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Neural circuits in female rats sequentially exposed to estradiol and progesterone underlie

so-called estrogen positive feedback that induce the surge release of pituitary luteinizing

hormone (LH) leading to ovulation and luteinization of the corpus hemorrhagicum. It

is now well-established that gonadotropin releasing hormone (GnRH) neurons express

neither the reproductively critical estrogen receptor-α (ERα) nor classical progesterone

receptor (PGR). Estradiol from developing ovarian follicles acts on ERα-expressing

kisspeptin neurons in the rostral periventricular region of the third ventricle (RP3V) to

induce PGR expression, and kisspeptin release. Circulating estradiol levels that induce

positive feedback also induce neuroprogesterone (neuroP) synthesis in hypothalamic

astrocytes. This local neuroP acts on kisspeptin neurons that express PGR to augment

kisspeptin expression and release needed to stimulate GnRH release, triggering the

LH surge. In vitro and in vivo studies demonstrate that neuroP signaling in kisspeptin

neurons occurs through membrane PGR activation of Src family kinase (Src). This

signaling cascade has been also implicated in PGR signaling in the arcuate nucleus

of the hypothalamus, suggesting that Src may be a common mode of membrane

PGR signaling. Sexual maturation requires that signaling between neuroP synthesizing

astrocytes, kisspeptin and GnRH neurons be established. Prior to puberty, estradiol

does not facilitate the synthesis of neuroP in hypothalamic astrocytes. During pubertal

development, levels of membrane ERα increase in astrocytes coincident with an increase

of PKA phosphorylation needed for neuroP synthesis. Currently, it is not clear whether

these developmental changes occur in existing astrocytes or are due to a new population

of astrocytes born during puberty. However, strong evidence suggests that it is the

former. Blocking new cell addition during puberty attenuates the LH surge. Together

these results demonstrate the importance of pubertal maturation involving hypothalamic

astrocytes, estradiol-induced neuroP synthesis and membrane-initiated progesterone

signaling for the CNS control of ovulation and reproduction.
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INTRODUCTION

Successful reproduction in female rodents depends on the
interaction of steroidogenesis in the ovaries and brain. Almost
40 years ago Baulieu’s group discovered that nervous tissue
synthesizes steroids de novo from cholesterol and named them
neurosteroids (1–4). Unraveling the physiology and actions
of neurosteroids in the nervous system has been challenging
because they are synthesized in specific locations, their actions
must be differentiated from actions of circulating steroids, and in
many cases the actions of peripheral steroids and neurosteroids
are interdependent. Neurosteroids have been implicated in
the myelination of peripheral nerves (5–8) neurogenesis (9)
[reviewed in (10)], epilepsy, traumatic brain injury (11–13),
and memory (14–18). Our research has concentrated on the
role of the neurosteroid, neuroprogesterone (neuroP), which is
synthesized de novo in hypothalamic astrocytes as part of the
mechanism of estrogen positive feedback needed to stimulate
the luteinizing hormone (LH) surge, inducing ovulation. This
review considers estradiol signaling in the context of facilitating
neuroP synthesis in astrocytes, and the integration of estradiol
and neuroP signaling in regulating kisspeptin neurons in the
rostral periventricular region of the third ventricle (RP3V).
As with other steroid receptors, more recent findings indicate
that in addition of nuclear localization and action, these
receptors are trafficked to the plasma membrane where they
are coupled to cell signaling cascades. The activation of
nuclear progesterone receptor (PGR) at the cell membrane has
recently been reviewed (19). In this review, we are primarily
concerned with experimental evidence gathered in rodents.
When appropriate, we indicate that the results were from
different species. Kisspeptin is the most potent activator of
neurons that release gonadotropin releasing hormone (GnRH)
into the hypothalmo-hypophyseal portal circulation, generating
a surge of pituitary LH into the systemic circulation. An LH
surge is the trigger for ovulation and the formation of the corpus
luteum—central events for reproduction.

POSITIVE FEEDBACK, THE LH SURGE,
AND OVULATION

Hormones of the hypothalamic-pituitary-gonadal axis
coordinate events that lead to maturation of ovarian follicles.
The pivotal event is the LH surge that induces ovulation and
reprograms the ovary to produce large amounts of progesterone
as well as estradiol. These ovarian hormones are necessary
to: (i) facilitate female sexual receptivity to maximize the
potential of fertilization, (ii) induce the secretory phase of the
stratum functionale completing the preparation of the uterine
endometrium for implantation of the zygote should fertilization
occur, and (iii) supporting the initial stage of pregnancy until the
placenta develops.

Orchestrated actions of estradiol, progesterone and kisspeptin
in the brain are critical for triggering the LH surge. GnRH
neurons of the diagonal band of Broca (DBB) and medial
septum project to the median eminence and release GnRH into

the hypothalamo-hypophyseal portal system. GnRH regulates
the release of follicle stimulating hormone (FSH) and LH
from gonadotrophin cells in the anterior pituitary. Differential
regulation of LH and FSH is accomplished by changes in
GnRH release: low frequency and amplitude favor FSH release,
whereas elevated amplitude and frequency preferentially release
LH. Within the ovary, gonadotropins are critical for maturation
of follicles, which become dependent on their stimulation.
LH acts on the thecal and granular cells of the ovarian
follicles and later the corpora lutea to regulate estradiol and
progesterone synthesis throughout the cycle. At the beginning
of the estrous cycle (diestrus I and II) as ovarian follicles
mature, circulating estradiol levels slowly rise and produce
negative feedback in the hypothalamus and pituitary retarding
the release of gonadotropins. The main effects of negative
feedback regulating GnRH release appear to bemediated through
kisspeptin, neurokinin B, and dynorphin expressing (KNDy)
neurons of the arcuate nucleus of the hypothalamus (ARH)
(20) [reviewed in (21, 22)]. The mechanism of estrogen positive
feedback requires the action of estradiol and progesterone, and
yet, GnRH neurons do not express ERα or classical PGR (23–
25). Therefore, estradiol and progesterone must signal through
neurons upstream of the GnRH neuron. The majority of
anterior hypothalamic kisspeptin neurons express ERα and PGR,
providing a platform for integrating steroid actions thatmodulate
the excitation of GnRH neurons (26–28). In rodents, positive
feedback actions of steroids are mediated by kisspeptin neurons
in the RP3V, which contains the anteroventral periventricular
(AVPV) and rostral periventricular zone (25, 29–33). The AVPV
is a site critical for estrogen positive feedback signaling in rodents.
Lesioning or implanting anti-estrogens into the AVPV blocks the
LH surge (34–36).

GnRH neurons in the DBB receive input from RP3V
(including AVPV) kisspeptin neurons and are activated
by kisspeptin to increase the frequency and amplitude of
GnRH release inducing an LH surge from the pituitary
(23–27, 29–31, 37–39). Infusion of exogenous kisspeptin excites
GnRH neurons and induces levels of LH that mimic surge levels.
GnRH neurons in the DBB express Kiss1R (formerly GPR54),
the cognate receptor for kisspeptin (40–42). GnRH neuronal
activation and the LH surge are lacking in female Kiss1R
knockout mice (37). Activation of Kiss1R in GnRH neurons
produces robust depolarizing currents and induces GnRH release
(43–47). The timing of the LH surge requires the stimulatory
action of kisspeptin and the removal of RFamide-related peptide
3 (RFRP-3; also known as gonadotropin-inhibitory hormone—
GnIH) (48–53). In this model, the daily afternoon increase in
GnRH and LH is due to suppression of the RFRP-3 inhibitory
input to the GnRH neurons by the suprachiasmatic nucleus
(SCN). We propose that estrogen positive feedback surge release
of LH requires an amalgamation of circadian and kisspeptin
models. It is only when the diurnal release of RFRP-3 inhibition
of GnRH coincides with estradiol and neuroP stimulation of
kisspeptin release that a GnRH–LH surge occurs–once every 4
days during the estrous cycle (52).

As estradiol levels rise rapidly and peak on the afternoon
of proestrus, positive feedback predominates (54). Because
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estradiol treatments induce the LH surge in ovariectomized
and adrenalectomized (OVX/ADX) rats, progesterone was not
thought to be required for the LH surge and the phenomenonwas
called “estrogen positive feedback” (55, 56). A large number of
studies unequivocally demonstrated that in addition to estradiol,
“estrogen” positive feedback requires PGR and progesterone
(55, 57–64). It turned out that the needed progesterone, neuroP,
is synthesized in the hypothalamus (32, 65–68). Rising estradiol
levels during diestrus 1 to proestrus induce the expression of
PGR and kisspeptin in RP3V neurons that are critical for the
LH surge (26, 28, 33, 37, 63, 69–71). This initial kisspeptin
induction is dependent on ERα (70, 71). In vivo experiments
did not differentiate between effects of estradiol that induced
PGR and kisspeptin since both require ERα. Moreover, in
vivo experiments did not segregate estradiol effects directly
on kisspeptin neurons from neuroP-PGR effects on kisspeptin
neurons. Our in vitro experiments allowed us to tease apart
these overlapping effects. Proestrous (positive feedback) levels of
estradiol stimulate hypothalamic astrocytes to synthesize neuroP
that acts on the estradiol-induced PGR in kisspeptin neurons,
which augments the synthesis and release of kisspeptin needed
for the GnRH-LH surge (19, 32, 33, 65, 68, 72) [reviewed in
(73)]. Thus, a critical component of positive feedback is estrogen-
facilitated neuroP signaling through ERα and PGR expressing
kisspeptin neurons.

SYNTHESIS OF neuroP BY
HYPOTHALAMIC ASTROCYTES

Depending on the final bioactive steroid, neurosteroidogenesis
may involve one or a combination of astrocytes,
oligodendrocytes, and neurons (74). This is because each
cell type expresses certain enzymes within the steroidogenic
pathway (74). The de novo synthesis of neurosteroids that are
further down the pathway from cholesterol (e.g., estradiol)
require shuttling through multiple cell types in order to be
synthesized. However, neuroP only requires two enzymes to
be synthesized from cholesterol, and astrocytes express both of
these enzymes (4, 74) (Figure 1). The synthesis of progesterone is
initiated by transport of cholesterol into the inner mitochondrial
membrane through the interaction of translocator protein
(TSPO) and steroid acute regulatory protein (StAR) (76–78) [but
see (79–81)]. Cholesterol is converted to pregnenolone by the
enzyme CYP11A1 (previously P450 side chain cleavage; P450scc)
that is associated with the inner mitochondrial membrane. 3β-
hydroxysteroid dehydrogenase (3β-HSD or HSD3B1) converts
pregnenolone to progesterone, which diffuses out of astrocytes
to activate local PGR-expressing kisspeptin neurons of the RP3V
(19, 82) facilitating the LH surge.

Positive feedback levels of estradiol induce neuroP synthesis
in hypothalamic astrocytes. Proestrous levels of estradiol
activate membrane ERα (mERα) that is complexed with and
transactivates metabotropic glutamate receptor-1a (mGluR1a;
Figure 1) to rapidly induce phosphorylation events that regulate
cholesterol transport (65, 76, 83, 84). Estradiol activation of the
mERα-mGluR1a complex, signaling through Gαq, activates the

phospholipase C-inositol trisphosphate (IP3) signaling pathway
that produces a robust release/increase of intracellular free
calcium ([Ca2+]i) from intracellular stores (83, 85). This activates
a calcium-sensitive adenylate cyclase-protein kinase A pathway
that increases the phosphorylation of TSPO and StAR in
hypothalamic astrocytes, which is necessary for inducing neuroP
synthesis (83, 84, 86). These results suggest that proestrous
levels of estradiol increase neuroP synthesis by increasing the
cholesterol transport into mitochondria and access to P450scc
for conversion to pregnenolone. In vivo, estradiol increases
hypothalamic expression and activity of the second enzyme in
the neuroP synthesis, 3β-HSD (85, 87). The estradiol-induced
increase in brain progesterone levels are sex- and site-specific:
present in the adult female hypothalamus but absent in the male
hypothalamus (72). Moreover, blocking 3β-HSD activity in the
hypothalamus of adult OVX/ADX rats prevents the estradiol-
induced LH surge (72). We further demonstrated that neuroP is
important for the LH surge in gonadally intact rats by blocking
hypothalamic neuroP synthesis on the morning of proestrus
by third ventricular (3V) administration of aminoglutethimide
(AGT), a P450scc inhibitor (67). The estrous cycle is arrested in
proestrus prior to the LH surge even though peripheral estradiol
levels, a marker of ovarian steroidogenesis, are unaffected
in AGT-treated rats. In these animals, the uterus is swollen
with fluid and there are no corpora lutea in the ovaries—all
indicating the absence of an LH surge (67). Thus, estradiol-
induced hypothalamic neuroP, rather than ovarian or adrenal
progesterone, mediates the triggering of the LH surge during
positive feedback. Dose and duration of estradiol exposure
during negative and positive feedback regulate the mechanisms
of neuroP synthesis by astrocytes, and properly coordinate the
timing of neuroP synthesis with the priming of the rest of the
Kisspeptin-GnRH-LH system.

neuroP SIGNALING THROUGH
MEMBRANE PGR TO REGULATE
KISSPEPTIN

neuroP actions appear to be mediated through PGR signaling
in RP3V kisspeptin neurons. Estradiol-induced RP3V PGRs are
required to initiate and reach the full magnitude and duration
of the LH surge (62, 88). Likewise, the LH surge cannot be
induced in PGR knockout mice (89). Female mice with PGR
knocked out specifically in kisspeptin neurons are less fertile
(i.e., fewer births with smaller litters), and lack an estradiol-
induced LH surge and the associated AVPV c-Fos induction
(90, 91). Furthermore, activation of RP3V PGR with R5020 (PGR
specific agonist) induced an LH surge in estradiol-primed rats
(33). Accumulating evidence supports that it is neuroP signaling
through PGR in kisspeptin neurons that is required for the LH
surge. While blocking neuroP synthesis with a 3β-HSD inhibitor
attenuates the estradiol-induced LH surge in OVX/ADX rats,
progesterone treatment or site-specific injections of kisspeptin
into the DBB rescued the LH surge, demonstrating that estradiol
induction of neuroP synthesis and the actions of neuroP occur
first and are required for kisspeptin release (32).
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FIGURE 1 | Proposed estradiol-induced hypothalamic astrocyte steroidogenesis of neuroP that activates a membrane classical progesterone receptor (PGR)-Src

tyrosine kinase (Src) signaling pathway in RP3V kisspeptin neurons to trigger the luteinizing (LH) surge. In hypothalamic astrocytes, proestrous levels of estradiol (E2)

activate membrane estrogen receptor-α (mERα) that complex with and signal through metabotropic glutamate receptor-1a type (mGluR1a). mERα-mGluR1a signals

through a PKC-IP3 pathway to increase intracellular calcium concentrations [(Ca2+)]. This releases Ca2+ from the smooth endoplasmic reticulum (sER). Within the

mitochondrion, cholesterol (CHOL) is converted to pregnenolone (PREG) by P450 side chain cleavage (P450scc). PREG is then converted to neuroprogesterone

(neuroP) by 3β-hydroxysteroid dehydrogenase (3β-HSD). The neuroP is secreted from the astrocytes to activate ERα-mediated, E2-induced PGR in RP3V kisspeptin

neurons. Concurrently, E2 increases Kiss1 mRNA and kisspeptin expression via a mERα initiated mechanism [but see (70)]. neuroP rapidly augments the E2-induced

Kiss1 mRNA and kisspeptin expression, potentially through PGR-Src signaling. PGR complexes with and signals through Src to activate a MAPK pathway. Further, a

membrane PGR can initiate signaling that increases intracellular Ca2+ from sER stores. PGR-Src signaling also mediates the release of kisspeptin from neurons that

project to diagonal band of Broca (DBB) GnRH neurons. Kisspeptin then binds to its cognate receptor, Kiss1R stimulating GnRH release into the median eminence

that triggers the LH surge from gonadotrophs in the anterior pituitary (AP). Steroid acute regulatory protein (StAR), translocator protein (TSPO). Modified from

Micevych et al. (75).

RP3V kisspeptin neurons are modeled in vitro using
mHypoA51 cells that are derived from adult female hypothalamic
kisspeptin neurons (19, 82). Estradiol induces PGR expression
in these cells (19), which is observed in the RP3V where PGR
expression is increased in areas that overlap with kisspeptin
neurons by estradiol treatment in OVX rats or on proestrus
(28, 33). Estradiol increases kisspeptin expression in mHypoA51
neurons, and subsequent progesterone further augments this
expression (19). In co-culture experiments where mHypoA51
and adult female hypothalamic astrocytes are separated (i.e.,
not in direct contact) but share media, estradiol treatment
induces neuroP synthesis in astrocytes and increases kisspeptin
expression in the mHypoA51 neurons. neuroP secretion from
astrocytes stimulates mHypoA51 neurons to rapidly increase
kisspeptin release (19, 82). Importantly, mHypoA51 neurons

express membrane progesterone receptors (mPR), including
mPRα, mPRβ (see more below and Figure 2), and membrane-
localized PGR. This membrane-localized PGR increases with
estradiol treatment (19).

Although classified as a transcription factor and normally
thought to be associated with the nucleus, PGR can be trafficked
to the plasma membrane via palmitoylation, a mechanism
seen in ERα trafficking (92). At the membrane, PGR can
interact with and signal through other proteins to initiate rapid
signaling, altering neuronal activity (33, 93, 94) (Figure 2).
PGRs that are trafficked to the plasma membrane complex
with and signal through Src kinase, a non-receptor tyrosine
kinase (Src) (33, 93–95). PGRs have two distinct isoforms that
are transcribed from a single gene: PGR-A and PGR-B. PGR-
A lacks 164 amino acids in the N-domain, and is considered
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FIGURE 2 | Modes of progesterone signaling in the rodent. Classical progesterone receptor (PGR) can mediate progesterone signaling classically (A), by binding to

DNA progesterone response elements. PGR can also be trafficked to the plasma membrane [as in (B)] where it can activate rapid intracellular signaling cascades

involving kinases such as Src. It is unknown whether membrane PGR transactivates another receptor like an mGluR as estrogen receptors have been shown to do.

Multiple novel membrane progesterone receptors (mPRs) have been recently discovered and described, such as mPRs α, β, δ, and γ (C). mPRs can activate signaling

cascades via G proteins, which go on to affect cyclic AMP (cAMP) pathways. Finally, progestins can bind to progesterone receptor membrane component 1

[PGRMC1 (D)]. PGRMC1 can work in concert with SERBP1 to affect cAMP, Jak/Stat, and multiple kinase pathways (73).

the truncated form of PGR-B (96). A poly-proline rich region
(amino acids 421-428, PPPPLPPR) near the N-domain of PGRs
is responsible for binding and signaling through the Src SH3
domain (93). Although this region is conserved in PGR-A,
and both isoforms display hormone-dependent binding to SH3,
only PGR-B activates Src (94). Significantly, PGR-B is also the
reproductively relevant isoform.

In vitro and in vivo experiments indicate that neuroP signals
through PGR-Src complexes to activate kisspeptin neurons,
and that the PGR-Src signaling is interdependent. Nearly
all mHypoA51 neurons express kisspeptin, and most express
PGR and Src (19, 82). Activation of either PGR or Src in
mHypoA51 neurons induces kisspeptin release while inhibiting
Src activation blocks progesterone activation of MAPK and
kisspeptin release, implying that progesterone and Src interact to
stimulate kisspeptin release via activation of a MAPK pathway
(Figure 1) (19). Another potential rapid PGR initiated pathway
for kisspeptin release is through release on intracellular stores
of [Ca2+] (Figure 1) (82). In mHypoA51 neurons, progesterone
induced a rapid increase in [Ca2+] that was blocked by
pretreatment with RU486, a PGR antagonist (82). However,
further studies are required to determine the physiological
outcomes of both of these signaling pathways. In vivo data further
support that neuroP induces Src-mediated PGR signaling. PGR
and Src are co-expressed in neurons of the RP3V of female rats
(33). Further, using the Duolink proximity ligation assay that uses
specific antibodies to two selected proteins/antigens and then

produces punctate staining if these proteins are in close proximity
(<40 nm), we observed that estradiol-priming increases the
levels of PGR and Src staining in RP3V neurons suggestive
of an estradiol-induced increase in PGR-Src interactions (33).
Similarly, in the ARH, a region important for facilitation of
lordosis, we have observed a similar colocalization and estradiol-
induced increase in PGR-Src proximity (97). In the RP3V, PGR
and Src exhibit interdependent signaling in the induction of the
LH surge. Bilateral infusion of either a classical PGR agonist
(R5020) or Src family activator induced a robust LH surge in
estradiol-primed OVX/ADX rats (97). However, bilateral RP3V
infusion of either a PGR antagonist (RU486) or a Src inhibitor
(PP2) blocked the induction of the LH surge by activation
of either PGR (progesterone or R5020) or Src (Src activator).
The ability of antagonizing either PGR or Src to block the
signaling of both PGR and Src indicates that PGR-Src signaling
is interdependent. It is likely that PGR is transactivating Src
to initiate signaling. Even though Src is “downstream” of PGR,
and activation of either one will induce the LH surge, for
signaling to occur neither can be occupied by an antagonist,
which likely produces a conformational change that prevents Src
activation and signaling. This antagonist effect was also seen with
interactions of PGR and dopamine receptors (98). However, in
the absence of antagonist binding either PGR or Src, it appears
the activation of either PGR or Src can initiate the signaling
cascade. The similarities of the PGR-Src signaling cascade in
the ARH, RP3V and mHypoA51 neurons suggests that PGR-Src
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signaling may be a common mode of membrane PGR signaling.
Together, the in vivo and in vitro findings indicate thatmembrane
PGR-Src signaling mediates the neuro P activation of kisspeptin
neurons to activate GnRH neurons to trigger the LH surge.

NON-CLASSICAL PROGESTERONE
RECEPTORS IN KISSPEPTIN NEURONS

Although PGRs are essential to induce the LH surge, other types
of mPRs have been proposed to modulate neuroP/progesterone
actions through membrane initiated signaling [reviewed in
(73); see Figure 2]. For example, during progesterone negative
feedback, PGR knockout mice respond to positive feedback
levels of progesterone to suppress GnRH release, suggesting that
progesterone may also signal through non-classical mPRs (99).
However, the role of non-classical mPR in the LH surge remains
unknown (19, 100). Two families of mPRs have been discovered
that initiate progesterone signaling at the plasmamembrane. One
group of these mPRs is in the Class II progestin and adipoQ
receptor (PAQR) family (101–103). These mPRs have a classic
7-transmembrane protein structure and behave similarly to G
protein-coupled receptors by rapidly facilitating progesterone
action. In vitro, mHypoA51a neurons express subtypes of mPRs:
mPRα and mPRβ (19). In vivo, estradiol upregulates mPRβ

expression in the anterior hypothalamus (104). The distribution
and estrogen regulation of mPRβ in the female rat brain (104),
but not in mHypoA51 neurons (19), suggests that this in vivo
upregulation occurs in non-kisspeptin cells. Although these
mPRs are expressed in the RP3V, little is known about the role
of these non-classical mPRs in regulating the neuroP induction
of the LH surge. Another protein that binds progesterone and
initiates signaling at the plasma membrane is progesterone
receptor membrane components (PGRMC) (105–109). Two
PGRMC subtypes have been discovered: PGRMC1 (aka 25-
DX) and PGRMC2 (105, 106, 108, 110, 111). These PGRMC
have been implicated in normal mammalian ovarian function
including primordial follicle development, luteal vascularization
and normal onset reproductive senescence (107, 110, 112). Young
womenwith reduced PGRMC2 expression in granulosa cells have
been diagnosed with diminished ovarian reserve (113). Similarly,
reduced expression of PGRMC1 (via point mutation) has been
associated with women exhibiting primary ovarian insufficiency
(114). PGRMC mRNAs are expressed in the AVPV (109, 111,
115). However, only PGRMC2 mRNA levels are upregulated by
the sequential treatment with estradiol and progesterone (115).
Although their expression in the AVPV does not appear to be
essential, mPRs and PGRMC’s may influence PGR actions. A
resolution of this issue requires further experimentation.

DEVELOPMENT OF ESTROGEN POSITIVE
FEEDBACK DURING PUBERTY

Maturation of reproductive circuits in females that results in
ovulation involves a multitude of changes in the brain during
puberty. This is represented by the increase in GnRH pulsatility
throughout puberty, which is needed for the surge release of

LH [reviewed in (116)]. As with estrogen positive feedback
and the facilitation of neuroP synthesis, kisspeptin neurons in
the rodent AVPV are sexually dimorphic; females have more
kisspeptin neurons in the AVPV compared with males (30).
In female mice, the number of presumptive kisspeptin neurons
in the AVPV increases across pubertal development (117). The
increase in GnRH pulsatility and the increase in the number of
kisspeptin neurons are crucial to the development of estrogen
positive feedback, but the maturation of these two systems do
not fully explain the development of estrogen positive feedback
during puberty.

PUBERTAL DEVELOPMENT OF
ESTRADIOL-INDUCED neuroP SYNTHESIS
IN THE HYPOTHALAMUS

Much like the rest of the system that controls estrogen positive
feedback, the ability of the hypothalamus to coordinate estradiol-
induced neuroP synthesis is something that develops across
puberty in the rodent. It was previously observed that primary
hypothalamic astrocyte cultures did not increase progesterone
synthesis in response to estradiol if harvested from neonatal
female or male mice of any age, and maturation in vitro did
not make these astrocytes respond to estradiol with neuroP
synthesis (65). At the time it was thought that something
about the pubertal transition made astrocytes competent to
respond to estradiol, but this idea was not formally tested until
recently. Mohr et al., showed that estradiol-facilitated neuroP
synthesis in the hypothalamus develops during puberty in the
female rat (118). First, hypothalamic tissues, collected from
gonadally intact rats either on postnatal day 17, (PND 17;
prepuberty), PND 35, (peripuberty), or on the afternoon of
proestrus around PND 60 (adulthood), were assayed for neuroP
levels with liquid chromatography tandem mass spectrometry
(LC-MS/MS). NeuroP significantly increases during puberty in
gonad-intact female rats, from prepuberty to adulthood. Then,
in OVX rats of the same ages, estradiol treatment only in
adulthood reliably facilitates neuroP synthesis. The prepubertal
female hypothalamus is insensitive to estradiol in terms of
neuroP synthesis. However, during puberty (peripuberty) the
ability of estradiol to stimulate neuroP synthesis develops. The
pubertal development of neuroP synthesis is yet another way that
the brain changes during puberty to allow for estrogen positive
feedback signaling.

Adult female hypothalamic astrocytes are the source of
estradiol-facilitated neuroP synthesis that contributes to estrogen
positive feedback (68). Corresponding to the pubertal increase
in estradiol-facilitated neuroP synthesis in vivo, there is an
increase in the amount of mERα in hypothalamic astrocyte
cultures. In these primary female astrocyte cultures, there is
also an increase in caveolin-1 protein, a scaffolding protein
that participates in the trafficking of ERα to the cell membrane
and coupling with mGluR1a (118). Because membrane-initiated
estradiol signaling is necessary to augment neuroP synthesis in
astrocytes in adulthood [reviewed in (119)], the lack of mERα

provides an explanation as to why pre-pubertal hypothalamic
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FIGURE 3 | The new astrocyte model for the pubertal development of rodent estrogen positive feedback. Prior to puberty, kisspeptin expression is low in the female

AVPV (green neuron), and mERα expression (maroon diamond) in hypothalamic astrocytes (dark blue stars) is low. The LH surge does not occur naturally and cannot

be induced with exogenous estradiol administration. After puberty occurs and once estrogen signaling begins, estrogen-responsive newborn astrocytes are added to

the AVPV (light blue stars), which are necessary for the LH surge in adulthood. There is also an increase in mERα expression in hypothalamic astrocytes, and

estradiol-induced neuroP synthesis occurs, which acts on membrane-associated PGR (orange oval) to stimulate kisspeptin release. Together, the changes in cellular

machinery across pubertal development alter estradiol responsiveness and permit the LH surge to occur, indicating that reproductive maturation is complete.

astrocytes are incapable of estradiol-induced neuroP synthesis.
It appears that pubertal expression of caveolin-1 that shepherds
ERα to the membrane may be key to the development of estrogen
positive feedback that induces neuroP synthesis to trigger the
LH surge.

PUBERTALLY BORN ASTROCYTES IN
THE AVPV: KEY TO THE DEVELOPMENT
OF neuroP SYNTHESIS?

Another explanation of how estradiol-induced neuroP synthesis
develops in the hypothalamus is the “new astrocyte model”
(Figure 3). Accordingly, estradiol-responsive astrocytes are not
present in the prepubertal hypothalamus. During and after
puberty, populations of new cells are added to the female rat
AVPV, and a large majority of these newly born cells express
markers for astrocytes (GFAP) (120, 121). These newborn AVPV
cells are more numerous in females compared with males,
and this sex difference in pubertal cell addition is dependent
on gonadal hormones (122). Pubertal cell addition to the
AVPV mirrors the overall sex difference observed in the rodent
AVPV, considering that the female AVPV is larger and contains
more neurons in females compared with males (123). This sex
difference in structure likely contributes to the functional sex
difference of this brain region, because only female rodents are
capable of estrogen positive feedback (124). That females have

higher amounts of cells added to the AVPV compared with males
during peripuberty may indicate that these newborn cells are
needed for estrogen positive feedback signaling.

Indeed, these newly born cells are crucially important for
estrogen positive feedback induction of the LH surge. When
cell proliferation is blocked with cytrabine (AraC), a pyrimidine
analog, either during puberty or in early adulthood, the estradiol
+ progesterone-induced LH surge is diminished in female
rats (120). A majority of these newborn cells are astrocytes,
suggesting that these newborn AVPV astrocytes are the source
of estradiol-responsive hypothalamic astrocytes that synthesize
neuroP necessary for estrogen positive feedback. In the 2017
study by Mohr et al., both estradiol and progesterone were
used to elicit the LH surge (120). In this study, the LH surge
was not eliminated entirely, which may be explained by several
factors: AraC did not eliminate all newborn AVPV cells, and
therefore, some neuroP-producing astrocytes were present to
produce neuroP and elicit some LH release, or more likely,
administration of progesterone on the morning of the day of the
surge bypassed hypothalamic neuroP, eliciting some LH release.
Had only estrogen been used, which can also elicit the LH surge
in rats (72), the effect of AraC may have been more dramatic on
the LH surge because the only source of progesterone would have
been from hypothalamic astrocytes (neuroP).

More studies are required to determine the exact role of
pubertally born astrocytes in the development of estrogen
positive feedback signaling. However, it seems likely that the
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birth of astrocytes contributes to the maturation of reproductive
circuits controlling estrogen positive feedback signaling. There
may be a developmental difference in the birth and maturation of
astrocytes if they are born while circulating estradiol is elevated
(i.e., after puberty compared with before puberty) that makes
them competent to respond to estradiol with neuroP synthesis.
These newborn astrocytes could have higher levels of mERα, and
caveolin-1, resulting in increased PKA phosphorylation,
making them more proficient in estradiol-induced
neuroP synthesis.

CONCLUSIONS

The regulation of ovulation is the central event in mammalian
reproduction and during puberty. Indeed, neural circuits
controlling reproduction in females are considered mature
when ovulation can occur. In rodents, at the very least, this
critical physiological process requires the coordination of the
hypothalamo-pituitary-ovarian axis with the SCN circadian
clock. Regulation of the surge release of LH requires a
complex neuronal and glial circuitry that directs various
peripheral and central hormones onto kisspeptin neurons. In
turn, circadian-regulated inputs interact with GnRH neurons,
activating the anterior pituitary to release a surge of LH.
This mechanism has been dubbed “estrogen positive feedback”
for the importance of estrogen, but it is far from the only
critical hormonal participant in this process. Developing ovarian
follicles synthesize ever increasing levels of estradiol that
induce PGR expression in kisspeptin neurons. As estradiol
levels peak on the afternoon of proestrus, neuroP synthesis
is rapidly facilitated in hypothalamic astrocytes, many of

which may be born after the initiation of puberty. Together,
estradiol and neuroP stimulate kisspeptin expression and release.
When this hormonal activation of kisspeptin coincides with
the release of circadian inhibition–a physiological LH surge
occurs (i.e., one that stimulates ovulation). We now understand
the signaling involved in regulating both the synthesis of
neuroP in astrocytes and the neuroP signaling in kisspeptin
neurons. In astrocytes, mERα transactivates mGluR1a to induce
neuroP synthesis. In kisspeptin neurons, a portion of estradiol-
induced PGR are trafficked to the cell membrane where
neuroP activates them, augmenting both kisspeptin expression
and release. NeuroP signaling in kisspeptin neurons involves
Src activation and the release of intracellular calcium. Thus,
the brain does not passively respond to ovarian hormones
but is an active participant in triggering the LH surge to
induce ovulation.
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