumor Cells

Epithelial-mesenchymal interactions within the tumor microenvi-
ronment integrate several important signaling molecules that are criti-
cal for tumor growth and metastasis, including integrins, cytokines,
and growth factors [65]. The presence of cytokines such as HGF, EGF,
platelet derived growth factor (PDGF), and TGF-β produced and re-
leased by the tumor stroma acts by inducing EMT and favoring processes
such as metastasis [66,67], and they can activate a number of transcrip-
tion factors of genes that promote EMT, such as Snail, Slug, ZEB1, and
Twist, to transmit EMT promotion signals [3,68]. The activation of spe-
cific genes induce EMT in breast cancer cell lines when they were co-
cultured with mesenchymal stem cells (MSCs) and decrease the expres-
sion of genes related to epithelial differentiation [69]. Many signals re-
ceived from the tumor microenvironment can initiate EMT including
TGFβ, HIF-1α, EGF, WNTs, and Notch. Different signals trigger the ex-
pression of these transcription factors including heterotypic interac-
tions with neighboring cancer cells and interactions with adjacent
tumor-associated stromal cells.

Cancer-associated fibroblasts (CAFs) activate the EMT program in
nearby carcinoma cells. CAFs from human prostate cancers induced EMT
in co-cultured PC-3 human prostate carcinoma cells via secretion of matrix
metalloproteinases (MMPs) [70]. The conditioned culture medium of CAFs
isolated from invasive breast tumors induces EMT-like changes in multiple
human breast cancer cell lines through TGFβ secreted by CAFs [71].
Tumor-associated macrophages can contribute to the activation of EMT in
carcinoma cells. Depletion of macrophages frommice bearing F9 teratocar-
cinoma allografts results in the epithelial differentiation of tumor cells, thus
indicating the critical role ofmacrophages inmaintaining themesenchymal
properties of the tumor cells. This EMT effect is mediated, in part, by the se-
cretion of TGFβ by macrophages [72].
EMT and Metastasis

Invasion of cells into the extracellular matrix is considered one of the
first steps in metastatic cascade. The cells acquiring the ability to migrate
and invade matrix have long been considered a hallmark of EMT and
have been used as a surrogate to describe the role of EMT in metastasis
[73]. Distinct mechanisms are involved including cytoskeletal reorganiza-
tion, altered expression of cell adhesion molecules, degradation of base-
ment membrane through activation of MMP-2 and MMP-9 [74], as well
as sustained autocrine growth factor signaling to evade apoptosis and/or
anoikis [75]. Studies using mouse models of breast and skin cancers have
demonstrated that activation of an EMT program is important for primary
tumor cells to disseminate into the lungs, while the disseminated cells
need to subsequently reverse the EMT program and gain epithelial
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characteristics in order to efficiently form macroscopic metastases
[76,77]. In multiple carcinomas, experimental activation of the EMT pro-
gram results in a remarkable increase in the ability of these cells to extend
filopodium-like protrusions, allowing these EMT-activated cells to prolifer-
ate following extravasation, ultimately enabling them to seed metastases
[78].
EMT and Circulating Tumor Cells (CTCs)

CTCs are constituted by carcinoma cells penetrated into the blood
vessels (intravasated) and reaching distant sites where they form new
metastatic colonies. CTCs show an incomplete EMT activation and ex-
press both epithelial and mesenchymal markers. CTCs are considered
as precursors of metastasis, and the molecular attributes of these cells
will provide a useful tool to clarify the mechanisms underlying malig-
nant spread. A higher number of mitotic CTCs have been found in
advanced metastatic breast cancer patients, and the mitotic state of
CTCs correlated with shorter survival in these patients [79]. Mesen-
chymal CTCs have been found to be higher in patients affected by
progressive tumors [80]. The presence of CTCs during primary pros-
tatic cancer has been associated to the alteration of E-cadherin
expression [29].
EMT and Tumor Angiogenesis

EMT and angiogenesis are two critical factors influencing tumor growth
and metastasis. Angiogenesis is a crucial event in tumor progression and
metastasis formation, allowing the transition from an avascular steady
state of tumor growth to a vascularized phase through the so-called angio-
genic switch. In the promotion of tumorigenesis, EMT and angiogenesis
have been revealed as integral processes [81]. It has been demonstrated
that levels of vascular endothelial growth factor (VEGF) and EGF receptor
(EGFR) are associated with hangs in Twist2 expression and reduction of
E-cadherin levels [82]. The activation of VEGF pathways in hypoxic tumors
stimulates endothelial mesenchymal transition in angiogenic tumor endo-
thelial cells [83]. The administration of VEGF in xenograft experimental
models of preinvasive cells induced the expression of EMT markers
[84,85]. VEGF receptor-1 (VEGFR-1) activation results in EMT, tumor cell
motility, and invasiveness in human pancreatic carcinoma cells [86]. The
cross talk between Notch and VEGF pathways in the context of hypoxic tu-
mors promotes endothelial mesenchymal transition in angiogenic tumor
endothelial cells [87]. Studies on xenografts in preinvasive cells demon-
strated that the addition of VEGF induces the appearance of EMT markers
[88,89].
EMT and Tumor Dormancy

Dormancy of the early disseminated tumor cells may display an EMT/
mesenchymal-to-epithelial transition (MET) transient state leaning to a
more mesenchymal phenotype, resulting in CSC-like traits responsible for
their quiescence. Snail, one of EMT transcription factors, could dramatically
impair cell-cycle progression by repressing the transcription of cyclin D2
whose activity was required for cell division [90]. Moreover, Snail could
suppress tumor cell proliferation through binding to flanking region of pro-
liferating cell nuclear antigen gene to decrease its expression [91]. How-
ever, how these tumor cells remain and exit dormancy has not been
verified, and the dynamic changes of the cellular phenotype in tumor pro-
gression have not been shown in vivo [53,92]. EMT of dormant MCF-7
cells expressing LOXL2 was required for their CSC-like properties and
their transition to metastatic outgrowth. Moreover, increase in LOXL2
mRNA levels correlates with increase in the mRNA levels of EMT and
stem cells markers, and is also associated with decrease in relapse-free sur-
vival of breast cancer patients [93].



Figure 1. Epithelial to mesenchymal transition (EMT) and mesenchymal to epithelial transition (MET).
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EMT and Immune Interactions

The link between EMT and immune recognition and killing of cancer
cells is well established. EMT contributes to immune escape of tumors as
it has been demonstrated in the human mammary carcinoma model
MCF7 which underwent EMT, following stable expression of Snail or after
prolonged exposure to TNF-α, and exhibited reduced susceptibility to
tumor lymhocytes-mediated lysis [94]. High levels of the EMT-related fac-
tor Brachyury reduced the susceptibility of carcinoma cells not only to
tumor lymphocytes but also to natural killer (NK) cells, lymphokine-
activated killer, FAS, and TRAIL-induced cell death [95]. Exposure to in-
flammatory cytokines can endow cancer cells undergoing EMTwith a num-
ber of immunomodulatory effects, including interference with
proliferation, differentiation, and apoptosis of NK, T-, and B-cell popula-
tions [96]. A correlation between high EMT score and high expression of
several immune checkpoints including PD1, PD-L1, PD-L2, B7-H3, OX40,
OX40L, CD137, TIM3, LAG3, and CTLA4 has been demonstrated [97]. A
CXCL1-LCN2 paracrine networkwas demonstrated in prostate cancer tissue
samples, which was correlated with the recurrence of prostate cancer.
CXCL1-LCN2 axis activates Src signaling, triggers the EMT, and promotes
the migration of prostate cancer cells, leading to enhanced tumor metasta-
sis [98]. NeuroblastomaMSCs exhibited greater immunosuppressive capac-
ity on activated T lymphocytes compared with bone marrow MSCs, and
transcriptomic profiling results indicated that neuroblastoma MSCs were
enriched with EMT genes compared to bone marrow MSCs [99]. Analysis
of primary tumors from patientswithNSCLC revealed a positive correlation
among intratumoralmacrophage densities, EMTmarkers, TGF-β levels, and
tumor grade [100]. In colon and breast cancer, platelets promote extravasa-
tion of cancer cells by inducing EMT through direct contact and release of
TGF-β [101]. Various cytokines, including IL4, IL6, IL10, TNF-α, and
TGF-β1, secreted by activated macrophages could induce EMT by altering
the expression of EMT-related genes in human cholangiocarcinoma [102].
EMT and Chemoresistance

Two reports provide convincing evidence linking the EMT to cancer
drug resistance, particularly favoring the multidrug resistance phenotype
but also radioresistance, whichmay be caused by an enhancement of cancer
cell survival, cell fate transition, and/or upregulation of drug resistance-
related genes [103,104]. Moreover, the context-dependent stemness of
the transformed cells and their mesenchymal status, the dysregulation of
particular transcription factors, as well as relevant signaling cascades
influencing major antitumor barriers in cells, i.e., senescence and various
forms of cell death, might be involved [105–109].
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The levels of SPARC allow to distinguish high-grade breast cancer with
improved EMT, resistance to treatment, and poor prognosis. The induction
of EMT by SPARC is associated to the localization and suppressive function
of myeloid cells, and the administration of amino-bisphosphonates could
revert EMT through the inhibition of the suppression activity in myeloid-
derived stem cells [110] .

The identification of the EMT as a common regulator of the CSC pheno-
type across various carcinoma types has provided us to investigate, at the
molecular level, how CSCs and therapeutic resistance are linked via EMT
programs. An analysis of responses to chemotherapy in patients with breast
cancer revealed a close association between therapeutic resistance and in-
creased expression of genes that are usually expressed primarily by the stro-
mal cells; this transcriptional upregulation seems to be caused by activation
of the EMT program within carcinoma cells [111]. In NSCLC and ovarian
cancer, the EMT switches the dependence of carcinoma cells from the
EGFR to the AXL receptor tyrosine kinase, thereby yielding resistance to
EGFR-targeted therapy [112,113].Moreover, EMT contributes to the estab-
lishment of an immunosuppressive tumor microenvironment and thereby
confers resistance to immunotherapies [114]. In breast cancer model, mes-
enchymal cancer cells within a tumor were able to induce the immunosup-
pressive microenvironment and protect the more epithelial cancer cells
residing in the same tumor from immune attack [115].

EMT and Senescence

Increasing evidence suggests that the two processes that seem to operate
independently, EMT and senescence, are in fact intertwined. For example,
several transcription factors can both inhibit senescence and induce EMT.
Activation of EMT is linked to suppression of cellular senescence, as it has
been demonstrated in human epithelial cells, in which whereas ectopically
expressed ErbB2 induces senescence, overexpression of both Twist and
ErbB2 triggers EMT and allows for senescence bypass [116], and also in
the context of another EMT regulator, Zeb1 [117]. Moreover, when cells
were locked in a senescent state by activation of p53, TGFβ was no longer
able to induce EMT, raising the possibility that senescent cells cannot un-
dergo EMT [ [118]. Culture media from senescent cells decreased overall
and cell surface β-catenin and E-cadherin, and reduced cytokeratin expres-
sion [119], consistent with a mesenchymal transition. In the meantime, se-
nescent cells secrete chemokines that can create a gradient to promote cell
migration and invasion. In breast cancer, the high levels of IL-6 and IL-8 se-
creted by senescent fibroblasts enhanced the invasiveness of cancer cell
lines in cell culture [119,120]. Furthermore and consistent with a SASP-
induced EMT, culture media from senescent, but not nonsenescent, cells
stimulated premalignant and malignant cancer cells to invade a basement
membrane [119]. Senescent-associated phenotype derived from senescent



Figure 2.Main events in EMT.
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fibroblasts induces EMT in neighboring epithelial cells and contributes to
EMT in nonaggressive human breast cancer cell lines [121].

EMT and Inflammation

Inflammatory mediators, including soluble factors, oxidative stress, or
hypoxia, can foster the acquisition of EMT-like features in cancer cells
[122]. The number of tumor-associated macrophages has been correlated
with EMT-like features in gastric cancer [123], NSCLC [72], or head and
neck cancer [124]. In hepatocellular carcinoma, macrophages induce
EMT in cancer cells in co-culture experiments in an IL-8–dependent fashion
[125] or in a TGF-β–dependent fashion [126,127]. The induction of EMT
by TNF-α, in synergy with TGF-β or other inflammatory factors, has been
described [128]. The link between IL-8 and EMT has established a form
of a mutual loop in which IL-8 and EMT programs sustain each other in
tumor microenvironment [129]. EMT in association with inflammation
has also been correlated with higher stages of cancer progression. In pa-
tients with inflammatory breast cancer, a correlation exists between im-
mune activation and the presence of circulating tumor cells with EMT
characteristics [130].

Mesenchymal-Epithelial Transition

Following the metastatic tumor cells arriving at distant sites, they un-
dergo MET, reversing the conversion into metastatic lesions [21]. Multiple
transition states have been demonstrated in tumors, suggesting that the
tumor cells could frequently express a mix of both epithelial andmesenchy-
mal genes [131]. The histologic features connecting the secondarymetasta-
tic tumors to the primary is due to a process called MET that allows the
cancer tumor cells to colonize secondary distant sites (Figure 1). MET has
been demonstrated in different mesenchymal tumors and is expression of
5

the reversibility of EMT [132]. Comparing expression of epithelial junc-
tional proteins including E-cadherin, β-catenin, and connexin in primary
tumor andmatched distantmetastases in lung, liver, and brain of cancer pa-
tients shows equal or increased epithelial cells inmetastases, indicating that
circulating mesenchymal tumor cells undergo MET [133]. However, the
exact mechanisms underlying MET, including where and how MET takes
place and how it facilitates the formation of metastases, remain largely elu-
sive, and compared to EMT, molecular mechanisms mediatingMET are rel-
atively less characterized [134,135]. GRHL2, a transcription factor that
activates E-cadherin and Claudin-4, and OVOL1/2 can repress EMT-
associated transcription factors and drive MET [136–138]. However, the
overexpression of OVOL2, GRHL2, or E-cadherin may not always be suffi-
cient to drive complete MET [139–142].
Concluding Remarks and Future Perspectives

EMT is of extreme importance in tumor microenvironment in the regu-
lation of tumor growth, progression, and metastatic cascade. Context-
dependent signaling transduction pathways andmicroenvironment signals,
such as hypoxia, oxidative stress, nutrient deprivation, or inflammation,
and EMT transcription factors such as Snail1/Snail2, ZEB1/ZEB2, and
Twist1 are responsible to induce and sustain the mesenchymal phenotype
(Figure 2).

The EMT process within the tumor context is highly dynamic, implying
transient and reversible states, thus resembling embryonic development
where EMT and the reverse MET processes occur as necessary steps for
early embryogenesis and morphogenesis.

EMT stimulates the tumor angiogenesis, but the role of EMT on the in-
teraction between tumor cells and the tumor microenvironment has not
been deepened even though the mechanisms inducing EMT and their
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association to improved invasive properties of tumor cells have been exten-
sively studied.

The induction of EMT confers therapy resistance in tumor cells [143]
that leads to a reduction of proliferation rate and increased expression of
both antiapoptotic proteins and transporters belonging to ATP binding cas-
sette that are responsible of drug efflux. EMT has a role in the establishment
of an immunosuppressive tumor microenvironment and induces also im-
munotherapies resistance. In this context, an increased immunosuppressive
regulatory T cells infiltration in tumor microenvironment when EMT is
stimulated by Snail in melanoma cells was found [144].

Intermediate states between epithelial and mesenchymal phenotypes
might occur at different steps of the metastatic cascade with cells
transitioning through hybrid states during tumor dissemination. EMTmod-
ulation could constitute an approach to avoid metastasis. For example,
some of the targeted small molecules utilized as antiproliferative agents
have been revealed to inhibit EMT initiation or maintenance because
EMT is regulated through signaling pathways for which these molecules
have been designed [145]. The modulation of the signaling processes in-
volved in inducing and maintaining mesenchymal characteristics can in-
hibit EMT. Experimental works established that extracellular vesicles,
including exosomes, play a role in EMT and metastasis [146–148]. Thus,
exosomes are considered as potential doxorubicin delivery system for
tumor tissue to inhibit tumor growth with a reduced toxicity [149].

One of the challenges is the characterization of a number of genes or
proteins that could be studied in human samples to predict the establish-
ment or acquisition of EMT or hybrid states, along with the detection of
the reverse MET process. These specific signatures could be used as new
tools for understanding tumor cell plasticity as well as for diagnosis and
prognosis. Additional studies using innovative genetically engineered ani-
malmodels to trace and analyze tumor cells responsible for seedmetastasis,
together with higher-resolution in vivo intravital imaging microscopy,
would contribute to better understand the biological relevance of EMT
and plasticity processes tometastasis in different tumors. Finally, the emer-
gence of targeted therapies against signaling regulators of EMT might lead
toward clinical benefits due to the specific targeting of cancer cells under-
going EMT.
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