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Image Based Data Mining (IBDM) is a novel analysis technique allowing the interrogation

of large amounts of routine radiotherapy data. Using this technique, unexpected

correlations have been identified between dose close to the prostate and biochemical

relapse, and between dose to the base of the heart and survival in lung cancer. However,

most analyses to date have considered only dose when identifying a region of interest,

with confounding variables accounted for post-hoc, most often using a multivariate

Cox regression. In this work, we introduce a novel method to account for confounding

variables directly in the analysis, by performing a Cox regression in every voxel of the

dose distribution, and apply it in the analysis of a large cohort of lung cancer patients.

Our method produces three-dimensional maps of hazard for clinical variables, accounting

for dose at each spatial location in the patient. Results confirm that a region of interest

exists in the base of the heart where those patients with poor performance status (PS),

PS > 1, have a stronger adverse reaction to incidental dose, but that the effect changes

when considering other clinical variables, with patient age becoming dominant. Analyses

such as this will help shape future clinical trials in which hypotheses generated by the

analysis will be tested.

Keywords: radiation oncology, NSCLC, image based data mining, outcomes, chemoradiotherapy

1. INTRODUCTION

Radiotherapy (RT) is a commonly used treatment for cancer in which radiation is used to destroy
tumor cells. The most common RT treatment is delivered using a beam of high energy radiation
generated outside the patient (External Beam Radiotherapy, or EBRT) and directed into the patient
toward the tumor. Modern RT planning techniques allow highly conformal, curative doses to be
delivered in the tumor while sparing surrounding healthy tissues.

Since EBRT delivers dose from outside the patient, dose to normal tissue close to the tumor
is unavoidable. It is well-known that dose in normal tissue leads to treatment side effects, and
limits are set on the incidental dose deposited in normal tissue. However, the determination
of dose limits is not obvious, and there is still uncertainty over which organs or sub-regions
of organs are most important. Most dose analyses are done using Dose Volume Histograms
(DVH), in which a cumulative dose-volume histogram is calculated for a given structure (1).
DVHs require delineations, therefore finding dose sensitive regions relies on having delineated the
correct anatomy before analysis, limiting analyses based on the assumptions made before analysis
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commences. Also, in DVH-based analyses it is impossible to
identify subregions within structures, since the use of a DVH
collapses all 3D dose distribution information into 1 dimension.

A persistent complication in all data mining is the fact that
disease can interact with factors unrelated to treatment. For
example, the lifestyle of a patient can have a profound impact on
their ability to tolerate RT; in lung cancer, patients who smoke
already have impaired lung or cardiac function and may suffer
more, worse side effects from treatment (2). The general health of
a patient prior to any treatment can also have a profound impact
on their ability to tolerate treatment. Pre-existing conditions are
referred to as comorbidities, and may include any condition
relevant to a patients’ ability to tolerate treatment. In particular,
recent evidence shows that cardiac comorbidities should play a
role in determining dose limits (3). Patients having pre-existing
cardiac comorbidity are significantly more likely to develop
radiation induced cardiac (4, 5) and further lung damage as a
result of RT treatment. Importantly, it has also been shown (6)
that the size of a patient’s tumor is highly predictive of survival,
and therefore its effect on survival cannot be ignored. A common
way to include the effects of lifestyle and other factors such as
tumor size is to stratify the patient population during analysis.
However, this leads tomany small cohorts in which theremay not
be enough statistical power to find a dose response relationship
and is considered bad practice (7). The way such effects are
typically handled in DVH based analyses is through the use of a
multivariate Cox regression considering all variables found to be
important in multiple univariate regressions. However, as with
all DVH based analyses, this approach is limited by the prior
assumptions made about which structures drive toxicity.

An interesting way to identify dose-sensitive regions is the
method proposed by Witte et al. (8) in which the dose is
correlated on a per-voxel basis with outcome in a large cohort
of patients (typically 200–1,000). This approach has been named
image based data mining (IBDM). In IBDM, the entire dose
distribution is used without the need for delineations, thereby
reducing the number of prior assumptions made and allowing
the identification of dose-sensitive regions outside of delineated
anatomy, or subregions within it. By comparing the dose in
each voxel for each group of a binary classification, it is possible
to identify regions in which dose is correlated with outcome—
either survival or toxicity. IBDM has been applied in several
areas where more traditional DVH based analyses would have
been impossible. For example in prostate cancer, where dose
differences in a region outside the prostate were associated with
biochemical recurrence 4 years post treatment (9), and a link
between excess dose and rectal toxicity in prostate patients (10).
More recently, a sub-volume within the heart was identified
as being dose-sensitive (11), with excess dose in this region
being associated with poorer overall survival at 12 months post
radiotherapy. IBDM has also been applied to the detection of a
region related to radiation induced lung damage (12). At present
the most advanced IBDM technique uses continuous outcome
variables to produce a Spearman rank-correlation map between
dose and outcome; using this method a region associated with
radiation-induced trismus was found in patients treated for head
and neck cancer (13). Clearly, clinical and lifestyle factors will

affect outcome and must be accounted for in some way; for
example, Yahya et al. (14) use a pixelwise logistic regression
in their analysis of the relationship between bladder surface
dose and urinary dysfunction. Similarly, Monti et al. (15) use
a generalized linear model to account for the impact of age in
their analysis of radiation induced lung damage. However, most
applications of IBDM so far do not account for known clinical
and lifestyle factors that affect outcome, with all correction for
these factors being done post-hoc. In contrast to both Witte et al.
(8), Chen et al. (9), and McWilliam et al. (11) in which post-hoc
multivariate analyses were performed either for individual voxels
or in IBDM identified regions, in this work we present the first
application of a per-voxel survival analysis in a large radiotherapy
cohort used to identify dose-sensitive regions. The advantage of
this approach work is that the shape and extension of the region
of interest is directly extracted after modulation by all variables.
Using this strategy, avoids the risk of spurious results being found
using IBDM, which may disappear when accounting for clinical
factors that affect outcome. Ideally, IBDM should be performed
in such a way that it can account for covariates and avoid this
potential issue.

Recently, ten Kate et al. (16) used a per-voxel Cox regression
technique to account for variability in time-to-event for the
onset of dementia from mild cognitive impairment (MCI),
finding a pattern of decreased gray matter volume beyond the
hippocampus, as observed in MR imaging, to be predictive of
time to progression to dementia in patients with MCI. Similarly,
Sörensen et al. (17) use a per-voxel Cox regression technique to
identify brain regions in FDG PET imaging in which reduced
metabolism was associated with a shorter time to conversion
from MCI to Alzheimer’s dementia. To date, no time-to-event
type analysis has been done per-voxel linking radiotherapy dose
with overall survival. In this work we extend our previously
developed IBDM methodology to incorporate non-dose factors
without the need to stratify patients, and therefore lose statistical
power. Our proposed method to incorporate confounding
variables in the IBDM stage is the Cox-IBDM method, in which
a Cox regression is performed considering relevant clinical
factors as well as the planned radiotherapy dose in each voxel.
Cox-IBDM allows the production of a hazard ratio map that
can highlight changes in hazard across a patient’s anatomy for
variables when dose is considered. Permutation testing is used to
assess significance, with dose being permuted relative to all other
clinical variables.

We apply the Cox-IBDM method to non-small cell lung
cancer (NSCLC) patients and demonstrate its value, comparing
to the conventional approach used by our group and others.

2. METHODS AND MATERIALS

A cohort of N = 1, 101 Non Small-cell Lung Cancer (NSCLC)
patients treated with routine curative intent (55Gy in 20
fractions) between 2010 and 2013 at a single academic cancer
center was collected without selection, including CT imaging
used in treatment planning, and the planned radiotherapy
dose distribution. Treatments were a mixture of 3D conformal
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RT (3DCRT) and Intensity Modulated RT (IMRT). Additional
clinical information, including gender, age, tumor size, tumor
stage, and performance status was also collected for each patient.
Patients were labeled based on their survival 12 months post-
radiotherapy; there were a total of 884 events in this cohort,
with a median follow-up of 16 months (range 3–36 months) and
median survival 12 months (range 1–36 months); no patients
were lost to follow-up before 12 months. Our retrospective
analysis of routine radiotherapy data was approved by the local
institutional information governance and ethics committee (The
Christie NHS Foundation Trust and Caldicott Committee). All
data was anonymized, and the work carried out according to a
protocol approved by the Caldicott committee.

Patient CT images were non-rigidly registered to an arbitrarily
chosen reference patient CT using the Nifty Registration package
[NifytReg, UCL (18)]. CT slice resolutions were approximately
1 mm in-plane (range 0.9–1.3 mm) with on average 3 mm slice
thickness (range 3–5 mm). The registration was performed using
intensities, with delineations used only to validate the accuracy of
registration later, since not all patients had suitable delineations.
The cost function used in the registration was normalized mutual
information, and a penalty was added on the bending energy to
regularize the registration. NifytyReg uses a B-spline registration
algorithm; previous studies have shown that regions extracted
with either B-spline registration or Demons based registration
are largely equivalent (15). Dose distributions were registered by
applying the deformation vector field derived in the registration
of the CT images. Dose distributions were calculated at between 3
and 5 mm resolution and, following registration were resampled
to the resolution of the reference CT. Using a subset of 386
patients for whom the heart had been delineated, the registration
inaccuracy was estimated by measuring the deviation in the
center of mass, and distance to agreement of heart segmentations
mapped from the 386 patients and the heart contour in the
reference patient. Registration was found to be accurate to within
3.9mm left-right, 4.9mm anterior-posterior, and 7.4mm cranial-
caudal. To take account of these uncertainties, dose distributions
were blurred using a Gaussian kernel before use in data mining.
To accelerate IBDM, the dose distributions were down-sampled
by a factor of three in-plane, and a factor of two in the cranial-
caudal direction, making voxels 7× 7× 6 mm. Amask is used to
exclude regions outside the reference patient anatomy.

All IBDM was performed using a toolkit developed in-house.
The toolkit includes implementations of the Student T-test used
in binary IBDM (11), and an implementation of the per-voxel
Cox regression technique discussed here. To explore changes
in the extracted region of interest when stratifying on clinical
variables, patients were split based on their performance status
(abbreviated as PS); in the first case, we split into sub-cohorts with
the same PS (i.e., 0, 1, 2, 3) and a Student T-test was performed
using the survival labels defined as 0 (no event) if the patient was
alive 12 months after radiotherapy and 1 (event) if the patient
dies within 12 months after radiotherapy. No patients were lost
to follow up <12 months post-radiotherapy. The Student T-test
produces both negative and positive values for t, which imply
different effects of excess radiation dose; negative t implies a
detrimental effect of excess radiation, while positive t implies

a protective/curative effect. For this reason, the t-test used is
one-sided, and we assess positive and negative t for significance
separately. Performance status was scored according to the
ECOG performance scoring criteria, in which PS 0 corresponds
to a patient who is fully active and whose disease has not
impacted their daily life. PS 1 indicates a patient who is restricted
somewhat, but still able to perform light work; PS 2 indicates a
patient is capable of self care, andmanages more than half of their
waking hours out of a chair/bed. PS 3 indicates a patient capable
of only limited self care, who is in a chair/bed more than half of
their waking hours. PS 4 indicates a patient who is completely
disabled, is bed bound and cannot perform any self-care (19).
The majority of lung cancer patients present with PS 1 or 2, and
some present with PS 0 or 3; very few have PS 4. Permutation
testing, originally developed for neuroimaging (16, 17, 20) and
applied in similar investigations in RT (9, 11, 13), was again
applied here to test for statistical significance. In this method,
outcome labels are permuted and the test statistic re-calculated
in order to approximate the distribution of the statistic under the
null hypothesis. In neuroimaging, permutation testing has been
done by treating every voxel independently, thereby reducing
the number of permutations needed to a handful. However, in
radiotherapy voxel-to-voxel correlations exist and are strong,
making this approach unsuitable; instead, we summarize the
entire statistical map with a single value. In the case of analyses
using the t-test, we randomize the survival labels and re-calculate
the t-map; in the case of the Cox per voxel analysis, we randomize
the event label and re-calculate the beta map. These maps are
then summarized using the most extreme voxel in the map, in
both cases, positive and negative values are treated separately.
By performing this randomization and summarization many
times, we are able to build an empirical distribution of the test
statistic (t or beta) under the null hypothesis; this is then used
to define iso-t or iso-beta levels corresponding to a given level
of significance. The procedure as described here is one of the
strongest corrections for the multiple comparison problem (21).
In this work, the statistic tested is the β coefficient in a Cox
proportional hazards model; the distribution of most extreme
(positive and negative) β is used to set a threshold on the value of
β required for significance.

2.1. An Illustration of the Pitfalls of Binary
IBDM
As an example of how splitting a cohort and performing repeated
binary IBDM to take account of clinical variables may lead to
incorrect or unreliable results, we show an analysis of the cohort
used in this work in which we perform binary IBDM on cohorts
produced by splitting on the PS variable, both directly and in a
dichotomized analysis.

Binary IBDM, using a Student t-test per voxel, was performed
in four lung cancer radiotherapy cohorts produced by splitting
the patients based on their performance status; from an original
cohort of 1,101 [as used in (11)], 122 missing performance status
records reduced the available cohort to 979, and a single patient
with PS 4 was excluded from all binary analysis leaving 978 in
the analysis. Of the 978 patients in the analysis, 140 were PS 0,
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438 PS1, 339 PS2, and 61 PS3; a separate per-voxel t-test was
performed in each of these four sub-groups as a simple way
to account for the influence of PS on overall survival. Patients
were labeled according to their survival at twelve months post-
RT, and a per-voxel t-test performed on the dose distribution.
Significant regions are highlighted by taking a contour at
the 95th percentile of the t distribution approximated by
permutation testing.

While it is possible to split a cohort based on PS, this leads
to small sample sizes and fewer events in each group which
limits the power of the analysis. In addition, performance status
is not a precise measure of patient health, and includes a
considerable uncertainty due to clinician judgment, and patient
responses (22). Therefore, we considered it unwise to base
analysis on the actual value for PS recorded in the clinical
notes. However, it is reasonable to expect a PS 0/1 patient
to be in better condition than a PS 2/3 patient, therefore a
better approach may be to dichotomize PS, and separate the
analysis of those patients having PS ≤ 1 (N = 578) and
those with PS > 1 (N = 400) and perform analysis in these
two groups; this is a tradeoff between the moderate loss of
information inherent in going from the full PS distribution to a
dichotomized version, and the additional robustness offered by
a high/low PS classification. Dichotomizing in this way brings
an additional benefit in the current analysis: the groups are
much better balanced than when using the full PS dynamics.
The result of this analysis is shown in Figure 2. We have
use dichotomized PS to split our cohort for two separate
binary analyses, and use the dichotomized PS measure in the
Cox regression.

Splitting a cohort in this way and running separate IBDM
in each sub-cohort accounts for differences between covariates
in each sub-cohort, but dilutes the power of the analysis
and may mean important insights are missed. In addition
to PS, other clinical variables such as tumor size and age
must be controlled for in any analysis. If a cohort were split
up-front, each sub-cohort would be very small, making it
almost impossible to generate any testable clinical hypothesis
from the data; this approach is therefore doomed to failure
as the cohort size dwindles with more covariates being
controlled for.

2.2. The Per-voxel Cox Regression
To avoid splitting the cohort, we propose the use of our novel
method: a Cox regression in each voxel of the dose distribution,
taking account of the clinical variables of interest. By performing
an analysis that inherently includes clinical variables that are
relevant, we are able to control for differences between patient
subgroups, while maintaining the statistical power of a large
overall cohort and the geometrical power of a voxel-wise analysis.
The per-voxel Cox regression uses a standard Newton–Raphson
iterative method to produce a maximum likelihood estimate of
the Cox model coefficients when taking into account relevant
clinical variables in addition to the dose in each voxel; by
excluding clinical variables, a univariate Cox regression on dose
alone can be performed, however this result is not shown
here. Cox model coefficients are readily converted into hazard

ratio simply by taking the exponent of each voxel in the
resulting image.

The product of the Cox regression tool is a multi-channel
image in which each channel contains the hazard ratio for a given
clinical variable. These hazard ratios vary spatially because of the
spatial variation in the dose, and this spatial variation may imply
dose-response relationships. To assess statistical significance in
the per-voxel Cox regression, survival time, status, and all clinical
variables are permuted with respect to the dose distributions, but
not each other. This means that a given survival time remains
associated with the same status and clinical variables, but each
permutation involves a different dose distribution. In the per-
voxel Cox regression, we first included low/high performance
status as a categorical variable alongside the dose in each
voxel; this analysis was performed on a cohort of 979 patients,
including the one PS 4 patient excluded from the binary analysis.
Performance status was included as a binary variable primarily to
address the inaccuracy of performance status classification, but
also to reduce the number of channels in the output hazard ratio
map to a manageable number (4). As PS is a categorical variable
with four levels, the inclusion of it in the Cox regression would
lead to three hazard ratio (HR) channels associated with it, as
the HR for each PS will be calculated with PS 0 as reference. By
dichotomizing the PS variable as we have, we reduce the number
of channels to 1 (PS > 1 with PS ≤ 1 as reference). Inclusion of
PS as an ordinal variable (i.e., treating it as if continuous) was
avoided due to the required implicit assumption that increases in
PS are proportional; this is unlikely to be true, especially when
considering the inherent uncertainty and qualitative nature of
PS grading. All other variables considered in this regression are
treated as continuous variables, and therefore have hazard ratios
per unit increase in their respective covariate (e.g., Gy-1 for the
dose HR).

Missing age data further reduced the cohort available for this
analysis from 979 patients to 939. The result of this analysis is
shown in Figure 4. The cube root of tumor size was preferred
over raw tumor size values because the distribution of tumor
volumes was skewed, and the cube root suppresses the effect of
a small number of large tumors. Tumor volume now enters our
models as effective tumor dimension in cm.

2.3. The Effect of GTV Dose
It may be argued that dose to the GTV is curative, whereas dose to
the normal tissue is not, meaning that dose in the GTV should be
treated differently to dose elsewhere. To date, we are not aware of
any IBDM analysis in which dose to the GTV is treated differently
to dose elsewhere, however it may have an impact.

To investigate the effects of how GTV dose is treated, we re-
analyse the data but exclude voxels in the GTV from analysis.
In binary IBDM, this equates to having a variable number of
patients used to calculate the mean and standard deviation in
each voxel. For the per-voxel Cox analysis, we treat voxels in
the GTV as missing data. This leads to a variable number of
patients being used for the regression across anatomy, as we
only perform regressions using patients for whom all data is
available, a so-called Complete Case Analysis (CCA). The CCA
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procedure results in at most 6% of patients being excluded in any
given voxel.

We will demonstrate results in which dose to the GTV has
been excluded, and compare them to the currently accepted
methods in which dose to the GTV is included.

3. RESULTS

3.1. The Pitfalls of Binary IBDM
In Figure 1, binary IBDM has been performed in the four sub-
cohorts defined by splitting on PS. The region highlighted in
red is statistically significant with p = 0.05. In these significant
regions, an excess of dose is associated with decreased overall
survival at 12 months post-RT.

A significant region in Figure 1 only exists for those patients
whose PS is 3, with no statistically significant region being found
for patients with lower PS. The region highlighted in Figure 1

is consistent with that previously identified in this cohort, being
located in the base of the heart, and in a similar anatomical
location to the most significant region in the previous analysis
(11). In this analysis, the majority of patients had PS 1 (438
patients, 355 events) or PS 2 (339 patients, 276 events), with
a small number being PS 0 (140 patients, 104 events) or 3 (61
patients, 52 events).

To account for the inaccuracy of PS, and to obtain larger and
better balanced cohorts, we dichotomize PS into those patients
with PS < 1 and those with PS ≥ 1. The results of two binary

IBDM analyses in cohorts split based on dichotomized PS is
shown in Figure 2.

In Figure 2, a significant region is identified for those
patients with poorer performance, however in this case it is
not compatible with results found in a previous analysis of this
cohort (11), which identified the base of the heart as a dose
sensitive structure. The location of the significant region, around
the inferior edge of the lungs, may actually be indicating the
effect of tumor size, with larger tumors having larger high dose
regions—this leads to a spuriously significant region in which
dose difference and survival are both driven by tumor size, which
is un-accounted for. Naively, one may now try to account for
tumor size by splitting each sub-cohort (already split according
to PS) further according to their tumor size.

3.2. Per-voxel Cox IBDM
Hazard ratios were produced and are shown in Figure 3. The
further usefulness of the method is demonstrated by including
additional clinical variables: age and the cube root of the tumor
size, both of which are important predictive clinical factors (6,
23). In Figure 3, a Cox regression is performed per-voxel taking
account of dichotomized PS as in Figure 2, but also dose in each
voxel. This technique allows analysis of the dose sensitivity of the
entire cohort while controlling for PS. The equation of the Cox
regression used in Figure 3 is shown (Equation 1):

ln(λp,i(t)|Xp,i) = ln(λ0,p(t))+βPS>1,iXPS>1,p+βdose,iXdose,p,i (1)

FIGURE 1 | IBDM repeated for each of the four performance statuses considered (0 in A, 1 in B, 2 in C, 3 in D). One patient with PS 4 was omitted. Percentile refers

to the percentile of the t distribution approximated by permutation testing used to assess significance, i.e., 95th percentile corresponds to p = 0.05. Percentile refers

to the percentile of the t distribution approximated by permutation testing used to assess significance, i.e., 95th percentile corresponds to p = 0.05, all analyses used

1,000 permutations. Statistically significant regions (regions inside the 95th percentile; p≤0.05) after permutation testing where dose differs between living and dead

patients are indicated by contours in red, while less significant regions are shown in other colors. No anatomically plausible, statistically significant region where dose

differs between living and dead patients was found, except for the PS three patients (D).
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FIGURE 2 | IBDM repeated for low (PS 0-1, shown in A) and high (PS 2-3, shown in B) PS patients. Percentile refers to the percentile of the t distribution

approximated by permutation testing used to assess significance, i.e., 95th percentile corresponds to p = 0.05, all analyses used 1,000 permutations. In the low PS

patients, no significant regions (p = 0.05 in both) were identified (global p = 0.19), whereas in the high PS patients a region is identified in the body of the heart (global

p = 0.001). The region identified in high PS patients is incompatible with prior results at this significance level reported by McWilliam et al. (11).

where λ(t) is hazard function estimated from the data X, and
λ0(t) is the time-dependant baseline hazard function. XPS>1

is a dichotomous variable whose value is 1 when a patient’s
performance status is >1. Beta is the Cox model coefficient
for dichotomized PS or dose respectively. Subscript p refers to
patients, while subscript i refers to dose distribution voxels. Dose
in each voxel is a continuous variable.

By combining spatially invariant clinical data with the spatially
varying dose data, it is possible to identify regions in which
clinical variables appear to have a stronger effect. In Figure 3 this
effect is seen for PS> 1, where those patients with higher PS have
worse overall survival linked to dose in a region of the base of
the heart. The implication of this analysis is that patients with
poor performance status (i.e., general fitness/health/indication of
co-morbidities) are less tolerant of dose in the base of the heart.

To further isolate the relationship between clinical variables
and dose, it is necessary to control for several more clinical
variables when performing analyses. In Figure 4, IBDM is
performed using a per-voxel Cox regression controlling for the
most significant clinical variables as identified in other studies
(11): effective tumor dimension, age and PS. In Figure 4, the
equation used is

ln(λp(t)|Xp,i) = ln(λ0,p(t))+ βPS>1,iXPS>1,p + βETD,iXETD,p

+βAge,iXAge,p + βdose,iXdose,p,i

(2)

where λ(t) is the hazard function estimated from the data X,
and λ0(t) is the time-dependant baseline hazard function. Again,
XPS>1 is a dichotomous variable whose value is 1 when a patient’s
performance status is >1. βPS is the Cox model coefficient for
dichotomized PS, βETD is the Cox model coefficient for effective
tumor dimension, βage refers to the Cox model coefficient for age
and βdose is the Cox model coefficient for dose. Subscript p refers
to patients, while subscript i refers to dose distribution voxels.
Effective Tumor Dimension is abbreviated ETD. Age, ETD, and
dose are treated as continuous variables.

As in Figure 3, an important region is highlighted in
the base of the heart where dose has a larger detrimental

effect on those patients whose PS is poor. However, when
considering four covariates this region is no longer statistically
significant. Instead, an overlapping region in which the patient’s
age is important becomes significant, indicating the interplay
between covariates across the anatomy. The hazard ratio for
effective tumor dimension is largely spatially invariant, and
is significant in all voxels tested, except the base of the
heart where other covariates appear to be more important.
A reduction in tumor dimension hazard in the region of the
base of the heart may indicate that dose to the base of the
heart is a competing effect, alongside tumor size. However,
this reduction is mirrored by an increase in the hazard ratio
associated with dose, likely because larger tumors lead to larger
doses across the mediastinum. All covariates were statistically
significant (p = 0.05) when permuting dose, apart from the
dose and PS. In this analysis, 939 patients were included, the
number again reduced relative to the previous analysis due
to missing data. This is a proof of principle analysis using
some common clinical variables and illustrating the hazard
ratio maps resulting from the method; in principle there
is no limit to the number of clinical variables that could
be included.

3.3. The Effect of GTV Dose
In Figure 5 the hazard ratios and significance thresholds are
shown for a per-voxel Cox regression in which GTV voxels are
treated as missing data.

The overall indication from this analysis is the same. The
shape and location of statistically significant regions does not
change very much, but the iso-significance contours become
much more noisy; this implies that the permutation test
methodology is robust to variable patient numbers across the
anatomy, but that more patients may be required when excluding
the GTV region from the analysis.

4. DISCUSSION

In this work, we aim to address one of the remaining inadequacies
of standard image based data mining—the lack of consideration
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FIGURE 3 | Cox-IBDM performed considering only PS (A) and dose (B). Shown by the dashed white line is the region inside the mask, where hazard ratio

calculations were performed. In unfilled contours, hazard ratio percentiles are shown, while hazard ratios are shown in filled contours. Percentile refers to the percentile

of the hazard ratio distribution approximated by permutation testing used to assess significance, i.e., 95th percentile corresponds to p = 0.05, all analyses used 1,000

permutations. Note that the hazard ratio scale is different in each subfigure. For the PS hazard map (A), all regions with HR > 1.147 are statistically significant (p <

0.05); a region in the base of the heart is identified with a significant (when permuting the dose) hazard ratio of around 1.2, taking account of the effect of dose. In the

dose hazard map (B), no region is statistically significant when permuting the dose; hazard ratios shown are for illustration, having p > 0.1.

for clinical covariates during region of interest identification.
This work has performed, for the first time, survival analysis
per-voxel across a large patient population, producing hazard
ratio maps showing that clinical variables have a spatially varying
hazard when dose across anatomy is taken into account. The
power of the per-voxel Cox method, over binary IBDM, is in
the ability to use the full cohort: in this analysis data from
939 patients was used. This information has never been shown
before, as standard Cox-regression analysis can only handle 0-
dimensional parameters (for instance DVH parameters), where
spatial information is lost. The approach developed in this work
allows greater understanding of the variation in risk across
patient anatomy and offers further opportunities to better create
the optimal treatment plan for radiotherapy patients.

Using binary IBDM and splitting our cohort based on patients’
performance status, we have identified a sub-population of
patients whose PS is poor in whom dose to the base of the heart
is strongly associated with poorer survival, however this region
was not identified in patients whose PS is better. Since PS is
a subjective measure, grouping patients on raw PS score is ill-
advised; however, a different statistically significant region was
found for patients grouped PS ≤ 1 and PS > 1. The variability
in regions identified is strongly dependent on the grouping of
the data, with competing effects, and small unbalanced cohorts
contributing to a reduction in analysis power. No anatomically
plausible region is identified when accounting for the inaccuracy
of PS as a measure of patient health by splitting the cohort based
on PS ≤ 1 and PS > 1, illustrating the inappropriateness of
dividing a cohort based on a covariate as a way to control for
that covariate.

Per-voxel IBDM using a Cox regression to account for
confounding clinical variables offers an alternative method to
perform IBDMwhile accounting for clinical factors and retaining
a large cohort. The method highlights the interplay of dose with
clinical variables, and has identified a region in the heart where

patients with poorer PS (PS > 1) who receive excess dose
have worse survival. Care must be taken in the interpretation
of hazard ratio maps produced using this method, as there is
considerable scope for interactions between covariates and the
addition of spatial variation can make interpretation even more
challenging. An interesting extension of the Cox PHmodel would
be the inclusion of interaction terms between variables such as
PS and dose; however, the interpretation of such an analysis
is difficult and is beyond the scope of this current work. The
observed asymmetry in the hazard ratios shown in Figures 3, 4
suggests there may be some effect due to tumor location.We have
investigated the location of tumors in this cohort previously (24),
and while there is a difference in survival between left- and right-
sided tumors (25), there is no spatial correspondence between the
likely tumor location and the patterns seen in the hazard ratio
maps. However, given that our analysis identifies regions in the
heart where dose is detrimental, it would be interesting to include
the location of the tumor, relative to the heart, in future analyses.

In IBDM, since all patients must be non-rigidly registered
to a single reference anatomy for the analysis, the subsequent
analysis is subject to uncertainty due to the registration
process, and may be subject to bias due to the selection
of reference patient. We have presented our methodology
for assessing the registration accuracy in this cohort,
which involves analysis of heart segmentations propagated
subset of our patients to the reference. This allows us to
say with some certainty that our registration accuracy is
acceptable within the heart, but does not offer insight into the
registration quality within the lungs. The choice of reference
patient will obviously impact the registration, and therefore
influence the dose distributions in the common frame of
reference. We have previously investigated the impact of
reference patient selection on the result of IBDM and found
only small differences (26), in spite of large variations in
reference anatomy.
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FIGURE 4 | Cox-IBDM taking account of the most significant clinical variables [binary PS (A), Tumor size (B), Age (C)], and dose (D). Again, the mask used is

indicated by the white dashed line, significance indicated by the unfilled contours and hazard ratio by the filled contours. Percentile refers to the percentile of the

hazard ratio distribution approximated by permutation testing of the summary statistic used to assess significance, i.e., 95th percentile corresponds to p = 0.05, all

analyses used 1,000 permutations. Note that hazard ratio scales are different in each sub-figure, and that the hazard ratio for tumor size and age are both highly

significant, regardless of dose.

It may be argued that dose to the GTV is intended to be
curative, whereas dose to normal tissue is not, and therefore the
two cannot be analyzed in the same way. We have investigated
the effect of removing the dose in the GTV. In summary the
overall conclusion of the analysis is unchanged, but the effect
of removing the GTV dose on the permutation test output is
to introduce noise. The changes in the permutation test are due
to the summary statistic used (most extreme hazard), and the
increased size of confidence intervals where GTV dose has been
excluded. We believe that keeping the dose to the GTV in the
analysis offers the cleaner and more robust analysis, and allows
for situations in which there is no GTV, only a CTV which
may include normal tissue. If the GTV is to be excluded, we
recommend varying the number of patients analyzed per-voxel
as this is the more statistically robust and extensible method.

By treating GTV voxels as missing data, we took the
simplest possible approach and excluded those patients from the

regression in GTV voxels. This approach is valid provided voxels
are missing at random, and that less than 5% of patients are
excluded in any given voxel (27). The largest number of patients
excluded in any voxel of this analysis is 56 (6%) and, at a per-voxel
level, exclusion is effectively random as the location of the GTV is
random. It may be possible to use more sophisticated techniques
for dealing with missing data, such as multiple imputation.
However, given that at most 6% of patients were excluded in
a single voxel, simply using complete case analysis is sufficient
for this analysis; in analyses where many GTVs overlap in the
reference anatomy, this will not be the case (28) and care must be
taken to ensure that the missingness is not informative.

A weakness in all studies on retrospective data is poor
outcome data, including actual cause of death. The analysis here
has been performed using overall survival as an endpoint, but
since the cause of death remains unknown it is impossible to
properly disentangle the effect of dose in the base of heart from
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FIGURE 5 | Cox-IBDM taking account of the most significant clinical variables [dichotomized PS (A), Tumor size (B), Age (C)], and dose (D). Again, the mask used is

indicated by the white dashed line, significance indicated by the unfilled contours and hazard ratio by the filled contours. Percentile refers to the percentile of the

hazard ratio distribution approximated by permutation testing of the summary statistic used to assess significance, i.e., 95th percentile corresponds to p = 0.05, all

analyses used 1,000 permutations. In this analysis, dose in voxels within the GTV is treated like missing data, meaning that for the regression in voxels labeled as GTV

for a particular patient, that patient is excluded from the analysis.

other factors. We hypothesize that dose to the base of the heart
is predictive of survival. While this hypothesis makes instinctive
sense, it is necessary to consider that the cause of death for these
patients is unknown. The statistically significant region identified
using IBDM extends well into the right lung, implying that there
may be more than one effect at play. For example, Radiation
Induced Lung Dysfunction (RILD) has been demonstrated in rat
models, with resultant vascular remodeling leading to pulmonary
hypertension (29). RILD has also been identified in retrospective
analysis of data from lymphoma patients (12), though these
patients have very different comorbidities to the group analyzed
in this work. It is also true that the right lung is larger than the left,
and therefore conceivable that dose delivered in the right lung
may impact survival and present a competing effect alongside
cardiac dose that this study is at present unable to differentiate
(7). Were data available, Cox-IBDM could be used to perform
a time-to-event analysis for cardiac events which should further
clarify the relative importance of dose sensitive regions. However,

given that such datasets are likely to be small, or have a small
event rate it will be necessary to carefully investigate the exclusion
of dose to the GTV; while it may influence the outcome, it will
very likely dominate other regions in the permutation test due to
the changes to confidence intervals.

Similarly, the lack of high-quality comorbidity data is a
limitation in this analysis as in a previous analysis of this cohort.
Here however, available co-morbidity data can be incorporated
directly into the IBDM process, meaning important dose-
sensitive regions may be localized that depend on the fitness
of the patient as well as on the characteristics of their disease,
including histology. By accounting for comorbidities in the
generation of dose-sensitive ROIs the ROIs should be more
robust, making testing hypotheses generated by IBDM more
straightforward. In this analysis we have used performance status
as a crude but widely available surrogate for comorbidities, and
identified those patients whose performance is worst as being at
the greatest excess risk during radiotherapy; this hypothesis could
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be readily tested by imposing a stricter limit on heart dose for
those patients whose performance is poor. With more detailed
comorbidity data, this hypothesis could be further refined.

This study has evaluated dose effect on overall survival
after radiotherapy, either with a dichotomized analysis between
patients surviving up to 12 months, or with a per voxel survival
analysis. While the methods applied are state-of-the-art, the
clinical endpoint is important yet limited. There are numerous
confounding factors which have an effect on overall survival
and some of them will not be captured in the data we have
analyzed. A more compelling analysis would use, for example,
cardiac death after radiotherapy; however, this data is difficult
to produce in sufficient quantities to perform IBDM. More
refined endpoints will be needed to refine IBDM generated
hypotheses, but hypotheses generated with an unequivocal
but limited endpoint are highly important when designing
future studies.

In binary IBDM, statistical significance is assessed by
permuting labels to dose data (e.g., dead/alive) and re-calculating
the test statistic; equivalently, it would be possible to permute
the dose distributions with respect to the labels, but this is not
done as it is computationally expensive. In this work, each dose
distribution is associated with several variables, including the
time to event and status label but also any covariate information
to be used in the Cox regression. To produce permuted
regressions here, we have permuted entire collections of covariate
and event data with respect to the dose. This is identical to
permuting the dose distributions, but more computationally
efficient. As in our binary analysis, the most extreme value
in each channel is recorded for each permuted analysis, and
the 95th percentile of the permuted distribution used to give
a significance threshold for that variable. Due to the nature
of the analysis, assessing significance in this way is susceptible
to errors where the regression does not converge (e.g., areas
with very low dose). It is possible to exclude these regions
by requiring a minimum mean dose threshold for a voxel to
be included in the analysis, though this may cause important
regions whose mean dose is less than the threshold to be ignored.
Threshold free cluster enhancement (TFCE) (30) has been used
in other analyses and we are exploring its application in this type
of analysis.

In this work, we have performed permutation testing to
assess statistical significance using the max-T method proposed
by Chen et al. (9). In similar work by Sörensen et al. (17),
a false discovery rate (FDR) approach was used to adjust
analytical p-values derived from the Cox model fitting. While
this may be appropriate in that analysis, we feel that the use
of a full permutation is preferable in our analysis, due to the
presence of strong correlation between neighboring voxels in a
dose distribution, which must be carefully taken into account
in FDR. In the analysis by ten Kate et al. (16), permutation

testing was used, but every voxel was treated independently in
the construction of the permutation distribution. Again, this
approach is inappropriate for our data due to the presence of
correlations in the dose distribution. Our approach calculates
permutations in which the dose is effectively associated with a
different patient in every permutation, which removes the impact
of correlations between voxels in the dose distribution for the
purposes of permutation testing.

In summary, IBDM using a per-voxel Cox regression has,
for the first time, produced three-dimensional maps of hazard
for clinical variables when considering radiotherapy dose. These
hazard ratio maps have been used to identify dose-sensitive
regions compatible with those seen using a standard IBDM
technique, and highlight the interaction between dose and other
clinical variables such as PS. By using a Cox-based IBDM
approach, it is possible to do time-to-event studies including
clinical variables that will further clarify the relative importance
of dose-sensitive structures, making the clinical hypotheses
generated using IBDMmore easily testable and robust.
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