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Geometric phase magnetometry using
a solid-state spin

K. Arail, J. Lee!, C. Belthangady2'3, D.R. Glenn?34, H. Zhangz'3 & R.L. Walsworth234

A key challenge of magnetometry lies in the simultaneous optimization of magnetic field
sensitivity and maximum field range. In interferometry-based magnetometry, a quantum two-
level system acquires a dynamic phase in response to an applied magnetic field. However,
due to the 2z periodicity of the phase, increasing the coherent interrogation time to improve
sensitivity reduces field range. Here we introduce a route towards both large magnetic field
range and high sensitivity via measurements of the geometric phase acquired by a quantum
two-level system. We experimentally demonstrate geometric-phase magnetometry using the
electronic spin associated with the nitrogen vacancy (NV) color center in diamond. Our
approach enables unwrapping of the 2z phase ambiguity, enhancing field range by 400 times.
We also find additional sensitivity improvement in the nonadiabatic regime, and study how
geometric-phase decoherence depends on adiabaticity. Our results show that the geometric
phase can be a versatile tool for quantum sensing applications.
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he geometric phase!? plays a fundamental role in a broad

range of physical phenomena®=>. Although it has been

observed in many quantum platforms®=® and is known to
be robust against certain types of noise!®!l, geometric phase
applications are somewhat limited, including certain protocols for
quantum simulation'>13 and computation'*-17. However, when
applied to quantum sensing, e.g., of magnetic fields, unique
aspects of the geometric phase can be exploited to allow reali-
zation of both good magnetic field sensitivity and large field range
in one measurement protocol. This capability is in contrast to
conventional dynamic-phase magnetometry, where there is a
trade-off between sensitivity and field range. In dynamic-phase
magnetometry using a two-level system (e.g., two spin states), the
amplitude of an unknown magnetic field B can be estimated by
determining the relative shift between two energy levels induced
by that field (Methods). A commonly used approach is to mea-
sure the dynamic phase accumulated in a Ramsey interferometry
protocol. An initial resonant 77/2 pulse prepares the system in a
superposition of the two levels. In the presence of an external
static magnetic field B along the quantization axis, the system
evolves under the Hamiltonian H = fyBo,/2, where y denotes the
gyromagnetic ratio and o, is the z-component of the Pauli spin
vector. During the interaction time T (limited by the spin
dephasing time T,*), the Bloch vector s(t) depicted on the Bloch
sphere precesses around the fixed Larmor vector R = (0, 0, yB),
and acquires a dynamic phase ¢4 = yBT. The next /2 pulse maps
this phase onto a population difference P = cos ¢g4, which can be
measured to determine ¢g and hence the magnetic field B (Sup-
plementary Note 1).

Such dynamic-phase magnetometry possesses two well-known
shortcomings. First, the sinusoidal variation of the population
difference with magnetic field leads to a 27 phase ambiguity in
interpretation of the measurement signal and hence determination
of B. Specifically, since the dynamic phase is linearly proportional
to the magnetic field, for any measured signal Py, (throughout
the text, this value corresponds to (AFL/FL)x k, where k is a
constant that depends on NV readout contrast), there are infinite
magnetic fleld ambiguities: B,, = ()/T)_1 (cos 1P ens + 27Tm),
where m =0, £1, 2 ...+e. Thus, the range of magnetic field
amplitudes that one can determine without modulo 2nt phase
ambiguity is limited to one cycle of oscillation: By o 1/T
(Supplementary Note 2, Supplementary Figure 5). Second, there
is a trade-off between magnetic field sensitivity and field range, as
the interaction time also restricts the shot-noise-limited magnetic
field sensitivity: 5o 1/TV/2. Consequently, an improvement in
field range via shorter T comes at the cost of a degradation in
sensitivity (Supplementary Note 3). Use of a closed-loop lock-in
type measurement!8, quantum phase estimation algorithm!%-20,
or non-classical states??2 can alleviate these disadvantages;
however, such approaches require either a continuous measure-
ment scheme with limited sensitivity, large resource overhead
(additional experimental time) or realization of long-lived
entangled or squeezed states.

In the present work, we use the electronic spin associated with
a single nitrogen vacancy (NV) color center in diamond to
demonstrate key advantages of geometric-phase magnetometry:
(i) it resolves the 2m phase ambiguity limiting dynamic-phase
magnetometry; and (ii) it decouples magnetic field range and
sensitivity, leading to a 400-fold enhancement in field range at
constant sensitivity in our experiment. We also show additional
improvement of magnetic field sensitivity in the nonadiabatic
regime of mixed geometric and dynamic-phase evolution. By
employing a power spectral density analysis®3, we find that
adiabaticity plays an important role in controlling the degree of
coupling to environmental noise and hence the spin coherence
timescale.

Results

Geometric-phase magnetometry protocol. To implement
geometric-phase magnetometry, we use a modified version of an
experimental protocol (“Berry sequence”) previously applied to a
superconducting qubit®. In our realization, the NV spin sensor is
placed in a superposition state by a 71/2 pulse, where the driving
frequency of the 71/2 pulse is chosen to be resonant with the NV
m, =0« m,= + 1 transition at constant bias field By,s (=9.6
mT in our experiment) aligned with the NV axis. A small signal
field B (~100 uT in our experiment) is then applied parallel to
Bhias, and the NV spin acquires a geometric phase due to oft-
resonant microwave driving with control parameters cycled along
a closed path as illustrated in Fig. 1b (Methods). Under the
rotating wave approximation, the effective two-level Hamiltonian
is given by:

H=t
2

(Q cos(p)a, + Qsin(p)a, + yBoz>. (1)

Here, Q is the NV spin Rabi frequency for the microwave
driving field, p is the phase of the driving field, and ¢ = (0, 0, 0,)
is the Pauli spin vector. By sweeping the phase, the Larmor vector
R(t) = R*(sinf cosp, sinf cosp, cost), where cosd = yB/(Q* + (yB)
)2, R = (02 +(yB)?)!2, rotates around the z-axis. The Bloch
vector s(t) then undergoes precession around this rotating
Larmor vector (for detailed picture of the measurement protocol,
see Supplementary Fig 2). If the rotation is adiabatic (i.e.,
adiabaticity parameter A = psin/2R < 1), then the system
acquires a geometric phase proportional to the product of (i) the
solid angle ®=2m(1 — cosfl) subtended by the Bloch vector
trajectory and (ii) the number of complete rotations N of the
Bloch vector around the Larmor vector in the rotating frame
defined by the frequency of the initial 77/2 pulse. We apply this
Bloch vector rotation twice during the interaction time T, with
alternating direction separated by a 7 pulse, which cancels the
accumulated dynamic phase and doubles the geometric phase:
¢g = 2NO (Supplementary Note 1). A final 7/2 pulse allows this
geometric phase to be determined from standard fluorescence
readout of the NV spin-state population difference:

B
P eas(B) =cos |4nN | 1 — Y (2)
(yB)'+0°
This normalized geometric-phase signal (Supplementary

Note 1) exhibits chirped oscillation as a function of magnetic
field. There are typically only a small number of field ambiguities
that give the same signal P,,.,s; these can be resolved uniquely by
measuring the slope dPp,.,s/dB (Supplementary Note 2, Supple-
mentary Fig. 5). From the form of Eq. (2) it is evident that at large
B, cosine signal approaches to zero like B~2, and the slope goes to
zero. Hence, we define the field range as the largest magnetic field
value (B,y) that gives the last oscillation minimum in the signal:
Biax < Q N2, Importantly, the field range of geometric-phase
magnetometry has no dependence on the interaction time T. If
the magnetic field is below By, then one can make a geometric-
phase magnetometry measurement with optimal sensitivity
7 Q N~1 T2 (Supplementary Note 3).

Comparison between dynamic- and geometric-phase magne-
tometry. We implemented both dynamic- and geometric-phase
magnetometry using the optically addressable electronic spin of a
single NV color center in diamond (Fig. 2a) (Supplementary
Figs. 1-3). NV-diamond magnetometers provide high spatial
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Fig. 1 Concepts of dynamic- and geometric-phase magnetometry. a For dynamic-phase magnetometry with an NV spin, the Bloch vector s =(s,, s,, s,)
(blue arrow), initially prepared by a z/2 pulse in a superposition state between two levels, precesses about the fixed Larmor vector R= (0, O, yB) (red
arrow). During the interaction time T between the two 7z/2 pulses, the spin coherence accumulates a dynamic phase ¢4 =yBT, equivalent to the angle
swept by the Bloch vector on the equator. The phase is then mapped by a second 7/2 pulse to a population difference signal P = cos¢gy, which is measured
optically. Due to a 2z phase periodicity, an infinite number of magnetic field values (black dots) give the same signal, leading to an ambiguity. b For
geometric-phase magnetometry with an NV spin, a Berry sequence is employed. The Bloch vector is first prepared by a z/2 pulse in a superposition state
between two levels. An additional off-resonant driving is then used to rotate the Larmor vector about the z-axis N times, R(t) = (Qcosp(t), 2sinp(t), yB),
where p(t) = 4zNt/T. The spin coherence acquires a geometric phase ¢, = N @, proportional to the number of rotations N and the solid angle ® =2z (1 —
cos®) subtended by the trajectory of the Larmor vector. To cancel the dynamic phase and double the geometric phase, the direction of rotation is alternated
before and after a z pulse at the midpoint of the interaction time. At the end of the Berry sequence, the phase is mapped by a second /2 pulse to a
population difference signal P = cos¢g, which is measured optically. The signal exhibits chirped oscillation with magnetic field amplitude, which yields at

most finite magnetic field degeneracies (black dots). The signal vs. field slope resolves this ambiguity

resolution under ambient conditions?4=26, and have therefore

found wide-ranging applications, including in condensed matter
physics?7-28, the life sciences?>30, and geoscience3!. At an applied
bias magnetic field of 9.6 mT, the degeneracy of the NV my=+1
levels is lifted. The two-level system used in this work consists of
the ground state magnetic sublevels m; =0 and m,= +1, which
can be coherently addressed by applied microwave fields. The
hyperfine interaction between the NV electronic spin and the host
%N nuclear spin further splits the levels into three states, each
separated by 2.16 MHz. Upon green laser illumination, the NV
center exhibits spin-state-dependent fluorescence and optical
pumping into my=0 after a few microseconds. Thus, one can
prepare the spin states and determine the population by mea-
suring the relative fluorescence (see Methods for more details).
First, we performed dynamic-phase magnetometry using a
Ramsey sequence to illustrate the 27 phase ambiguity and show
how the dependence on interaction time gives rise to a trade-off
between field range and magnetic field sensitivity. We recorded
the NV fluorescence signal as a function of the interaction time T'

between the two microwave 7/2 pulses (Fig. la). Signal
contributions from the three hyperfine transitions of the NV
spin result in the observed beating behavior seen in Fig. 2b. We
fixed the interaction time at T=0.2, 0.5, 1.0us, varied the
external magnetic field for each value of T, and observed a
periodic fluorescence signal with a 27 phase ambiguity (Fig. 2¢).
The oscillation period decreased as the interaction time was
increased, indicating a reduction in the magnetic field range (i.e.,
smaller B.,,). In contrast, the magnetic field sensitivity, which
depends on the maximum slope of the signal, improved as the
interaction time increased. For each value of T, we fit the
fluorescence signal to a sinusoid dependent on the applied
magnetic fleld and extracted the oscillation period and slope,
which we used to determine the experimental sensitivity and field
range. From this procedure, we obtained 5o T-04%6) and
By x T7096(2) ) consistent with expectations for dynamic-
phase magnetometry and illustrative of the trade-off inherent in
optimizing both # and By, as a function of interaction time
(Supplementary Fig. 7).
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Fig. 2 Demonstration of dynamic- and geometric-phase magnetometry using a single NV spin in diamond. a NV electronic spin (§ =1) has sublevels mg =
0 and %1 with zero-field splitting D = 2z x 2.87 GHz. An external magnetic field B introduces Zeeman splitting between the mg = + 1 states with
gyromagnetic ratio y = 2z x 28 GHz T~1. mg = 0 and —1 define the two-level system used in this work. Hyperfine interactions with the host N nuclear spin
lead to m;=0, %1, split by +2.16 MHz. b—e Blue and red dots represent measured magnetometry data for dynamic phase (b, ¢) and geometric phase
(d, e) protocols, respectively. Vertical axes give the measured optical signal Preas = (AFL/FL) X k, where AFL/FL is the fractional change of NV-spin-state-
dependent fluorescence and k is a constant that depends on NV readout contrast. Error bars are one standard deviation photon shot-noise. Black lines show
fits to @ model outlined in the main text. Blue- and red-shaded regions represent maximum magnetic field ranges. Beating due to three hyperfine
resonances is evident in b. In dynamic-phase magnetometry, the oscillation period decreases as the interaction time increases, indicating a trade-off
between sensitivity and field range (c). Geometric-phase magnetometry signal in (d) shows independence of T. Field range is defined at the last minimum

(e)

Next, we used a Berry sequence to demonstrate two key
advantages of geometric-phase magnetometry: ie., there is
neither a 27 phase ambiguity nor a sensitivity/field-range trade-
off with respect to interaction time. For fixed adiabatic control
parameters of /2w =5 MHz and N = 3, the observed geometric-
phase magnetometry signal P..,s has no dependence on
interaction time T (Fig. 2d). Varying the external magnetic field
with fixed interaction times T =4.0, 6.0, 8.0 us, Pp,,s exhibits
identical chirped oscillations for all T values (Fig. 2e), as expected
from Eq. (2). From the Py, data we extract dPy,e,s/dB, which
allows us to determine the magnetic field uniquely for values
within the oscillatory range (Supplementary Note 2), and also to
quantify By from the last minimum point of the chirped
oscillation (Fig. 2e). Additional measurements of the dependence
of Ppess on the adiabatic control parameters Q, N, and T

(Supplementary Figs. 4, 6) yield the scaling of sensitivity and field
range: 7 o QI2ON-092(D7046(1) and B o QOIND52(5)70.02

(), which is consistent with expectations and shows that
geometric-phase magnetometry allows # and By, to be
independently optimized as a function of interaction time
(Supplementary Fig. 7).

In Fig. 3 we compare the measured sensitivity and field range
for geometric-phase and dynamic-phase magnetometry. For each
point displayed, the sensitivity is measured directly at small B
(0.01 ~ 0.1 mT), whereas the field range is calculated from the
measured values of N and Q (for geometric-phase magnetometry)
and T (for dynamic-phase magnetometry, with T limited by the
dephasing time T5*), following the scaling laws give above. Since
geometric-phase magnetometry has three independent control
parameters (T, N, and ), B, can be increased without
changing sensitivity by increasing N and Q while keeping the
ratio N/Q fixed. Such “smart control” allows a tenfold improve-
ment in geometric-phase sensitivity (compared to dynamic-phase
measurements) for B~ 1mT, and a 400-fold enhancement
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Fig. 3 Decoupling of magnetic field sensitivity and maximum field range.
Measured performance of dynamic-phase (blue dots) and geometric-phase
(red squares) magnetometry. Dashed lines are linear fits to data. Dashed
arrows indicate the orientation of control parameters 2, N, T as
independent vectors on the (42, Bmax) map. Since a Ramsey sequence used
for dynamic-phase magnetometry has only a single control parameter (),
the relations for sensitivity (7 < T2) and field range (Bmaxx T~1) are
unavoidably coupled as 72 « Bmay. In contrast, a Berry sequence used for
geometric-phase magnetometry employs all three control parameters, and
thus the sensitivity (y <21 N T2) can be chosen independently of the
field range (Bmay x 2 N2 T0). For example, larger Boax With constant 7 is
obtainable with geometric-phase magnetometry by increasing £2 and N
while keeping T and the ratio ©2/N fixed. Error bars represent one standard
deviation of the results

Binax at a sensitivity of ~2 uT Hz~1/2, Similarly, the sensitivity can
be improved without changing By, by decreasing the interaction
time, with a limit set by the adiabaticity condition (
A=psinf/2R~ N/QT < 1).

Geometric-phase magnetometry in nonadiabatic regime.
Finally, we explored geometric-phase magnetometry outside the
adiabatic limit by performing Berry sequence experiments and
varying the adiabaticity parameter by more than two orders of
magnitude (from A = 0.01—-5). We find good agreement between
our measurements and simulations, with an onset of nonadiabatic
behavior for A > 0.2 (Supplementary Figure 8). At each value of
the adiabaticity parameter A, we determine the magnetic field
sensitivity from the largest slope of the measured magnetometry
curve. (The magnetometry curve is the plot of P,,.,s obtained as a
function of applied magnetic field B.) To compare with the best
sensitivity provided by dynamic-phase magnetometry, we fix the
interaction time at T'~ T,*/2 in the nonadiabatic geometric-phase
measurements. We find that the sensitivity of geometric-phase
magnetometry improves in the nonadiabatic regime, and
becomes smaller than the sensitivity from dynamic-phase mea-
surements for A > 1.0 (Fig. 4a).

To understand this behavior, we recast the sensitivity scaling
in terms of the adiabaticity parameter and interaction time,
Hox A~1T~12 and investigated the trade-off between these
parameters. (Note that in the nonadiabatic regime the Bloch
vector no longer strictly follows the Larmor vector, and thus the
sensitivity scaling is not exact.) We performed a spectral density
analysis to assess how environmental noise leads to both
dynamic- and geometric-phase decoherence, with the relative
contribution set by the adiabaticity parameter A, thereby limiting
the interaction time 7. We take the exponential decay of the NV
spin coherence W(T) ~exp(—x(T)), characterized by the

decoherence function x(T) given by

Here, S(w) is a spectral density function that describes
magnetic noise from the environment; Fo(wT) = 2sin*(wT/2) is
the filter function for geometric-phase evolution in the Berry
sequence, which is spectrally similar to a Ramsey sequence, with
maximum sensitivity to static and low frequency (<1/T) magnetic
fields; and Fi(wT)=8sin*(wT/4) is the filter function for
dynamic-phase evolution in the Berry sequence, which is
spectrally similar to a Hahn-echo sequence, with maximum
sensitivity to higher frequency (21/T) magnetic fields (Supple-
mentary Note 4).

Geometric-phase coherence time. Figure 4b shows examples of
the measured decay of the geometric-phase signal (Pp,c,) as a
function of interaction time T and adiabaticity parameter A.
From such data we extract the geometric-phase coherence time
Tyg by fitting Ppyeqs ~ exp[—(T/ ng)z]. We observe four regimes of
decoherence behavior (Fig. 4c), which can be understood from
Eq. (3) and its schematic spectral representation in Fig. 4d. For A
<0.1 (adiabatic regime), dynamic-phase evolution (i.e., Hahn-
echo-like behavior) dominates the decoherence function y(T) and
thus Thg~ T, = 500 ps. For 0.1<A<1.0 (intermediate regime),
the coherence time is inversely proportional to the adiabaticity
parameter (T~ T5*/A) as geometric-phase evolution (with
Ramsey-like dephasing) becomes increasingly significant. For A
~ 1.0 (nonadiabatic regime), geometric-phase evolution dom-
inates y(T) at long times and thus Tg ~ T5* = 50 ps. For A > 1.0
(strongly nonadiabatic limit), the driven rotation of the Larmor
vector is expected to average out during a Berry sequence
(Fig. 1b) and only the z-component of the Larmor vector remains.
Thus, the Berry sequence converges to a Hahn-echo-like sequence
and the coherence time is expected to increase to T, for very large
A.

Discussion

In summary, we demonstrated an approach to NV-diamond
magnetometry using geometric-phase measurements, which
avoids the trade-off between magnetic field sensitivity and max-
imum field range that limits traditional dynamic-phase magne-
tometry. For an example experiment with a single NV, we realize
a 400-fold enhancement in static (DC) magnetic field range at
constant sensitivity. We also explored geometric-phase magne-
tometry as a function of adiabaticity, with good agreement
between measurements and model simulations. We find that
adiabaticity controls the coupling between the NV spin and
environmental noise during geometric manipulation, thereby
determining the geometric-phase coherence time. Furthermore,
we showed that operation in the nonadiabatic regime, where there
is mixed geometric- and dynamic-phase evolution, allows mag-
netic field sensitivity to be better than that of dynamic-phase
magnetometry. We expect that geometric-phase AC field sensing
will provide similar advantages to dynamic-phase magnetometry,
although the experimental protocol (Berry sequence) will need to
be adjusted to allow only accumulation of geometric phase due to
the AC field. The generality of our geometric-phase technique
should make it broadly applicable to precision measurements in
many quantum systems, such as trapped ions, ultracold atoms,
and other solid-state spins.
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Methods

NV diamond sample. The diamond chip used in this experiment is an electronic-
grade single-crystal cut along the [110] direction into a volume of 4 x 4 x 0.5 mm3
(Element 6 Corporation). A high-purity chemical vapor deposition layer with
99.99% 12C near the surface contains preferentially oriented NV centers. The esti-
mated N and NV densities are 1x10'° and 3x10'? cm—3, respectively. The ground
state of an NV center consists of an electronic spin triplet with the m;=0 and +1
Zeeman sublevels split by 27 x 2.87 GHz due to spin—spin interactions. Excitation
with green (532 nm) laser light induces spin-preserving optical cycles between the
electronic ground and excited states, entailing red fluorescence emission (637—800
nm). There is also a nonradiative decay channel from the m = +1 excited states to
the my =0 ground state via metastable singlet states with a branching ratio of
~30%. Thus, the amount of red fluorescence from the NV center is a marker for the
z-component of the spin-state, and continuous laser excitation prepares the spin
into the mg =0 state over a few microseconds. The spin qubit used in this work
consists of the m; = -+1 and 0 ground states. Near-resonant microwave irradiation
allows coherent manipulation of the ground spin states. The NV spin resonance
lifetimes are Ty ~ 3 ms, T, ~ 500 ps, and T5>* ~ 50 ps.

Confocal scanning laser microscope. Geometric-phase magnetometry using
single NV centers is conducted using a home-built confocal scanning laser
microscope (Supplementary Fig. 1). A three-axis motorized stage (Micos GmbH)
moves the diamond sample in three dimensions. An acousto-optic modulator
(Isomet Corporation) operated at 80 MHz allows time-gating of a 400 mW, 532 nm
diode-pumped solid-state laser (Changchun New Industries). An oil-immersion
objective (x100, 1.3 NA, Nikon CFI Plan Fluor) focuses the green laser pulses onto
an NV center. NV red fluorescence passes through the same objective, through a
single-mode fiber cable with a mode-field-diameter of ~5 pm (Thorlabs), and then
onto a silicon avalanche photodetector (Perkin Elmer SPCM-ARQH-12). The NV
spin initialization and readout pulses are 3 ps and 0.5 ps, respectively. The change
of fluorescence signal is calculated from AFL = FL* — FL~, where FL* are the
fluorescence counts obtained after spin projection using a microwave 71/2-pulse
along the +x-axis, respectively. For each measurement, the fluorescence count FL

when the spin is in the m; =0 state is also measured as a reference. The tem-
perature of the confocal scanning laser microscope is monitored by a 10k ther-
mistor (Thorlabs) and stabilized to within 0.05 °C using a 15 W heater controlled
with a PID algorithm.

Hamiltonian parameter control system. The Rabi frequency () and phase (p) of
the microwave drive field, as well as the applied magnetic field to be sensed (B), are
key variables of this work. It is thus crucial to calibrate the microwave driving
system and magnetic field control system beforehand. Microwave pulses for NV
geometric phase magnetometry are generated by mixing a high frequency (~3
GHz) local oscillator signal and a low frequency (~50 MHz) arbitrary waveform
signal using an IQ mixer (Supplementary Fig. 1). The Rabi frequency and
microwave phase are controlled by the output voltage of an arbitrary waveform
generator (Tektronix AWG5014C) (Supplementary Fig. 2). The microwave pulses
are amplified (Mini-circuits ZHL-16W-43-S+) and sent through a gold coplanar
waveguide (10 um gap, 1 um height) fabricated on a glass coverslip by photo-
lithography. An external magnetic field for magnetometry demonstration is created
by sending an electric current through a copper electromagnetic coil (4 mm dia-
meter, 0.2 mm thick, #n =40 turns, R =0.25 Q) placed h = 0.5 mm above the dia-
mond surface. The electric current is provided by a high-stability DC voltage
controller (Agilent E3640A). To enable fine scan of the electric current with limited
voltage resolution, another resistor with 150 ) is added in series. Thus, a DC power
supply voltage of 3 V approximately corresponds to I = 0.02 A, which creates an
external field of B = yonl/4mh ~ 16 G. One can determine the change of the external
magnetic field as a function of DC power supply voltage AB(V) by measuring the
shift of the resonance peak Af in the NV electron spin resonance spectrum using
Af= yAB. The result is AB/V =0.50 +0.01 G V™! (Supplementary Fig. 3). Joule
heating produced by the coil is P=I?R ~ 10~ W. The mass and heat capacity of
the coil are about 0.15 g and 0.06 ] K—1, respectively. Thus, the temperature rise is
at most 2 mK s~ L. Since the temperature coefficient of the fractional resistivity
change for copper is 0.00386 K132, the change of resistance due to Joule heating is
negligible.
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Numerical methods for geometric phase simulation. All simulations of NV spin
evolution in this work are carried out by computing the time-ordered time evo-
lution operator at each time step.

Ut t;) = T{exp (_i/ttf H(t)dt) } = lN_[exp[—iAtH(tjﬂ, (4)

i j=1

where  and ¢ are the initial and final time, respectively, T is the time-ordering
operator, At is the time step size of the simulation, N=(t; — t;)/At is the number of
time step, and H(¢) is the time-dependent Hamiltonian (Eq. (1)). In the simulation,
we used At=1 ns step size which is sufficiently small in the rotating frame. The
algorithm is implemented with MATLAB®.

Data and code availability. The data and numerical simulation code that support
the findings of this study are available from the corresponding author upon rea-
sonable request.
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