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ABSTRACT
Objective  To date, there are no predictive biomarkers 
to guide selection of patients with gastric cancer (GC) 
who benefit from paclitaxel. Stomach cancer Adjuvant 
Multi-Institutional group Trial (SAMIT) was a 2×2 
factorial randomised phase III study in which patients 
with GC were randomised to Pac-S-1 (paclitaxel +S-1), 
Pac-UFT (paclitaxel +UFT), S-1 alone or UFT alone after 
curative surgery.
Design  The primary objective of this study was to 
identify a gene signature that predicts survival benefit 
from paclitaxel chemotherapy in GC patients. SAMIT 
GC samples were profiled using a customised 476 
gene NanoString panel. A random forest machine-
learning model was applied on the NanoString profiles 
to develop a gene signature. An independent cohort of 
metastatic patients with GC treated with paclitaxel and 
ramucirumab (Pac-Ram) served as an external validation 
cohort.
Results  From the SAMIT trial 499 samples were analysed 
in this study. From the Pac-S-1 training cohort, the random 
forest model generated a 19-gene signature assigning 
patients to two groups: Pac-Sensitive and Pac-Resistant. 
In the Pac-UFT validation cohort, Pac-Sensitive patients 
exhibited a significant improvement in disease free survival 
(DFS): 3-year DFS 66% vs 40% (HR 0.44, p=0.0029). There 
was no survival difference between Pac-Sensitive and Pac-
Resistant in the UFT or S-1 alone arms, test of interaction 
p<0.001. In the external Pac-Ram validation cohort, the 
signature predicted benefit for Pac-Sensitive (median PFS 
147 days vs 112 days, HR 0.48, p=0.022).
Conclusion  Using machine-learning techniques on 
one of the largest GC trials (SAMIT), we identify a gene 
signature representing the first predictive biomarker for 
paclitaxel benefit.
Trial registration number  UMIN Clinical Trials 
Registry: C000000082 (SAMIT); ​ClinicalTrials.​gov 
identifier, 02628951 (South Korean trial)

INTRODUCTION
The identification of predictive biomarkers to 
personalise treatment of patients with gastric 

cancer (GC) is challenging due to the complex 
genomic and molecular landscape of this malig-
nancy.1 Adding chemotherapy to surgery has 
improved patient with GC survival, when admin-
istered in either the perioperative or postoper-
ative setting.2 Besides 5-fluorouracil (5FU) and 

Significance of this study

What is already known on this subject?
	► Paclitaxel is an active chemotherapeutic agent 
in the treatment of gastric cancer (GC).

	► Stomach cancer Adjuvant Multi-Institutional 
group Trial (SAMIT) was a randomised 2×2 
factorial phase III trial, studying the role of 
adjuvant paclitaxel in patients with GC.

	► There are currently no biomarkers for selecting 
patients with GC who benefit from paclitaxel

	► Machine-learning modelling using genomic 
data is an emerging and novel strategy to 
identify gene signature based predictive 
biomarkers

What are the new findings?
	► NanoString transcriptomic profiling was 
performed on SAMIT surgical resection samples.

	► Using the trial’s 2×2 factorial study design, a 
gene signature predicting paclitaxel survival 
benefit was developed with a random forest 
machine-learning method.

	► The model was validated internally within 
SAMIT samples, and independently in an 
external validation cohort.

How might it impact on clinical practice in the 
foreseeable future?

	► These findings represent the first predictive 
biomarker for paclitaxel benefit in GC.

	► Given the rising utilisation of taxanes in GC 
in the adjuvant and perioperative setting, this 
biomarker may guide in identifying patients 
who benefit from taxane based therapy, 
following further validation in prospective trials.
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platinum, taxanes have demonstrated activity in patients with 
GC, with docetaxel and paclitaxel both showing a survival 
benefit in first-line and second-line treatment of patients with 
metastatic GC, respectively.3 4 Recently, the use of docetaxel has 
shown survival improvements when combined with 5FU and 
platinum-based therapy in the perioperative setting (FLOT4).5 
The triplet regimen of 5FU/platinum/docetaxel is considered 
a standard of care in several Western nations.4 Similarly, in 
Japan, addition of docetaxel to S-1 adjuvant chemotherapy 
has demonstrated a survival benefit.6 However, other GC trials 
investigating the role of taxanes in the adjuvant and metastatic 
setting were unable to demonstrate survival improvement.7 8 
These contradictory results underpin the urgent clinical need 
for predictive biomarkers to identify patients who will benefit 
from taxane chemotherapy. While there are data for biomarkers 
predicting 5FU and platinum benefit, there are currently no 
predictive biomarkers for taxane therapy in GC described in 
the literature.9–13

Stomach cancer Adjuvant Multi-Institutional group Trial 
(SAMIT) was a phase III randomised trial conducted in Japan, 
to assess superiority of adjuvant sequential treatment (pacli-
taxel followed by UFT or paclitaxel followed by S-1) compared 
with monotherapy (UFT or S-1 alone), and to assess the non-
inferiority of UFT compared with S-1 after curative surgery.14 
UFT is an oral combination of uracil (an inhibitor of dihydropy-
rimidine dehydrogenase (DPD)) and tegafur (a 5FU prodrug).15 
S-1 is an oral combination of tegafur, gimeracil (a DPD inhibitor) 
and oteracil (a compound that localises preferentially to the gut 
and inhibits orotate phosphoribosyl-transferase, reducing activa-
tion of 5FU and gastrointestinal toxicity).16 The clinical results 
of SAMIT, reported in 2014, showed that sequential paclitaxel 
did not improve disease-free survival (DFS) and UFT was not 
non-inferior to S-1.14

Taxanes are thought to exert their anti-cancer effects through 
aberrant stabilisation of microtubules, leading to defects in chro-
mosome segregation, mitotic arrest and activation of the spindle 
assembly checkpoint, where prolonged activation results in cell 
death. Studies in patients with breast cancer suggest that altered 
expression of genes involved in the spindle assembly checkpoint 
may affect cellular sensitivity to paclitaxel,17 18 and immunogenic 
cell death after chemotherapy.19 20 We hypothesised that in GC 
the expression of genes involved in chromosomal stability and/or 
immunogenic cell death may predict benefit from paclitaxel. We 
aimed to test this hypothesis using samples and clinical data from 
the SAMIT trial. Findings from the SAMIT study were validated 
in an independent phase 2 GC trial cohort from South Korea.

METHODS
SAMIT trial
SAMIT trial was a 2×2 factorial design phase III study 
conducted in Japan.14 In total, 1495 patients were randomised 
to either single agent UFT (UFT arm), single agent S-1 (S-1 arm) 
or sequential paclitaxel-S-1(Pac-S-1 arm) or sequential pacli-
taxel-UFT (Pac-UFT arm).

Surgical sample processing and RNA extraction for biomarker 
cohort
Formalin-fixed, paraffin-embedded (FFPE) blocks or unstained 
cut sections from gastrectomy specimens were collected from 
Japanese sites participating in the SAMIT study.RNA was 
extracted from the primary tumour and prepared for NanoS-
tring profiling (online supplemental methods).

NanoString analysis
A custom designed NanoString (NanoString Technologies, USA) 
panel of 476 genes was used (online supplemental table 1). Gene 
ontologies were broadly categorised into
1.	 Genes involved in the spindle assembly checkpoint.
2.	 Genes with therapeutic implications in GC.
3.	 Genes involved in the GC tumour microenvironment.
4.	 Genes relevant to oncogenic signalling pathways.
5.	 Genes with frequent genomic alterations in GC.
6.	 Immune-related genes in GC.
7.	 DNA damage repair genes.
8.	 Genes with reported predictive benefit in GC chemotherapy 

from the literature.
Quality control (QC) analyses between triplicates and correc-

tions for batch effects are described in the supplement (online 
supplemental methods and figure S1). Normalised NanoString 
gene expression data and correlative clinicopathological charac-
teristics are provided in online supplemental table 1.

Gene signature development using machine-learning models
The random forest method uses an ensemble of classification 
trees of several variables.21 Metrics for measuring the predic-
tive performance included accuracy, precision, recall, F-measure 
and area under curve (AUC). The F-measure has been shown 
to handle class imbalances in the dataset better than positive 
predictive value and accuracy.22 23

Random forests return a prediction from a collection of clas-
sification trees (in our analyses we used ntree=3000) (online 
supplemental methods). Each tree is grown by using a bootstrap 
sample of the data set and, only a random subset of the original 
variables is examined at each node. Multiple iterations of the 
random forest algorithm were run, performing a variable impor-
tance analysis and eliminating variables that did not contribute to 
the classification resulting in improved predictive performance.24 
The model was trained based on a DFS< or ≥2 years classifier. 
As the random forest algorithm works best when trained on 
equally sized groups, this clinically relevant cut-off of DFS was 
also selected to create relatively equal groups.5 A sensitivity and 
variable importance analysis for F-measure was performed to 
identify the optimal number of genes to be included in the gene 
signature. The classes identified by the gene signature derived 
from the random forest algorithm were labelled ‘Pac-Sensitive’ 
(paclitaxel-sensitive, ie, those patients that derive a survival 
benefit from paclitaxel) and ‘Pac-Resistant’ (paclitaxel-resistant, 
ie, those patients that lack a survival benefit from paclitaxel). 
The randomForest R package was used.

Creation of training and validation cohorts for machine 
learning
The aim was to train the random forest model on a training 
cohort to generate a classifier, which would then be applied on 
a validation cohort to confirm accuracy, F-measure and AUC of 
the classifier. The classifier would then be tested on an ‘external 
independent validation cohort’ (described in the next section). 
AUC was calculated using a time-dependent receiver operating 
characteristic (ROC) curve for 2-year DFS, using the risksetROC 
package.

We took advantage of the unique 2×2 factorial design of 
the SAMIT trial. Essentially, each arm of the study could func-
tion as individual cohort of patients for training and valida-
tion. As SAMIT was a randomised phase III trial, the cohorts 
(arms) would be well balanced with respect to confounding 
factors. Thus, two paclitaxel treated (Pac-S-1 and Pac-UFT) and 
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two paclitaxel untreated (S-1 and UFT) cohorts were formed. 
Tumour samples from one paclitaxel treated arm would be used 
to train the model, while the other would be used to validate the 
classifier. Since S-1 currently represents the standard of care for 
GC chemotherapy in Japan, we elected to use the Pac-S-1 arm 
(n=128) as the training cohort and the Pac-UFT arm (n=123) as 
the validation cohort. We also tested the interaction between the 
classifier and treatment with paclitaxel by applying the classifier 
on the non-paclitaxel containing arms (S-1 and UFT).

External independent validation South Korean paclitaxel-
ramucirumab trial cohort (Pac-Ram)
Data for this validation cohort were derived from a single-arm 
non-randomised phase II trial of patients with GC with meta-
static disease treated with paclitaxel and ramucirumab (n=47).25 
Patients with metastatic GC who had progressed on at least 1 
line of chemotherapy which included platinum/fluoropyrimidine 
were enrolled in a phase II trial at the Samsung Medical Center, 
South Korea. All patients provided written informed consent 
before enrolment. A tumour biopsy was obtained between day 
−42 and day 1 prior to initiation of study treatment. Intrave-
nous paclitaxel and ramucirumab were administered until docu-
mented disease progression, unacceptable toxicity or patients’ 
refusal was reported. RNA-Seq was performed and data were 
aligned to GENCODE V.19 transcript annotation using STAR. 
Transcripts per million abundance measure were generated using 
RSEM. RNA-seq transcripts mapping to genes profiled using 
the NanoString panel were extracted. Random forest classifiers 
trained on the SAMIT study were applied to the normalised 
RNA-seq data to predict benefit from paclitaxel therapy.

The Cancer Genome Atlas analysis
Gene expression data and clinical data for the The Cancer 
Genome Atlas (TCGA) stomach adenocarcinoma (STAD) cohort 
were downloaded from Firebrowse.26 Illumina HiSeq RNA-
SeqV2 RSEM normalised gene values were used and applied 
through a similar pipeline as the Pac-Ram cohort RNA-Seq 
samples for generation of the random forest gene signature. 
HER2 status of TCGA STAD samples were derived from the 
HER2 index of Li et al.27 The HER2 index is an expression-
based classifier reflecting the HER2-enriched transcriptional 
pattern for tumours harbouring HER2 aberrations. A cut-off 
0.75 was used to classify samples as positive.

Statistical analyses
The primary objective of this translational study was to iden-
tify a gene signature generated by a machine-learning model 
that predicts survival benefit from paclitaxel chemotherapy in 
patients from the SAMIT trial, and to validate these findings in 
an independent GC patient cohort.

All analyses were done using R (V.3.6.1) with statistical signif-
icance set at two-tailed p<0.05. Fisher’s exact test was used to 
evaluate associations with categorical variables. Kaplan-Meier 
curves with log-rank statistics were used to compare overall 
survival (OS), DFS in the SAMIT cohort and progression-free 
survival (PFS) in the Korean cohort. OS was calculated from the 
date of randomisation to the date of death by any cause, DFS 
was calculated from the date of randomisation to the date of 
first event (relapse of stomach cancer, death from any cause or 
occurrence of a second cancer), PFS was calculated from the date 
of first dose of paclitaxel/ramucirumab to the date of disease 
progression or death from any cause). The assumption of propor-
tional hazards was checked using the scaled Schoenfeld residuals 

method and was supported. Cox regression was performed to 
present HRs and 95% confidence intervals (CI). Univariate and 
multivariate analysis for DFS was performed.

RESULTS
SAMIT biomarker cohort characteristics
RNA was extracted from 552 GC resection samples (37% of the 
whole SAMIT trial population) and profiled by a custom-made 
NanoString assay. 53 samples (10%) failed QC and were excluded 
from further analyses leaving a total of 499 GCs for final analyses 
(figure  1A). There were no statistically significant differences in 
patient characteristics between the original SAMIT trial population 
and subset of patients in the biomarker cohort (online supplemental 
table S2). Patient characteristics were well balanced between the 
arms in the biomarker cohort (table 1). Median age was 65 years 
(range 29–80 years) and 69% (n=343) were male. The median 
follow-up time was 60.5 months (IQR: 47.5–78.3 months), and 
there were no survival differences between the biomarker cohort 
and original SAMIT trial population (online supplemental figure 
S2). There were also no differences in the clinicopathologic char-
acteristics of the samples that failed QC and the ones that did not 
(online supplemental table S3).

Development of a predictive gene signature of paclitaxel 
benefit using random forest analysis
NanoString profiles did not reveal any significant differences 
in gene expression between treatment arms, and none of the 
single gene expression levels were associated with DFS by Cox 
univariate regression after correction for multiplicity using the 
false discovery rate method (online supplemental table 1 and 
figure 2A).

To identify gene signatures for paclitaxel-benefit, we found 
that application of the machine-learning approach by randomly 
dividing SAMIT samples into training and validation cohort 
failed to deliver a gene signature that could be validated in the 
Pac-Ram external cohort (online supplemental methods). We, 
therefore, decided to take advantage of the unique 2×2 factorial 
design of the SAMIT trial, with each arm of the study repre-
senting an individual cohort. The cohorts were well balanced 
with respect to clinicopathological factors (table 1). Using the 
Pac-S-1 arm (n=128) as the training cohort, we labelled patients 
as Pac-Sensitive if they derived a survival benefit from paclitaxel 
and as Pac-Resistant if they did not have a survival benefit from 
paclitaxel (DFS≥ or <2 years) (figure 1B).

From the Pac-S-1 cohort, random forest and variable impor-
tance analysis identified the top genes contributing to the model, 
on which the classifier was trained. A sensitivity analysis using 
different numbers of genes within the signature was performed, 
using F-measure and accuracy (online supplemental figure S3), 
to decide on the optimal number of genes within the signature. 
A 19-gene signature (random forest gene signature) trained 
on the Pac-S-1 cohort and tested on the Pac-UFT validation 
cohort (n=123) had the highest accuracy and F-measure, and 
was selected for further analysis. In the Pac-UFT arm, patients 
classified as Pac-Sensitive by the random forest gene signature 
had a significantly longer DFS compared with those classified 
as Pac-Resistant: 3-year DFS 66% (Pac-Sensitive) vs 40% (Pac-
Resistant) (HR 0.44, 95% CI 0.25 to 0.76, logrank p=0.0029) 
(figure 2B). Accuracy of the random forest gene signature in the 
Pac-UFT validation cohort was 0.61, F-measure was 0.71 and 
AUC was 0.75 (95% CI 0.50 to 0.99).

Clinicopathological features of the Pac-Resistant patients in 
Pac-UFT revealed no significant differences when compared 
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Figure 1  Flow chart of sample analysis from SAMIT trial A: In total, 1495 patients were randomised after surgery in the SAMIT trial to four arms 
(UFT alone, S-1 alone, Pac-UFT and Pac-S-1). After assessment of formalin-fixed paraffin embedded blocks (FFPE) for tumour content, RNA was 
extracted and available for 552 samples which were profiled using the NanoString platform. After quality control postprofiling, 499 samples were 
included in the final analysis. (B) Samples from the Pac-S1 arm were selected to train the random forest machine-learning model. Samples were 
trained using a 2-year DFS to define Pac-Sensitive and Pac-Resistant groups. Using 476 genes in the custom-made NanoString panel, a variable 
importance analysis was performed, and the top 19 genes selected. The final model was retrained with these 19 genes to generate a random forest 
gene signature. This signature was then applied on the Pac-UFT arm as an internal validation cohort and the S-1 and UFT arms to test for interaction 
with paclitaxel treatment. The Pac-Ram samples were tested as an external validation cohort. SAMIT, Stomach cancer Adjuvant Multi-Institutional 
group Trial.
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with Pac-Sensitive patients (online supplemental table S4). When 
clinical features of the Pac-UFT cohort were considered, in both 
univariate and multivariate survival (DFS) analysis, depth of 
invasion (pT), lymph node status (pN) and random forest gene 
signature were significant predictors of survival (table 2). After 
adjusting the survival model for depth of invasion and lymph 
node status, the random forest gene signature remained signifi-
cantly associated with survival (HR 0.45, 95% CI 0.26 to 0.80, 
p=0.006).

Validation of the random forest gene signature in an 
independent external cohort
After successful internal validation of the random forest gene 
signature, we tested the signature in an independent external 
cohort (Pac-Ram cohort). In the Pac-Ram cohort, the random 
forest gene signature predicted that patients with Pac-Sensitive 
GC have longer PFS compared with patients with Pac-Resistant 
GC (median PFS 147 days vs 112 days, HR 0.48, 95% CI 0.25 
to 0.91, logrank p=0.022) (figure 2C). In the Pac-Ram cohort, 
F-measure was 0.62, accuracy 0.64 and AUC was 0.88 (95% CI 
0.68 to 1.0). This suggests that the random forest model trained 
on the Pac-S1 cohort identified a robust classifier which was 
able to predict paclitaxel benefit in both, the internal and the 
external validation cohorts. There was no association between 
the random forest gene signature and radiologically measured 
objective response rates in the Pac-Ram cohort.

To study the interaction of the random forest gene signature 
with paclitaxel treatment, we ran the model on the UFT alone 
and S-1 alone arms of the SAMIT study and compared results 
to the Pac-UFT arm. There was no survival difference between 
patients with Pac-Sensitive and Pac-Resistant GC in the UFT or 
S1 arms (HR 0.99, 95% CI 0.55 to 1.83, p=0.99)(supplementary 
figure S4). The test of interaction for the paclitaxel containing 
regimens with random forest gene signature was significant 
(p<0.001). The test for heterogeneity to validate the interaction 
of paclitaxel on DFS was significant (p<0.001). These findings 
suggest that the random-forest gene signature is predictive for 
survival benefit with paclitaxel treatment and is not merely a 
prognostic biomarker.

Transcriptomic characteristics of GC classified by the random 
forest gene signature
To understand the expression profiles of individual genes 
within the random forest gene signature, the 19 selected genes 
were studied in greater detail in the entire SAMIT dataset. 
The 19 genes in the signature include: CD209, TOP3B, BCL2, 
MCM2, RAD9A, IL10, HLA-DMB, MCM10, PTPRC, FANCM, 
ADORA2A, MS4A1, FANCG, CD3G, DSCR6, TBX21, 
ZWILCH, IL17A and FCGR3A. Heatmaps of genes split by 
Pac-Sensitive and Pac-Resistant GC revealed some differences 
in gene-expression profiles, although these are unlikely to 
have led to separate clusters using traditional unsupervised 
hierarchical clustering techniques (online supplemental 
figure 5A). Pairwise comparisons of genes revealed that some 
genes were significantly higher expressed in Pac-Sensitive 
GC compared with Pac-Resistant GC (or vice-versa), while 
others had similar median expression levels between the two 
groups (online supplemental figure 5B). These findings high-
light the importance of considering multigene interactions for 
the generation of a signature, which may be achieved through 
machine-learning pattern recognition.

We tested the random forest gene signature on TCGA STAD 
samples (n=375), and 76% were classified as Pac-Sensitive. 
Of the four TCGA subtypes: chromosomal instable (CIN), 
genome stable (GS), microsatellite instable and Epstein-Barr 
virus associated,28 GS GC were more frequently classified as 
Pac-Resistant than Pac-Sensitive (25% vs 9%), while CIN GC 
were more frequently classified as Pac-Sensitive (64% vs 51%; 
Fisher’s exact p=0.0019) (figure 3A). Mutation counts were 
higher in the Pac-Sensitive group (Wilcoxon p=0.00031) 
(figure  3B). There were no differences in the HER2 status 
between Pac-Sensitive and Pac-Resistant GC (Fisher’s exact 
p=0.68) (figure 3C).

Finally, the association between the Pac-Resistant/Pac-
Sensitive groups and immune-related gene expression profiles 
was explored. The customised NanoString panel used in this 
study included 79 immune-related genes. In the SAMIT samples, 
Pac-Sensitive GC had a higher expression of markers of cytolytic 
T-cells such as CD8A and PRF1 (figure 3D).29 The expression 

Table 1  Patient characteristics of biomarker cohort of SAMIT study

Factors

UFT
(n=124)

S-1
(n=124)

Pac-UFT
(n=123)

Pac-S-1
(n=128)

P valuen % n % n % n %

Age Median (range) 65 (29–80) 65 (38–80) 66 (30–80) 67(37–80) 0.78

Gender Male 87 70 77 62 86 70 93 73 0.31

Female 37 30 47 38 37 30 35 27

Performance status 0 107 86 103 83 101 82 105 82 0.77

1 17 14 21 17 22 18 23 18

Histological type Differentiated 45 36 52 42 49 40 55 43 0.73

Undifferentiated 77 63 70 56 71 58 72 56

Other 1 1 2 2 2 2 1 1

T stage pT1 2 2 4 3 0 0 0 0 0.69

pT2 40 32 38 30 32 26 42 33

pT3 77 62 80 65 83 67 81 64

pT4 5 4 2 2 7 6 4 3

N stage pN0 17 14 25 20 34 28 28 22 0.19

pN1 46 37 51 41 41 33 39 31

pN2 59 47 46 37 46 38 55 43

pN3 2 2 2 2 1 1 5 4

American Joint Committee on Cancer/Union for International Cancer Control (AJCC/UICC) sixth edition.
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Figure 2  Performance of random forest gene signature. (A) Heatmap of NanoString expression profiles from SAMIT samples by treatment arm. 
NanoString gene expression is represented in columns, scaled. Blue to red denotes transcript expression, with blue indicating low gene expression 
and red indicating high gene expression. There is no global difference in gene expression profiles between the four arms. (B) Kaplan-Meier curve 
of disease free survival (DFS) of patients classified by the random forest gene signature as either Pac-Sensitive (blue) or Pac-Resistant (red) in the 
validation Pac-UFT arm. A 3-year DFS 66% (Pac-Sensitive) vs 40% (Pac-Resistant) (HR 0.44, 95% CI 0.25 to 0.76, logrank p=0.0029) (C) Kaplan-Meier 
curve of progression-free survival (PFS) of patients classified by the random forest gene signature as either Pac-Sensitive (blue) or Pac-Resistant (red) 
in the external validation Pac-Ram cohort. Median PFS 147 days vs 112 days, HR 0.48, 95% CI 0.25 to 0.91, logrank p=0.022. SAMIT, Stomach cancer 
Adjuvant Multi-Institutional group Trial.
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of immune checkpoints genes such as CTLA-4, PD-1 and LAG3 
was also higher in Pac-Sensitive GC. Similar associations with 
the expression of immune-related genes were also observed in 
the Pac-Ram and TCGA datasets (figure 3E,F).

DISCUSSION
The 2×2 factorial trial design of the SAMIT study and the rela-
tively large number of collected tumours provided a good exper-
imental setting to search for biomarkers of paclitaxel benefit in 
patients with resectable GC. The SAMIT trial design allowed 
the creation of training and validation cohorts treated in a 
uniform manner with balanced patient and tumour character-
istics between treatment arms. The presence of paclitaxel and 
non-paclitaxel containing treatment arms allowed us to distin-
guish between the predictive and prognostic value of potential 
biomarkers, and to identify treatment interactions specific to 
paclitaxel. Given the limited amount of FFPE tissue collected 
from the trial patients, we chose to create a customised NanoS-
tring panel to investigate the expression of a relatively large 
number of genes to identify biomarkers of paclitaxel benefit. 
The NanoString platform has proven to provide reliable results 
when performed on RNA extracted from FFPE tissue. Previous 
studies have shown good correlation between NanoString and 
RNASeq results in GC.30 31 Based on these data, we used RNA-
seq data from a separate trial of GC patients treated with pacli-
taxel (and ramucirumab) as external validation.

A comprehensive literature review was performed to select the 
probes for the NanoString panel, covering a range of mecha-
nisms of action of paclitaxel and cell death, GC-specific onco-
genesis and other previously proposed predictive markers of 
taxane benefit. We chose a machine-learning model to identify 
a gene signature that was potentially predictive of paclitaxel 
benefit. The random forest method has been used by other 
groups as a reliable machine-learning algorithm for gene classi-
fier creation.32 33 One advantage of the random forest method is 
the ability to incorporate a large number of variables (in this situ-
ation, genes) in the model. Few algorithms can process data with 
a variable size which is much larger than the number of samples 
in the training dataset and continue to demonstrate significant 
predictive performance.24

Recently, a four gene classifier was described to predict benefit 
of adjuvant chemotherapy in GC.34 This classifier was the first 
to suggest that GC patients classified as ‘immune high’ and low-
risk derive no benefit from adjuvant cytotoxic chemotherapy 
after curative D2 gastrectomy. It is interesting to note that the 
gene signature identified in our study includes immune related 

genes such as CD209, a dendritic-cell marker, T-cell surface 
glycoprotein gamma chain CD3G and interleukin genes IL10 
and IL17A.35 36 The Pac-Resistant and Pac-Sensitive GC also 
appeared to have different expression of other immune-related 
genes including immune checkpoints and markers of T-cell cyto-
lytic activity.29 31 Other studies have suggested that patients with 
immune cell-rich colorectal cancers do not benefit from chemo-
therapy.37 Our random forest gene signature included cell-cycle 
checkpoint gene RAD9A and BCL2, a regulator of apoptosis.38 39 
RAD9A is a component of the 9-1-1 DNA clamp, which has 
multiple roles in DNA repair. As Pac-Sensitive tumours had 
higher levels of RAD9A, it could be possible that paclitaxel 
induced DNA damage in the setting of high RAD9A expression 
increases mitotic cell death. RAD9A has also been reported to 
bind and neutralise BCL2, thereby inducing a proapoptotic 
state.40 Targeting the BCL2 pathway has been shown to reverse 
paclitaxel resistance in oesophageal cancer cell lines.41 TOP3B, a 
DNA topoisomerase enzyme included in our gene signature, was 
found to be prognostic when overexpressed in ovarian cancer.42 
It is likely that there are interactions, yet to be fully defined, 
between several genes in these important pathways which subse-
quently lead to sensitivity or resistance to paclitaxel.

An important point of consideration is the similarities and 
differences between the SAMIT trial patients and the external 
Pac-Ram cohort. Both cohorts included GC patients treated 
with paclitaxel. However, in SAMIT, paclitaxel was combined 
with 5FU based chemotherapy, while in the Pac-Ram cohort 
paclitaxel was combined with ramucirumab, an anti-angiogenic 
monoclonal antibody. SAMIT was a study of patients treated 
in the adjuvant setting including earlier stage tumours, while 
Pac-Ram comprised patients with late stage GC treated in the 
metastatic setting after progression on first-line platinum-based 
chemotherapy. While DFS was used to measure survival in the 
SAMIT study, PFS was measured in the Pac-Ram clinical trial. 
Despite these differences, the random forest gene signature was 
able to predict paclitaxel benefit in both cohorts. The supporting 
data from the S-1/UFT arms suggests that the signature is not 
a prognostic biomarker. These findings suggest that this signa-
ture is relatively specific for predicting benefit from paclitaxel 
chemotherapy in GC. Our ability to analyse RNA from only a 
subset of the original trial population is a limitation of this study. 
However, clinicopathological variables and survival were similar 
between our biomarker study cohort and the original cohort. As 
the paclitaxel-containing cohorts in our study were combined 
with various other agents (S-1, UFT and ramucirumab), the 
effects of these agents on the performance of the random forest 

Table 2  Univariate and multivariate survival analysis in Pac-UFT

Factors Univariate Multivariate

N=123 HR (95% CI) P value HR (95% CI) P value

Random forest gene signature
Pac-Sensitive versus
Pac-Resistant

0.44 (0.25 to 0.76) 0.0038 0.42 (0.24 to 0.76) 0.0037

Age 1.00 (0.97 to 1.03) 0.79 0.99 (0.96 to 1.03) 0.70

Gender: Female versus male 0.70 (0.38 to 1.28) 0.25 0.57 (0.30 to 1.09) 0.09

ECOG Performance Status: PS 1 versus PS 0 1∙27 (0.66 to 2.47) 0.47 1.43 (0.70 to 2.91) 0.33

Histology
Undifferentiated/others versus differentiated

1.43 (0.81 to 2.51) 0.22 1.55 (0.85 to 2.81) 0.15

Depth of invasion pT3/4 vs pT1/2 2.48 (1.17 to 5.26) 0.018 2∙43 (1.12 to 5.26) 0.024

Lymph node status pN2/3 vs pN0/1 2.89 (1.69 to 4.94) <0.001 2∙56 (1.47 to 4.48) <0.001

AJCC/UICC sixth edition.
Significant p values (< 0.05) in bold.
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Figure 3  Transcriptomic characteristics of random forest gene signature. (A) Alluvial plot of TCGA STAD samples by gastric cancer (GC) subtype. 
TCGA samples (n=375) were divided into Pac-Sensitive and Pac-Resistant by the random forest gene signature. These groups were correlated with 
TCGA GC subtypes chromosomal instable (CIN), genome stable (GS), microsatellite instable (MSI) and Epstein-Barr virus associated (EBV). There was 
a statistically higher proportion of GS patients in the Pac-Resistant group (Fisher’s exact p=0.0019). (B) Violin plot of mutation count between Pac-
Sensitive and Pac-Resistant TCGA samples. Mutation count was higher in the Pac-Sensitive group (Wilcoxon p=0.00031). (C) Alluvial plot of TCGA 
STAD samples by HER2 status. Samples were correlated with HER2 status, with no significant difference. (D) Volcano plot comparing immune-related 
gene expression between Pac-Sensitive and Pac-Resistant in SAMIT. X-axis: log2 fold change (log2FC) of gene expression between Pac-Sensitive and 
Pac-Resistant. Y-axis: log10 adjusted p values after false discovery rate correction. Genes of interest have been annotated within the plot. Grey dots 
represent genes with similar expression in Pac-Sensitive and Pac-Resistant GC. Blue dots represent genes which are overexpressed in Pac-Sensitive 
GC. Red dots represent genes which are overexpressed in Pac-Resistant GC. (E) Volcano plot of immune-related genes comparing gene expression 
level between Pac-Sensitive and Pac-Resistant in Pac-Ram cohort. (F) Volcano plot of immune-related genes comparing gene expression level 
between Pac-Sensitive and Pac-Resistant in TCGA STAD samples. SAMIT, Stomach cancer Adjuvant Multi-Institutional group Trial; STAD, stomach 
adenocarcinoma; TCGA, The Cancer Genome Atlas.
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gene signature could not be fully determined due to the lack of 
a GC patient cohort treated with paclitaxel alone. The accuracy 
and F-measure in our internal validation cohort was moderate 
(0.61 and 0.71, respectively). The signature, however, was vali-
dated in an external cohort, and further study is required to 
improve these metrics. As a precedent, similar measurements 
have been seen in more robust and validated tests such as Onco-
type Dx in breast cancer, a tool to predict for lack of benefit for 
chemotherapy in hormone receptor positive breast cancer.43 In 
the initial oncotype Dx report performed on National Surgical 
Adjuvant Breast and Bowel Project B-14 and B-20 studies, accu-
racy was 72% and F-measure was 76% (calculated from data 
provided in manuscript), which is similar to our study. Another 
limitation of this study is the post hoc nature of this transla-
tional analysis. A prospective clinical trial would be required to 
confirm the clinical utility of this gene signature.

In conclusion, this study is the first and largest performed to 
identify a gene signature predictive of paclitaxel benefit in GC. 
Given the increasing use of taxanes in GC in the adjuvant and 
perioperative setting, this biomarker has significant potential 
to guide clinicians in identifying patients with GC who might 
benefit from taxane based therapy. Validation of the gene signa-
ture in prospective trials is warranted.

Author affiliations
1Department of Haematology-Oncology, National University Cancer Institute 
Singapore, National University Hospital, Singapore
2Yong Loo Lin School of Medicine, National University of Singapore, Singapore
3Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
4The N.1 Institute for Health, National University of Singapore, Singapore
5Biostatistics Unit, Yong Loo Lin School of Medicine, National University Singapore, 
Singapore
6Department of Surgical Oncology, Gifu University Graduate School of Medicine, 
Gifu, Japan
7Department of Gastric Surgery, National Cancer Center Hospital, Tokyo, Japan
8Kanagawa Cancer Center Research Institute, Yokohama, Japan
9Department of Surgery, Yokohama City University, Yokohama, Japan
10Department of Clinical Biostatistics, Graduate School of Medicine, Kyoto University, 
Kyoto, Japan
11Tokai Central Hospital, Kakamigahara, Japan
12Cancer Science Institute of Singapore, National University of Singapore, Singapore
13Laboratory of Cancer Epigenome, Department of Medical Sciences, National Cancer 
Centre Singapore, Singapore
14InSilico Genomics, Phoenix, Arizona, USA
15Department of Pathology, GROW - School for Oncology and Developmental 
Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
16Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St 
James’s, University of Leeds, Leeds, UK
17Department of Medicine, Division of Hematology-Oncology, Samsung Medical 
Center, Gangnam-gu, Republic of Korea
18Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, 
Japan
19Department of Surgery, Ozawa Hospital, Odawara, Japan
20Genome Institute of Singapore, Singapore
21SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre 
Singapore, Singapore
22Department of Physiology, Yong Loo Lin School of Medicine, National University of 
Singapore, Singapore

Correction notice  This article has been corrected since it published Online First. 
Online supplementary table 1 has been added.

Collaborators  We are deeply grateful to Kazuaki Tanabe (Hiroshima University), 
Michiya Kobayashi (Kochi University), Shigehumi Yoshino (Yamaguchi University), 
Masazumi Takahashi (Yokohama Citizens Hospital), Nobuhiro Takiguchi (Chiba 
Cancer Center), Norio Mitsumori (Tokyo Jikeikai University), Kazumasa Fujitani 
(Osaka Prefectural General Medical Center), Ryoji Fukushima (Teikyo University), 
Isao Noguchi (Shikoku Cancer Center), Yoshihiro Kakechi (Kobe University), Naoki 
Hirabayashi (Hiroshima City Asa Citizens Hospital), Yukihiko Tokunaga(Osaka Kita 
Teishin Hospital), Akinori Takagane (Hakodate Goryokaku Hospital), and Kazuhiro 
Nishikawa (Osaka Medical Center) for providing clinical samples from the SAMIT 
trial.

Contributors  Conceptualisation: RS, NBK, MMH, ADJ, AT, PT. Data curation: RS, TO, 
KY, TY, YM, YR, MM, JG, JS, ST, AL-KT, CCYN, HG, JL and AT. Formal analysis: RS, NBK, 
YHC, JG, ST and MDS. Funding acquisition: RS, TO, AT, JL and PT. Methodology: RS, 
NBK, YHC, ADJ, JG, ST and PT. Project administration: RS, AL-KT, PT. Resources: TO, AT, 
JL and PT. Supervision: TO, HG, AT and PT. Visualisation: RS and NBK. Writing-original 
draft : RS, NBK. Writing-review and editing: YHC, JG, ST, HG and PT. Approval of final 
version of manuscript: all authors.

Funding  This work was supported by the Epidemiological & Clinical Research 
Information Network (ECRIN) and Kanagawa Standard Anti-Cancer Therapy Support 
System (KSATSS), which are non-profit organizations, JSPS KAKENHI Grant Numbers 
842038 and 26461984, the Project Promoting Clinical Trials for Development of 
New Drugs (18lk0201061t0003 and 20lk0201061t0005) from the Japan Agency 
for Medical Research and Development (AMED), and a Grant-in-Aid for Scientific 
Research in Singapore. RS is supported by a National Medical Research Council 
(NMRC) Fellowship (NMRC/Fellowship/0059/2018), Singapore. PT is supported 
by Duke-NUS Medical School and the Genome Institute of Singapore, Agency for 
Science, Technology and Research. PT was also supported by the Cancer Science 
Institute of Singapore, NUS, under the National Research Foundation Singapore 
and the Singapore Ministry of Education under its Research Centres of Excellence 
initiative. This research was supported by the Singapore Ministry of Health’s 
National Medical Research Council under its Open Fund-Large Collaborative Grant 
(“OF-LCG”) (MOH-OFLCG18May-0003). This work was also supported by National 
Medical Research Council grants NR13NMR111OM, and NMRC/STaR/0026/2015.

Disclaimer  The funders of the study had no role in study design, data collection, 
analysis, interpretation, or writing of the manuscript. PT, TO and AT had full access 
to all data in the study and as corresponding authors had final responsibility for the 
decision to submit for publication.

Competing interests  RS: Advisory board: BMS, Merck, Eisai, Bayer, Taiho; 
honoraria for talks: MSD, Eli Lilly, BMS, Roche, Taiho; Travel funding: Roche, Astra 
Zeneca, Taiho, Eisai; Research funding: Paxman Coolers, MSD. These are outside the 
submitted work.TO: Research Funding: Taiho pharmaceutical, Chugai pharmaceutical, 
Ono pharmaceutical, Daiitisankyo pharmaceutical, Nippon Kayaku and Eli Lilly 
Japan K. K. Lecture fees: Nippon Kayaku, Ono pharmaceutical and Bristol-Myers 
Squibb K. K. Speaker Bureau: Taiho pharmaceutical, Chugai pharmaceutical, Ono 
pharmaceutical, Bristol-Myers Squibb K. K and Eli Lilly Japan K. K. These are outside 
the submitted work. TY: Lecture fees from: MSD, ONO, BMS, Taiho, Chugai, Daiichi-
Sankyo, Lilly, Johnson & Johnson, Covidien and Olympus. Personal grant from Lilly. 
These are outside the submitted work. KY: Personal fees from Taiho Pharm and 
Bristol-Myers Squibb, during the conduct of the study; grants and personal fees 
from Asahi Kasei Pharma, Chugai Pharm., Covidien Japan, Daiichi Sankyo, Eisai, Eli 
Lilly Japan, Johnson & Johnson, MerkSerono, MSD, Nippon Kayaku, Novartis, Ono 
Pharm., Otsuka Pharm., Sanofi, Tsumura, Yakult Honsha, Takeda Pharm., grants 
from Abbott, Abbvie, Astellas, Biogen Japan, Celgene, GlaxoSmithKline, KCI, Kyowa 
Kirin, Meiji Seika Pharma, Toray Medical, Koninklijke Philips, personal fees from 
AstraZeneka, Denka, EA Pharma, Olympus, Pfizer, Sanwa Kagaku Kenkyusho, SBI 
Pharma, Teijin Phamra, TERUMO. These are outside the submitted work. YR: Speaker 
Bureau from; Daiichi-Sankyo, Johnson & Johnson, Otsuka, Lilly, Taiho pharmaceutical, 
Bristol-Myers Squibb. Research Funding: Taiho pharmaceutical, Abbott, Asahi Kasei, 
Daiichi-Sankyo, Tsumura & Co., Covidien, Zeria pharmaceutical, Otsuka, EA Pharma, 
Johnson & Johnson. These are outside the submitted work. YM: Lecture fees from 
AstraZeneca, Taiho, Chugai, and Daiichi-Sankyo. Consigned research fund from Toso 
company, Japan. These are outside the submitted work. MM: Research Funding from 
Chugai pharmaceutical, Teijin pharmaceutical, Daiitisankyo pharmaceutical, Takeda 
pharmaceutical, Terumo, Japan Lifelin, Senkod. These are outside the submitted 
work. ST: Lecture fee: Bayer Yakuhin, Amgen Astellas BioPharma K.K. Consultation 
fee: Boehringer Ingelheim. These are outside the submitted work. ADJ: honoraria 
from AstraZeneca, Janssen and MSD, travel funding from Perkin Elmer, and research 
funding from Janssen. These are outside the submitted work. HG: honoraria for 
participation in an expert meeting from MSD. These are outside the submitted work. 
AL-KT: Lecture fees Chugai Pharmaceutical. These are outside the submitted work. 
PT: Travel: Illumina, Research funding: Thermo Fisher, Kyowa Hakko Kirin. These are 
outside the submitted work.

Patient consent for publication  Not required.

Ethics approval  All available samples were used in this translational substudy, 
which was approved by the individual local Institutional Review Boards. The 
translational study analysis was approved by the Domain Specific Review Board 
(DSRB), Singapore (Ethics approval Ref: 2019/00429). The South Korean trial 
protocol was approved by the Institutional Review Board of Samsung Medical Center 
(Seoul, Korea).

Provenance and peer review  Not commissioned; externally peer reviewed.

Data availability statement  Data are available on reasonable request. All data 
relevant to the study are included in the article or uploaded as online supplemental 
information. Contact Corresponding Author: PT: ​gmstanp@​duke-​nus.​edu.​sg for 
further data provision if required.



685Sundar R, et al. Gut 2022;71:676–685. doi:10.1136/gutjnl-2021-324060

Stomach

Supplemental material  This content has been supplied by the author(s). It 
has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have 
been peer-reviewed. Any opinions or recommendations discussed are solely those 
of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and 
responsibility arising from any reliance placed on the content. Where the content 
includes any translated material, BMJ does not warrant the accuracy and reliability 
of the translations (including but not limited to local regulations, clinical guidelines, 
terminology, drug names and drug dosages), and is not responsible for any error 
and/or omissions arising from translation and adaptation or otherwise.

Open access  This is an open access article distributed in accordance with the 
Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which 
permits others to distribute, remix, adapt, build upon this work non-commercially, 
and license their derivative works on different terms, provided the original work is 
properly cited, appropriate credit is given, any changes made indicated, and the use 
is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs
Heike I. Grabsch http://orcid.org/0000-0001-9520-6228
Patrick Tan http://orcid.org/0000-0002-0179-8048

REFERENCES
	 1	 Sundar R, Tan P. Genomic analyses and precision oncology in gastroesophageal 

cancer: forwards or backwards? Cancer Discov 2018;8:14–16.
	 2	 Kang Y-K, Cho H. Perioperative FLOT: new standard for gastric cancer? Lancet 

2019;393:1914–6.
	 3	 Kanagavel D, Fedyanin M, Tryakin A, et al. Second-line treatment of metastatic 

gastric cancer: current options and future directions. World J Gastroenterol 
2015;21:11621–35.

	 4	 Van Cutsem E, Moiseyenko VM, Tjulandin S, et al. Phase III study of docetaxel and 
cisplatin plus fluorouracil compared with cisplatin and fluorouracil as first-line 
therapy for advanced gastric cancer: a report of the V325 Study Group. J Clin Oncol 
2006;24:4991–7.

	 5	 Al-Batran S-E, Homann N, Pauligk C, et al. Perioperative chemotherapy with 
fluorouracil plus leucovorin, oxaliplatin, and docetaxel versus fluorouracil or 
capecitabine plus cisplatin and epirubicin for locally advanced, resectable gastric or 
gastro-oesophageal junction adenocarcinoma (FLOT4): a randomised, phase 2/3 trial. 
Lancet 2019;393:1948–57.

	 6	 Kodera Y, Yoshida K, Kochi M, et al. A randomized phase III study comparing S-1 plus 
docetaxel with S-1 alone as a postoperative adjuvant chemotherapy for curatively 
resected stage III gastric cancer (JACCRO GC-07 trial). Journal of Clinical Oncology 
2018;36:4007.

	 7	 Bajetta E, Floriani I, Di Bartolomeo M, et al. Randomized trial on adjuvant treatment 
with FOLFIRI followed by docetaxel and cisplatin versus 5-fluorouracil and folinic acid 
for radically resected gastric cancer. Ann Oncol 2014;25:1373–8.

	 8	 Yamada Y, Boku N, Mizusawa J, et al. Phase III study comparing triplet chemotherapy 
with S-1 and cisplatin plus docetaxel versus doublet chemotherapy with S-1 and 
cisplatin for advanced gastric cancer (JCOG1013). J Clin Oncol 2018;36:4009.

	 9	 Tan IB, Ivanova T, Lim KH, et al. Intrinsic subtypes of gastric cancer, based on gene 
expression pattern, predict survival and respond differently to chemotherapy. 
Gastroenterology 2011;141:476–85. 85.e1-11.

	10	 Yong WP, Rha SY, Tan IB-H, et al. Real-Time Tumor Gene Expression Profiling to 
Direct Gastric Cancer Chemotherapy: Proof-of-Concept "3G" Trial. Clin Cancer Res 
2018;24:5272–81.

	11	 Sundar R, Ng A, Zouridis H, et al. Dna methylation signature predictive of benefit from 
neoadjuvant chemotherapy in esophageal adenocarcinoma: results from the MRC 
OEO2 phase III trial. JCO 2019;37:43.

	12	 Ivanova T, Zouridis H, Wu Y, et al. Integrated epigenomics identifies BMP4 as a 
modulator of cisplatin sensitivity in gastric cancer. Gut 2013;62:22–33.

	13	 Smyth E, Zhang S, Cunningham D, et al. Pharmacogenetic analysis of the UK MRC 
(medical Research Council) magic trial: association of polymorphisms with toxicity and 
survival in patients treated with perioperative epirubicin, cisplatin, and 5-fluorouracil 
(ECF) chemotherapy. Clin Cancer Res 2017;23:7543–9.

	14	 Tsuburaya A, Yoshida K, Kobayashi M, et al. Sequential paclitaxel followed by tegafur 
and uracil (UFT) or S-1 versus UFT or S-1 monotherapy as adjuvant chemotherapy for 
T4a/b gastric cancer (SAMIT): a phase 3 factorial randomised controlled trial. Lancet 
Oncol 2014;15:886–93.

	15	 Köhne CH, Peters GJ. Uft: mechanism of drug action. Oncology 2000;14:13–18.
	16	 Maehara Y. S-1 in gastric cancer: a comprehensive review. Gastric Cancer 

2003;6(Suppl 1):2–8.
	17	 Weaver BA. How Taxol/paclitaxel kills cancer cells. Mol Biol Cell 2014;25:2677–81.
	18	 Swanton C, Marani M, Pardo O, et al. Regulators of mitotic arrest and ceramide 

metabolism are determinants of sensitivity to paclitaxel and other chemotherapeutic 
drugs. Cancer Cell 2007;11:498–512.

	19	 Hodge JW, Garnett CT, Farsaci B, et al. Chemotherapy-induced immunogenic 
modulation of tumor cells enhances killing by cytotoxic T lymphocytes and is distinct 
from immunogenic cell death. Int J Cancer 2013;133:624–36.

	20	 Kroemer G, Galluzzi L, Kepp O, et al. Immunogenic cell death in cancer therapy. Annu 
Rev Immunol 2013;31:51–72.

	21	 Breiman L. Random forests. Mach Learn 2001;45:5–32.
	22	 Rijsbergen CJV. Information retrieval: Butterworth-Heinemann 1979.
	23	 Forman G, Scholz M. Apples-to-apples in cross-validation studies: pitfalls in classifier 

performance measurement. SIGKDD Explor Newsl 2010;12:49–57.
	24	 Alvarez S, Diaz-Uriarte R, Osorio A. A predictor based on the somatic genomic 

changes of the BRCA1/BRCA2 breast cancer tumors identifies the non-BRCA1/
BRCA2 tumors with BRCA1 promoter hypermethylation. Clin Cancer Res 
2005;11:1146–53.

	25	 Kim ST, Sa JK, Oh SY, et al. Comprehensive molecular characterization of gastric 
cancer patients from phase II second-line ramucirumab plus paclitaxel therapy trial. 
Genome Med 2021;13:11.

	26	 Deng M, Brägelmann J, Kryukov I, et al. FirebrowseR: an R client to the broad 
Institute’s Firehose pipeline. Database 2017;2017. doi:10.1093/database/baw160. 
[Epub ahead of print: 06 Jan 2017].

	27	 Li Z, Chen S, Feng W, et al. A pan-cancer analysis of HER2 index revealed 
transcriptional pattern for precise selection of HER2-targeted therapy. EBioMedicine 
2020;62:103074.

	28	 Cancer Genome Atlas Research Network. Comprehensive molecular characterization 
of gastric adenocarcinoma. Nature 2014;513:202–9.

	29	 Rooney MS, Shukla SA, Wu CJ, et al. Molecular and genetic properties of tumors 
associated with local immune cytolytic activity. Cell 2015;160:48–61.

	30	 Qamra A, Xing M, Padmanabhan N, et al. Epigenomic promoter alterations amplify 
gene isoform and immunogenic diversity in gastric adenocarcinoma. Cancer Discov 
2017;7:630–51.

	31	 Sundar R, Huang KK, Qamra A, et al. Epigenomic promoter alterations predict for 
benefit from immune checkpoint inhibition in metastatic gastric cancer. Ann Oncol 
2019;30:424–30.

	32	 Kursa MB. Robustness of random Forest-based gene selection methods. BMC 
Bioinformatics 2014;15:8.

	33	 Kong Y, Yu T. A deep neural network model using random forest to extract feature 
representation for gene expression data classification. Sci Rep 2018;8:16477.

	34	 Cheong J-H, Yang H-K, Kim H, et al. Predictive test for chemotherapy response 
in resectable gastric cancer: a multi-cohort, retrospective analysis. Lancet Oncol 
2018;19:629–38.

	35	 Liu L, Chen Z, Shi W, et al. Breast cancer survival prediction using seven prognostic 
biomarker genes. Oncol Lett 2019;18:2907–16.

	36	 Wirth JR, Molano I, Ruiz P, et al. Tlr7 agonism accelerates disease and causes a fatal 
myeloproliferative disorder in NZM 2410 lupus mice. Front Immunol 2019;10:3054.

	37	 Angell HK, Bruni D, Barrett JC, et al. The immunoscore: colon cancer and beyond. Clin 
Cancer Res 2020;26:332–9.

	38	 Broustas CG, Hopkins KM, Panigrahi SK, et al. RAD9A promotes metastatic 
phenotypes through transcriptional regulation of anterior gradient 2 (AGR2). 
Carcinogenesis 2019;40:164–72.

	39	 Siddiqui WA, Ahad A, Ahsan H. The mystery of BCL2 family: Bcl-2 proteins and 
apoptosis: an update. Arch Toxicol 2015;89:289–317.

	40	 Komatsu K, Miyashita T, Hang H, et al. Human homologue of S. pombe Rad9 interacts 
with BCL-2/BCL-xL and promotes apoptosis. Nat Cell Biol 2000;2:1–6.

	41	 Shi X, Dou Y, Zhou K, et al. Targeting the Bcl-2 family and P-glycoprotein reverses 
paclitaxel resistance in human esophageal carcinoma cell line. Biomed Pharmacother 
2017;90:897–905.

	42	 Bai Y, Li L-D, Li J, et al. Targeting of topoisomerases for prognosis and drug resistance 
in ovarian cancer. J Ovarian Res 2016;9:35.

	43	 Paik S, Shak S, Tang G, et al. A multigene assay to predict recurrence of tamoxifen-
treated, node-negative breast cancer. N Engl J Med 2004;351:2817–26.

http://creativecommons.org/licenses/by-nc/4.0/
http://orcid.org/0000-0001-9520-6228
http://orcid.org/0000-0002-0179-8048
http://dx.doi.org/10.1158/2159-8290.CD-17-1295
http://dx.doi.org/10.1016/S0140-6736(18)33189-1
http://dx.doi.org/10.3748/wjg.v21.i41.11621
http://dx.doi.org/10.1200/JCO.2006.06.8429
http://dx.doi.org/10.1016/S0140-6736(18)32557-1
http://dx.doi.org/10.1200/JCO.2018.36.15_suppl.4007
http://dx.doi.org/10.1093/annonc/mdu146
http://dx.doi.org/10.1200/JCO.2018.36.15_suppl.4009
http://dx.doi.org/10.1053/j.gastro.2011.04.042
http://dx.doi.org/10.1158/1078-0432.CCR-18-0193
http://dx.doi.org/10.1200/JCO.2019.37.4_suppl.43
http://dx.doi.org/10.1136/gutjnl-2011-301113
http://dx.doi.org/10.1158/1078-0432.CCR-16-3142
http://dx.doi.org/10.1016/S1470-2045(14)70025-7
http://dx.doi.org/10.1016/S1470-2045(14)70025-7
http://www.ncbi.nlm.nih.gov/pubmed/11098484
http://dx.doi.org/10.1007/s10120-003-0232-9
http://dx.doi.org/10.1091/mbc.e14-04-0916
http://dx.doi.org/10.1016/j.ccr.2007.04.011
http://dx.doi.org/10.1002/ijc.28070
http://dx.doi.org/10.1146/annurev-immunol-032712-100008
http://dx.doi.org/10.1146/annurev-immunol-032712-100008
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1186/s13073-021-00826-w
http://dx.doi.org/10.1093/database/baw160
http://dx.doi.org/10.1016/j.ebiom.2020.103074
http://dx.doi.org/10.1038/nature13480
http://dx.doi.org/10.1016/j.cell.2014.12.033
http://dx.doi.org/10.1158/2159-8290.CD-16-1022
http://dx.doi.org/10.1093/annonc/mdy550
http://dx.doi.org/10.1186/1471-2105-15-8
http://dx.doi.org/10.1186/1471-2105-15-8
http://dx.doi.org/10.1038/s41598-018-34833-6
http://dx.doi.org/10.1016/S1470-2045(18)30108-6
http://dx.doi.org/10.3892/ol.2019.10635
http://dx.doi.org/10.3389/fimmu.2019.03054
http://dx.doi.org/10.1158/1078-0432.CCR-18-1851
http://dx.doi.org/10.1158/1078-0432.CCR-18-1851
http://dx.doi.org/10.1093/carcin/bgy131
http://dx.doi.org/10.1007/s00204-014-1448-7
http://dx.doi.org/10.1038/71316
http://dx.doi.org/10.1016/j.biopha.2017.04.043
http://dx.doi.org/10.1186/s13048-016-0244-9
http://dx.doi.org/10.1056/NEJMoa041588

	Machine-­learning model derived gene signature predictive of paclitaxel survival benefit in gastric cancer: results from the randomised phase III SAMIT trial
	Abstract
	Introduction﻿﻿
	Methods
	SAMIT trial
	Surgical sample processing and RNA extraction for biomarker cohort
	NanoString analysis
	Gene signature development using machine-learning models
	Creation of training and validation cohorts for machine learning
	External independent validation South Korean paclitaxel-ramucirumab trial cohort (Pac-Ram)
	The Cancer Genome Atlas analysis
	Statistical analyses

	Results
	SAMIT biomarker cohort characteristics
	Development of a predictive gene signature of paclitaxel benefit using random forest analysis
	Validation of the random forest gene signature in an independent external cohort
	Transcriptomic characteristics of GC classified by the random forest gene signature

	Discussion
	References


