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Big Data promises to advance science through data-driven discovery. However, many

standard lab protocols rely on manual examination, which is not feasible for large-scale

datasets. Meanwhile, automated approaches lack the accuracy of expert examination.

We propose to (1) start with expertly labeled data, (2) amplify labels through web

applications that engage citizen scientists, and (3) train machine learning on amplified

labels, to emulate the experts. Demonstrating this, we developed a system to quality

control brain magnetic resonance images. Expert-labeled data were amplified by citizen

scientists through a simple web interface. A deep learning algorithm was then trained to

predict data quality, based on citizen scientist labels. Deep learning performed as well

as specialized algorithms for quality control (AUC = 0.99). Combining citizen science

and deep learning can generalize and scale expert decision making; this is particularly

important in disciplines where specialized, automated tools do not yet exist.

Keywords: citizen science (CS), deep learning (DL), brain imaging, MRI-magnetic resonance imaging, brain

development

1. INTRODUCTION

Many research fields ranging from astronomy, to genomics, to neuroscience are entering an era
of Big Data. Large and complex datasets promise to address many scientific questions, but they
also present a new set of challenges. For example, over the last few years human neuroscience has
evolved into a Big Data field. In the past, individual groups would each collect their own samples
of data from a relatively small group of individuals. More recently, large data sets collected
from many thousands of individuals are increasingly more common. This transition has been
facilitated through the assembly of large aggregated datasets, containing measurements from
many individuals, and collected through consortium efforts such as the Human Connectome
Project (Glasser et al., 2016). These efforts, and the large datasets that they are assembling, promise
to enhance our understanding of the relationship between brain anatomy, brain activity and
cognition. The field is experiencing a paradigm shift (Fan et al., 2014), where our once established
scientific procedures are morphing as dictated by the new challenges posed by large datasets. We’ve
seen a shift from desktop computers to cyberinfrastructure (Van Horn and Toga, 2013), from small
studies siloed in individual labs to an explosion of data sharing initiatives (Ferguson et al., 2014;
Poldrack and Gorgolewski, 2014), from idiosyncratic data organization and analysis scripts to
standardized file structures and workflows (Gorgolewski et al., 2016, 2017b), and an overall shift
in statistical thinking and computational methods (Fan et al., 2014) that can accommodate large
datasets. But one often overlooked aspect of our protocols in neuroimaging has not yet evolved to
meet the needs of Big Data: expert decision making.
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Specifically, decisions made by scientists with expertise in
neuroanatomy and MRI methods (i.e., neuroimaging experts)
through visual inspection of imaging data cannot be accurately
scaled to large datasets. For example, when inspecting an MRI
image of the brain, there is extensive variation in neuroanatomy
across individuals, and variation in image acquisition and
imaging artifacts; knowing which of these variations are
acceptable vs. abnormal comes with years of training and
experience. Specific research questions require even more
training and domain expertise in a particular method, such as
tracing anatomical regions of interest (ROIs), editing fascicle
models from streamline tractography (Jordan et al., 2017a),
evaluating cross-modality image alignment, and quality control
of images at each stage of image processing. On large datasets,
especially longitudinal multisite consortium studies, these expert
decisions cannot be reliably replicated because the timeframe of
these studies is long, individual experts get fatigued, and training
teams of experts is time consuming, difficult and costly. As
datasets grow to hundreds of thousands of brains it is no longer
feasible to depend on manual interventions.

One solution to this problem is to train machines to
emulate expert decisions. However, there are many cases in
which automated algorithms exist, but expert decision-making
is still required for optimal results. For example, a variety
of image segmentation algorithms have been developed to
replace manual ROI editing, with Freesurfer (Fischl, 2012),
FSL (Patenaude et al., 2011), ANTS (Avants et al., 2011), and
SPM (Ashburner and Friston, 2005) all offering automated
segmentation tools for standard brain structures. But these
algorithms were developed on a specific type of image (T1-
weighted) and on a specific type of brain (those of healthy
controls). Pathological brains, or those of children or the elderly
may violate the assumptions of these algorithms, and their
outputs often still require manual expert editing. Similarly, in
tractography, a set of anatomical ROIs can be used to target
or constrain streamlines to automatically extract fascicles of
interest (Catani and Thiebautdeschotten, 2008; Yeatman et al.,
2012). But again, abnormal brain morphology resulting from
pathology would still require expert editing (Jordan et al.,
2017b). The delineation of retinotopic maps in visual cortex is
another task that has been recently automated (Benson et al.,
2012, 2014), but these procedures are limited to only a few of the
known retinotopic maps and substantial expertise is still required
to delineate the other known maps (Wandell and Winawer,
2011; Winawer and Witthoft, 2017). Another fundamental step
in brain image processing that still requires expert examination
is quality control. There are several automated methods to
quantify image quality, based on MRI physics and the statistical
properties of images, and these methods have been collected
under one umbrella in an algorithm called MRIQC (Esteban
et al., 2017). However, these methods are designed for specific
types ofMR images, and cannot generalize to other types of image
acquisitions, let alone data from other scientific domains. To
address all of these cases, and scale to new, unforeseen challenges,
we need a general-purpose framework that can train machines
to emulate experts for any purpose, allowing scientists to fully
realize the potential of Big Data.

One general solution that is rapidly gaining traction is deep
learning. Specifically, convolutional neural networks (CNNs)
have shown promise in a variety of biomedical image processing
tasks. Modeled loosely on the human visual system, CNNs
can be trained for a variety of image classification and
segmentation tasks using the same architecture. For example,
the U-Net (Ronneberger et al., 2015) which was originally
built for segmentation of neurons in electron microscope
images, has also been adapted to segment macular edema in
optical coherence tomography images (Lee et al., 2017b), to
segment breast and fibroglandular tissue (Dalmış et al., 2017),
and a 3D adaptation was developed to segment the Xenopus
kidney (Çiçek et al., 2016). Transfer learning is another broadly
applicable deep learning technique, where a number of layers
from pretrained network are retrained for a different use case.
This can drastically cut down the training time and labeled
dataset size needed (Ahmed et al., 2008; Pan and Yang, 2010). For
example, the same transfer learning approach was used for brain
MRI tissue segmentation (gray matter, white matter, and CSF)
and for multiple sclerosis lesion segmentation (Van Opbroek
et al., 2015). Yet despite these advances in deep learning, there
is one major constraint to generalizing these methods to new
imaging problems: a large amount of labeled data is still required
to train CNNs. Thus, even with the cutting-edge machine
learningmethods available, researchers seeking to automate these
processes are still confronted with the original problem: how
does a single expert create an annotated dataset that is large
enough to train an algorithm to automate their expertise through
machine learning?

We propose that citizen scientists are a solution. Specifically,
we hypothesize that citizen scientists can learn from, and amplify
expert decisions, to the extent where deep learning approaches
become feasible. Rather than labeling hundreds or thousands of
training images, an expert can employ citizen scientists to help
with this task, and machine learning can identify which citizen
scientists provide expert-quality data. As a proof of concept,
we apply this approach to brain MRI quality control (QC): a
binary classification task where images are labeled “pass” or
“fail” based on image quality. QC is a paradigmatic example
of the problem of scaling expertise, because a large degree of
subjectivity still remains in QC. Each researcher have their own
standards as to which images pass or fail on inspection, and
this variability may have problematic effects on downstream
analyses, especially statistical inference. Effect size estimates
may depend on the input data to a statistical model. Varying
QC criteria will add more uncertainty to these estimates, and
might result in replication failures. For example, in Ducharme
et al. (2016), the authors found that QC had a significant impact
on their estimates of the trajectory of cortical thickness during
development. They concluded that post-processing QC (in the
form of expert visual inspection) is crucial for such studies,
especially due to motion artifacts in younger children. While
this was feasible in their study of 398 subjects, this would not
be possible for larger scale studies like the Adolescent Brain
Cognitive Development (ABCD) study, which aims to collect
data on 10,000 subjects longitudinally (Casey et al., 2018). It is
therefore essential that we develop systems that can accurately
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emulate expert decisions, and that these systems are made openly
available to the scientific community.

To demonstrate how citizen science and deep learning can be
combined to amplify expertise in neuroimaging, we developed a
citizen-science amplification and CNN procedure for the openly
available Healthy Brain Network dataset (HBN; Alexander et al.,
2017). TheHBN initiative aims to collect and publicly release data
on 10,000 children over the next 6 years to facilitate the study
of brain development and mental health through transdiagnostic
research. The rich dataset includes MRI brain scans, EEG and
eye tracking recordings, extensive behavioral testing, genetic
sampling, and voice and actigraphy recordings. In order to
understand the relationship between brain structure (based
on MRI) and behavior (EEG, eye tracking, voice, actigraphy,
behavioral data), or the association between genetics and brain
structure, researchers require high quality MRI data.

In this study, we crowd-amplify image quality ratings and
train a CNN on the first and second data releases of the
HBN (n = 722), which can be used to infer data quality
on future data releases. We also demonstrate how choice of
QC threshold is related to the effect size estimate on the
established association between age and brain tissue volumes
during development (Lebel and Beaulieu, 2011). Finally, we show
that our approach of deep learning trained on a crowd-amplified
dataset matches state-of-the-art software built specifically for
image QC (Esteban et al., 2017). We conclude that this novel
method of crowd-amplification has broad applicability across
scientific domains where manual inspection by experts is still
the gold-standard.

2. RESULTS

2.1. Overview
Our primary goals were to (1) amplify a small, expertly
labeled dataset through citizen science, (2) train a model that
optimally combines citizen scientist ratings to emulate an expert,
(3) train a CNN on the amplified labels, and (4) evaluate its
performance on a validation dataset. Figure 1 shows an overview
of the procedure and provides a summary of our results. At the
outset, a group of neuroimaging experts created a gold-standard
quality control dataset on a small subset of the data (n = 200),
through extensive visual examination of the full 3D volumes
of the data. In parallel, citizen scientists were asked to “pass”
or “fail” two-dimensional axial slices from the full dataset (n
= 722; five slices from each brain) through a web application
called braindr that could be accessed through a desktop, tablet
or mobile phone (https://braindr.us). Amplified labels, that range
from 0 (fail) to 1 (pass), were generated from citizen scientist
ratings. Two different receiver operating characteristic (ROC)
curves were generated to assess the performance of citizen
scientists. The first used simply the averaged ratings for each
brain across the citizen scientists that rated this brain. The
other used the labels that were generated by a classifier that
weights ratings more heavily for citizen scientists who more
closely matched the experts in the subset rated by both (gold-
standard). Next, a neural network was trained to predict the

weighted labels. The AUC for the predicted labels on a left
out dataset was 0.99.

2.2. Aggregating Citizen Scientist Ratings
to Emulate Expert Labels
Citizen scientists were given a brief explanation of how to look at
MRI images, and then saw six examples in the braindr interface
demonstrating images that should pass and fail quality control
based on experts’ ratings. Given that training was very brief (<
1 min) it is no surprise that citizen scientists who rated images
through the braindr web application differed substantially in
terms of how well their ratings matched the experts’ ratings on
the full gold-standard subset. While some provided high-quality
ratings that agree with the experts most of the time, others
displayed inaccurate ratings. In order to capitalize on citizen
scientists to amplify expert ratings to new data, a weighting of
each citizen scientist was learned based on an accurate match
to expert agreement in slices from the gold-standard set. We used
the XGBoost algorithm (Chen and Guestrin, 2016), an ensemble
method that combines a set of weak learners (decision trees) to fit
the gold-standard labels based on a set of features. This algorithm
was chosen because it is able to handle missing data. Each image
was rated 18.9 times on average and the features were the average
rating of the slice image from each citizen scientist. Since some
images were viewed and rated more than once, the image ratings
could vary between 1 (always “pass”) and 0 (always “fail”). We
then used the weights to combine the ratings of the citizen
scientists and predict the left out test set. Figure 2A shows ROC
curves of classification on the left-out test set for different training
set sizes, compared to the ROC curve of a baseline model in
which equal weights were assigned to each citizen scientist. We
see an improvement in the AUC of the XGBoosted labels (0.97)
compared to the AUC of the equi-weighted labels (0.95). Using
the model trained on two-thirds of the gold standard data (n =
670 slices), we extracted the probability scores of the classifier
on all slices (see Figure 2B). The distribution of probability
scores in Figure 2B matches our expectations of the data; a
bimodal distribution with peaks at 0 and 1, reflecting that images
are mostly perceived as “passing” or “failing.” The XGBoost
model also calculates a feature importance score (F). F is the
number of times that a feature (in our case, an individual citizen
scientist) has split the branches of a tree, summed over all boosted
trees. Figure 2C shows the feature importance for each citizen
scientist, and Figure 2D shows the relationship between a citizen
scientist’s importance compared to the number of images they
rated. In general, the more images a citizen scientist rates, the
more important they are to the model. However, there are still
exceptions where a citizen scientist rated many images and their
ratings were incorrect or unreliable, so the model gave them less
weight during aggregation.

2.3. Training Deep Learning to Automate
Image Labeling
Citizen scientists generate a large number of ratings, accurately
amplifying expert ratings but, ideally, we would have a fully
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FIGURE 1 | Overview and results of our procedure: First, the HBN data set was rated by 4 neuroimaging experts to create a gold standard subset of data. Next, the

3D MRI scans were converted into 2D axial brain slices, which were loaded onto braindr (https://braindr.us), a web application to crowdsource the quality ratings (see

Methods). Area under the curve of a the Receiver Operating Characteristic curve (AUC) was calculated for the average citizen scientist quality rating for each slice.

Compared to an expert-labeled test set, this resulted in an AUC of 0.95. In an effort to remove inaccurate citizen scientists, the ratings were aggregated by fitting a

model that weights each citizen scientist contribution to the slice score by how much that individual’s scores match those of the experts. The resulting AUC was 0.97.

Finally, the 2D brain slices together with the weighted citizen scientist ratings were used to train a neural network. In an ROC analysis on left out data, the AUC of

these predictions was 0.99.

automated approach that can be applied to new data as it
becomes available. Thus, we trained a deep learning model to
predict the XGBoosted labels that were based on aggregated
citizen scientist ratings. A VGG16 neural network (Simonyan
and Zisserman, 2014) pretrained on the ImageNet challenge
dataset (Russakovsky et al., 2015) was used: we removed the top
layer of the network, and then trained a final fully-connected
layer followed by a single node output layer. The training of
the final layer was run for 50 epochs and the best model on
the validation set was saved. To estimate the variability of

training, the model was separately trained through 10 different
training courses, each time with a different random initialization
seed. Typically, training and validation loss scores were equal at
around 10 epochs, after which the model usually began to overfit
(training error decreased, while validation error increased, see
Figure 3A). In each of the 10 training courses, we used the model
with the lowest validation error for inference on the held out test
set, and calculated the ROC AUC. AUC may be a problematic
statistic when the test-set is imbalanced (Saito and Rehmsmeier,
2015), but in this case, the test-set is almost perfectly balanced
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FIGURE 2 | Braindr rating aggregation and citizen scientist importance. (A) ROC curves on the test set for various training set sizes (here n denotes the number of

training slices used). The dashed line is the ROC curve of the average citizen scientist ratings for all slices. (B) The distribution of XGBoost probability scores on all

Braindr slices. (C) Feature importance for each anonymized user. (D) Relationship between citizen scientist importance and total number of ratings in the

gold-standard dataset.

(see Methods). Thus, we found that a deep learning network
trained on citizen scientist generated labels was a better match
to expert ratings than citizen scientist generated labels alone:
the deep learning model had an AUC of 0.99 (+/− standard
deviation of 0.12, see Figure 3B).

2.4. Crowd Amplification and Deep
Learning Strategy Performs as Well as a
Specialized QC Algorithm
We validated our generalized approach of crowd-amplification
and deep learning by comparing classification results against
an existing, specialized algorithm for QC of T1 weighted
images, called MRIQC (Esteban et al., 2017). The features
extracted by MRIQC are guided by the physics of MR image
acquisition and by the statistical properties of images. An
XGBoost model was trained on the features extracted by
MRIQC on a training subset of gold-standard images, and
evaluated on a previously unseen test subset. The AUC was
also 0.99, matching the performance of our crowd-trained
deep learning model.

2.5. Braindr-Based Quality Control Has a
Substantial Impact on Effect Size
Estimates
The secondary goal of this study was to investigate how
scaling expertise through citizen science amplification affects
scientific inferences from these data. For this proof of concept,
we studied brain development, which is the primary focus on the
HBN dataset. Lebel and Beaulieu (2011) found that increases
in white matter volume and decreases in gray matter volume
are roughly equal in magnitude, resulting in no overall brain
volume change over development in late childhood. Based on
Figure 2 in the Lebel manuscript (Lebel and Beaulieu, 2011),
we estimate an effect of –4.3 cm3 per year - a decrease in
gray matter volume over the ages measured (see Figure 2 in
the original manuscript; we estimate the high point to be 710
cm3 and the low point to be 580 cm3 with a range of ages
of 5 years to 35 years and hence: (710–580)/(5–35) = –4.3
cm3/year). To reproduce their analysis and assess the effect of
using the CNN-derived quality control estimates, we estimated
gray andwhitematter volume in the subjects that had been scored
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FIGURE 3 | Deep learning training and evaluation on the left out test set. (A) Shows the training and validation loss scores for 10 training runs, each with a different

initialization seed. The training loss tends toward 0 but the validation loss plateaus between 0.05 and 0.07 mean squared error at the 10th epoch. (B) Shows the ROC

curve of the prediction on the test set against the binary classified gold-standard slices, along with the ROC curves computed from previous analysis (the average

citizen scientist rating, and the XGBoosted ratings).

for quality using our algorithm. Figure 4 shows gray matter
volume as a function of age. Two conditions are compared: in
one (Figure 4A) all of the subjects are included, while in the
other only subjects that were passed by the CNN are included
(Figure 4B, blue points). Depending on the threshold chosen,
the effect of gray matter volume over age varies from –2.6
cm3/year (with no threshold) to –5.3 cm3/year (with Braindr
rating > 0.9). Braindr-based quality control has a substantial
impact on effect size estimates of the Results: A threshold
of 0.7 of either Braindr or MRIQC results in an effect size
around −4.3 cm3 per year, replicating the results of Lebel and
Beaulieu (2011), with the caveat that these previous results were
obtained with a different scanner strength (1.5 T) and using
the methods available at that time. A supplemental interactive
version of this figure allows readers to threshold data points
based on QC scores from the predicted labels of the CNN (called
“Braindr ratings”), or on MRIQC XGBoost probabilities (called
“MRIQC ratings”) is available at http://results.braindr.us. Thus,
quality control has a substantial impact on estimates of brain
development and allowing poor quality data into the statistical
model can almost entirely obscure developmental changes in gray
matter volume.

3. DISCUSSION

Wehave developed a system to scale expertise in neuroimaging to
meet the demands of Big Data. The system uses citizen scientists
to amplify an initially-small, expert-labeled dataset. Combined
with deep learning (via CNNs), the system can then accurately
perform image analysis tasks that require expertise, such as
quality control (QC). We have validated our method against
MRIQC, a specialized tool that was designed specifically for
this use case based on knowledge of the physics underlying

the signal generation process in T1-weighted images (Esteban
et al., 2017). Unlike MRIQC, our method is able to generalize
beyond quality control of MR images; any image-based
binary classification task can be loaded onto the Braindr
platform, and crowdsourced via the web. For this use-case,
we demonstrated the importance of scaling QC expertise
by showing how replication of previously established results
depends on a researcher’s decision on data quality. Lebel
and Beaulieu (2011) report changes in gray matter volume
over development and we find that we only replicate these
findings when using a stringent quality control threshold for the
input data.

3.1. The Internet and Web Applications for
Collaboration
The internet and web browser technologies are not only crucial
for scientific communication, but also for collaboration and
distribution of work. This is particularly true in the age of large
consortium efforts aimed at generating high-quality large data
sets. Recent progress in citizen science projects for neuroscience
research has proven to be extremely useful and popular, in
part due to the ubiquity of the web browser. Large-scale
citizen science projects, like EyeWire (Marx, 2013; Kim et al.,
2014), and Mozak (Roskams and Popović, 2016), have enabled
scientists working with high resolution microscopy data to map
neuronal connections at the microscale, with help from over
100,000 citizen scientists. In MR imaging, web-based tools such
as BrainBox (Heuer et al., 2016) and Mindcontrol (Keshavan
et al., 2017) were built to facilitate the collaboration of
neuroimaging experts in image segmentation and quality control.
However, the task of inspecting each slice of a 3D image in
either BrainBox or Mindcontrol takes a long time, and this
complex task tends to lose potential citizen scientists who find
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FIGURE 4 | Impact of quality control on effect size estimates. Results of quality control on the inferred association between gray matter volume and age during

development. (A) Shows the relationship when all data is used in the ordinary least squares (OLS) model. (B) Shows the new OLS model when data is thresholded by

the deep learning model’s predicted braindr rating at 0.7. The effect size nearly doubles when QC scores are taken into account. See results.braindr.us for an

interactive version of this figure.

it too difficult or time consuming. In general, crowdsourcing
is most effective when a project is broken down into short,
simple, well-defined “micro-tasks”, that can be completed in
short bursts of work and are resilient to interruption (Cheng
et al., 2015). In order to simplify the task for citizen scientists,
we developed a web application called braindr, which reduces
the time-consuming task of slice-by-slice 3D inspection to a
quick binary choice made on a 2D slice. While we might worry
that distilling a complex decision into a simple swipe on a
smartphone might add noise, we demonstrated that a model
could be constructed to accurately combine ratings from many
citizen scientists to almost perfectly emulate those obtained
from inspection by experts. Using braindr, citizen scientists
amplified the initial expert-labeled dataset (200 3D images) to
the entire dataset (> 700 3D images, > 3,000 2D slices) in a
few weeks. Because braindr is a lightweight web application,
users could play it at any time and on any device, and this
meant we were able to attract many users. On braindr, each
slice received on average 18.9 ratings, and therefore each 3D
brain (consisting of 5 slices) received on average 100 ratings.
In short, by redesigning the way we interact with our data and
by presenting it in the web browser, we were able to get many
more eyes on our data than would have been possible in a single
research lab.

3.2. Scaling Expertise Through Interactions
Between Experts, Citizen Scientists and
Machine Learning
We found that an interaction between experts, citizen scientists,
and machine learning results in scalable decision-making on
brain MRI images. Recent advances in machine learning have

vastly improved image classification (Krizhevsky et al., 2012),
object detection (Girshick et al., 2014), and segmentation (Long
et al., 2015) through the use of deep convolutional neural
networks. In the biomedical domain, these networks have
been trained to accurately diagnose eye disease (Lee et al.,
2017a), diagnose skin cancer (Esteva et al., 2017), and breast
cancer (Sahiner et al., 1996), to name a few applications. But
these applications require a large and accurately labeled dataset.
This presents an impediment for many scientific disciplines,
where labeled data may be more scarce, or hard to come by,
because it requires labor-intensive procedures. The approach
presented here solves this fundamental bottleneck in the
current application of modern machine learning approaches,
and enables scientists to automate complex tasks that require
substantial expertise.

A surprising finding that emerges from this work is that a
deep learning algorithm can learn to match or even exceed the
aggregated ratings that are used for training. This finding is likely
to reflect the fact that algorithms are more reliable than humans,
and when an algorithm is trained to match human accuracy, it
has the added benefit of perfect reliability. For example, even
an expert might not provide the exact same ratings each time
they see the same image, while an algorithm will. This is in
line with findings from Lee et al. (2017b), showing that the
agreement between an algorithm and any one expert can be
equivalent to agreement between any pair of experts. We have
demonstrated that while an individual citizen scientist may not
provide reliable results, by intelligently combining a crowd with
machine learning, and keeping an expert in the loop to monitor
results, decisions can be accurately scaled to meet the demands
of Big Data.
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3.3. MRI Quality Control and
Morphometrics Over Development
The specific use-case that we focused on pertains to the
importance of quality control in large-scale MRI data
acquisitions. Recently, Ducharme et al. (2016) stressed the
importance of quality control for studies of brain development in
a large cohort of 954 subjects. They estimated cortical thickness
on each point of a cortical surface and fit linear, quadratic
and cubic models of thickness vs. age at each vertex. Quality
control was performed by visual inspection of the reconstructed
cortical surface, and removing data that failed QC from the
analysis. Without stringent quality control, the best fit models
were more complex (quadratic/cubic), and with quality control
the best fit models were linear. They found sex differences only
at the occipital regions, which thinned faster in males. In the
supplemental figure that accompanies Figure 4, we present an
interactive chart where users can similarly explore different
ordinary least squares models (linear or quadratic) and also
split by sex for the relationship between total gray matter
volume, white matter volume, CSF volume, and total brain
volume over age.

We chose to QC raw MRI data in this study, rather than
the processed data because the quality of the raw MRI data
affects the downstream cortical mesh generation, andmany other
computed metrics. A large body of research in automated QC
of T1-weighted images exists, in part because of large open data
sharing initiatives. In 2009, Mortamet et al. (2009) developed a
QC algorithm based on the background of magnitude images of
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset,
and reported a sensitivity and specificity of > 85%. In 2015,
Shehzad et al. (2015) developed the Preprocessed Connectomes
Project Quality Assessment Protocol (PCP-QAP) on the Autism
Brain Imaging Data Exchange (ABIDE) and Consortium for
Reproducibility and Reliability (CoRR) datasets. The PCP-
QAP also included a Python library to easily compute metrics
such as signal to noise ratio, contrast to noise ratio, entropy
focus criterion, foreground-to-background energy ratio, voxel
smoothness, and percentage of artifact voxels. Building on this
work, the MRIQC package from Esteban et al. (2017) includes
a comprehensive set of 64 image quality metrics, from which a
classifier was trained to predict data quality of the ABIDE dataset
for new, unseen sites with 76% accuracy.

Our strategy differed from that of the MRIQC classification
study. In the Esteban 2017 study (Esteban et al., 2017), the
authors labeled images that were “doubtful” in quality as a
“pass” when training and evaluating their classifier. Our MRIQC
classifier was trained and evaluated only on images that our
raters very confidently passed or failed. Because quality control is
subjective, we felt that it was acceptable for a “doubtful” image to
be failed by the classifier. Since our classifier was trained on data
acquired at two sites, and only on images that we were confident
about, our MRIQC classifier achieved near perfect accuracy with
an AUC of 0.99. On the other hand, our braindr CNNwas trained
as a regression (rather than a classification) on the full dataset,
including the “doubtful” images (i.e., those with ratings closer to
0.5), but was still evaluated as a classifier against data we were
confident about. This also achieved near-perfect accuracy with

an AUC of 0.99. Because both the MRIQC and braindr classifiers
perform so well on data we are confident about, we contend that
it is acceptable to let the classifier act as a “tie-breaker” for images
that lie in the middle of the spectrum, for future acquisitions of
the HBN dataset.

Quality control of large consortium datasets, and more
generally, the scaling of expertise in neuroimaging, will
become increasingly important as neuroscience moves toward
data-driven discovery. Interdisciplinary collaboration between
domain experts and computer scientists, and public outreach and
engagement of citizen scientists can help realize the full potential
of Big Data.

3.4. Limitations
One limitation of this method is that there is an interpretability-
to-speed tradeoff. Specialized QC tools were developed over
many years, while this study was performed in a fraction of
that time. Specialized QC tools are far more interpretable; for
example, the coefficient of joint variation (CJV) metric from
MRIQC is sensitive to the presence of head motion. CJV was
one of the most important features of our MRIQC classifier,
implying that our citizen scientists were primarily sensitive to
motion artifacts. This conclusion is difficult to come to when
interpreting the braindr CNN. Because we employed transfer
learning, the features that were extracted were based on the
ImageNet classification task, and it is unclear how these features
related to MRI-specific artifacts. However, interpretability of
deep learning is an ongoing active field of research (Chakraborty
et al., 2017), and we may be able to fit more interpretable models
in the future. There are many different options for machine
learning algorithms that are suitable for this application; here we
chose a classification algorithm (XGBoost) based on its suitability
for use with missing data, and a widely-used neural network
architecture (VGG16) but other use cases are likely to benefit
from other/specialized algorithms.

Compared to previous efforts to train models to predict
quality ratings, such as MRIQC (Esteban et al., 2017), our AUC
scores are very high. There are two main reasons for this. First,
in the Esteban 2017 study (Esteban et al., 2017), the authors
tried to predict the quality of scans from unseen sites, whereas
in our study, we combined data across the two sites from which
data had been made publicly available at the time we conducted
this study. Second, even though our quality ratings on the 3D
dataset were continuous scores (ranging from -5 to 5), we only
evaluated the performance of our models on data that received
an extremely high (4,5) or extremely low score (–4,–5) by the
experts. This is because quality control is very subjective, and
therefore, there is more variability on images that people are
unsure about. An image that was failed with low confidence (–
3 to –1) by one researcher could conceivably be passed with low
confidence by another researcher (1 to 3). Most importantly, our
study had enough data to exclude the images within this range of
relative ambiguity in order to train our XGBoost model on both
the braindr ratings and the MRIQC features. In studies with less
data, such an approach might not be feasible.

Another limitation of this method was that our citizen
scientists were primarily neuroscientists. The braindr application
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was advertised on Twitter (https://twitter.com) by the authors,
whose social networks (on this platform) primarily consisted
of neuroscientists. As the original tweet traveled outside our
social network, we sawmore citizen scientists without experience
looking at brain images on the platform, but the number
of ratings they contributed was not as high as those with
neuroscience experience. We also saw that there was an overall
tendency for all our users to incorrectly pass images. Future
iterations of braindr will include a more informative tutorial
and random checks with known images throughout the game to
make sure our players are well informed and are performing well
throughout the task. Additionally, it will be interesting to explore
the most efficient way to train citizen scientists, particularly for
more naive citizen scientists performing more complex tasks.
This could be implemented by providing continuous feedback
based on expert labels. In this study, we were able to overcome
this limitation because we had enough ratings to train the
XGBoost algorithm to preferentially weight some user’s ratings
over others.

3.5. Future Directions
Citizen science platforms like the Zooniverse (Simpson et al.,
2014) enable researchers to upload tasks and engage over 1
million citizen scientists. We plan to integrate braindr into
a citizen science platform like Zooniverse. This would enable
researchers to upload their own data to braindr, and give them
access to a diverse group of citizen scientists, rather than only
neuroscientists within their social network. We also plan to
reuse the braindr interface for more complicated classification
tasks in brain imaging. An example could be the classification
of ICA components as signal or noise (Griffanti et al., 2017),
or the evaluation of segmentation algorithms. However, a
challenge for the field is to develop centralized repositories
to share both tools and derivatives alongside public datasets.
Incorporating braindr with existing open data initiatives, like
OpenNeuro (Gorgolewski et al., 2017a), or existing neuroimaging
platforms like LORIS (Das et al., 2012) would enable scientists
to directly launch braindr tasks from these platforms, which
would seamlessly incorporate humans in the loop data analysis
in neuroimaging research, and capture the results of this process
in a centralized fashion. More generally, the principles described
here motivate platforms that integrate citizen science with deep
learning for Big Data applications across the sciences.

4. METHODS

4.1. The Healthy Brain Network Dataset
The first two releases of the Healthy Brain Network dataset were
downloaded from http://fcon_1000.projects.nitrc.org/indi/cmi_
healthy_brain_network/sharing_neuro.html. A web application
for brain quality control, called Mindcontrol (Keshavan et al.,
2017) was hosted at https://mindcontrol-hbn.herokuapp.com ,
which enabled users to view and rate 3D MRI images
in the browser. There were 724 T1-weighted images. All
procedures were approved by the University of Washington
Institutional Review Board (IRB). Mindcontrol raters, who were
all neuroimaging researchers with substantial experience in

similar tasks, provided informed consent, including consent
to publicly release these ratings. Mindcontrol raters were asked
to pass or fail images after inspecting the full 3D volume, and
provide a score of their confidence on a 5 point Likert scale,
where 1 was the least confident and 5 was the most confident.
Mindcontrol raters received a point for each new volume they
rated, and a leaderboard on the homepage displayed rater
rankings. The ratings of the top 4 expert raters (including the lead
author) were used to create a gold-standard subset of the data.

4.2. Gold-Standard Selection
The gold-standard subset of the data was created by selecting
images that were confidently passed or confidently failed
(confidence equal or larger than 4) by the 4 expert raters. In order
to measure reliability between expert raters, the ratings of the
second, third, and fourth expert rater were recoded to a scale
of –5 to 5 (where –5 is confidently failed, and 5 is confidently
passed). An ROC analysis was performed against the binary
ratings of the lead author on the commonly rated images, and
the area under the curve (AUC) was computed for each pair. An
average AUC, weighted by the number of commonly rated images
between the pair, was 0.97, showing good agreement between
expert raters. The resulting gold-standard dataset consisted of
200 images. Figure 5 shows example axial slices from the gold-
standard dataset. The gold-standard dataset set contains 100
images that were failed by experts, and 100 images that were
passed by experts.

4.3. Data Preparation
All images were then converted into a set of 2D axial slices using
the NiBabel Python library (Brett et al., 2018) and uploaded
to https://braindr.us. Two of the 724 images were corrupted,
so the total image count was 722. Five slices, separated by
40 slices, were selected from each brain, where the first slice
was one that had over 10,000 non-zero pixels. All slices were
padded to 256 × 256 or 512 × 512 depending on original
image size. One subject (sub-NDARVJ504DAA) had only 4
slices because the last slice did not meet the 10,000 pixel
threshold. The total number of slices uploaded to https://braindr.
us was 3609.

4.4. The Braindr Web Application
The braindr application was written in Javascript using the
Vue.js (https://vuejs.org) framework. Google Firebase (https://
firebase.google.com/) was used for the realtime database. The
axial brain slices were hosted on Amazon S3 and served over
the Amazon CloudFront content delivery network. Figure 6

shows the braindr interface, which presents to the user a 2D
slice. On a touchscreen device (tablet or mobile phone), users
can swipe right to pass or swipe left to fail the image. On a
desktop, a user may click the “pass” or “fail” button or use
the right or left arrow keys to classify the image. The user
receives a point for each rating, unless they rate against the
majority, where the majority is defined only for images with
more than 5 ratings, and where the average rating is below
0.3 or above 0.7. The user receives a notification of the point
they earned (or did not earn) for each image after each swipe.
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FIGURE 5 | Example axial slices from the gold-standard dataset. Passed images show clear contrast between tissue types, and failed images primarily consisted of

those with large motion artifacts. We excluded images that failed because of defacing errors from this analysis.

FIGURE 6 | The braindr web interface: Braindr was hosted at https://braindr.

us. Users may click pass or fail buttons, use arrow keys, or swipe on a

touchscreen device to rate the image. The top right shows the user’s score.

All users electronically signed a consent form as approved
by the University of Washington IRB. Images were initially
served randomly, and then images with fewer ratings were
preferentially served.

4.5. Braindr Data Collection
A total of 261 users submitted over 80,000 ratings, over the course
of amonth.We selected the 25% of the users who rated the largest
numbers of the gold-standard slices. This reduced the dataset to
65 users who submitted 68,314 total ratings, 18,940 of which were
on the 1,000 gold-standard slices. Figure 7 shows the distribution
of average ratings and the distribution of number of ratings per
slice on the gold-standard dataset.

4.6. Rating Aggregation With XGBoost
To aggregate citizen scientist ratings, we weighted citizen
scientists based on how consistent their ratings were with
the gold-standard. We trained an XGBoost classifier (Chen
and Guestrin, 2016) implemented in Python (http://xgboost.
readthedocs.io/en/latest/python/python_intro.html) using
the cross-validation functions from the scikit-learn Python
library (Pedregosa et al., 2011). We used 600 estimators, and
grid searched over a stratified 10-fold cross-validation within
the training set to select the optimal maximum depth (2 vs. 6)
and learning rate (0.01, 0.1). The features of the model were
the citizen scientists and each observation was a slice, with
the entries in the design matrix set to be the average rating
of a specific citizen scientist on a particular slice. We trained
the classifier on splits of various sizes of the data to test the
dependence on training size (see Figure 2A). We used the
model trained with n = 670 to extract the probability scores
of the classifier on all 3609 slices in braindr (see Figure 2B).
While equally weighting each citizen scientist’s ratings results
in a bimodal distribution with a lower peak that is shifted up
from zero (Figure 7A), the distribution of probability scores
in Figure 2B more accurately matches our expectations of the
data; a bimodal distribution with peaks at 0 and 1. Feature
importances were extracted from the model and plotted in
Figure 2C, and plotted against total number of gold-standard
image ratings in Figure 2D.

4.7. Deep Learning to Predict Image QC
Label
Finally, a deep learning model was trained on the brain slices
to predict the XGBoost probability score. All brain slices were
resized to 256 by 256 pixels and converted to 3 color channels
(RGB) to be compatible with the VGG16 input layer. The data
was split into 80%–10%–10% training-validation-test sets. The
data was split such that all slices belonging to the same subject
were grouped together, so that any individual subject could be
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FIGURE 7 | Braindr data distributions. (A) Shows the distribution of average ratings for each slice on the gold-standard slices. (B) Shows the number of ratings per

slice, where on average each slice received 18.9 ratings.

only in either training, validation or test. We loaded the VGG16
network that was pretrained with ImageNet weights (Simonyan
and Zisserman, 2014) implemented in Keras Chollet et al.
(2015), removed the top layer, and ran inference on all the data.
The output of the VGG16 inference was then used to train a
small sequential neural network consisting of a dense layer with
256 nodes and a rectified linear unit activation function (ReLu),
followed by a dropout layer set to drop 50% of the weights to
prevent overfitting, and finally a single node output layer with
sigmoid activation. The training of the final layer was run for
50 epochs and the best model on the validation set across the 50
epochs was saved.We ran this model 10 separate times, each time
with a different random initialization seed, in order to measure
the variability of our ROC AUC on the test set.

4.8. Training the MRIQC Model
MRIQC was run on all images in the HBN dataset. Rather than
using the previously trained MRIQC classifier from Esteban
et al. (2017), the extracted QC features were used to train
another XGBoost classifier to predict gold-standard labels. Two
thirds of the data was used to train the model, where a 2-fold
cross-validation was used to optimize hyper parameters: learning
rate = 0.001, 0.01, 0.1, number of estimators = 200, 600, and
maximum depth = 2,6,8. An ROC analysis was run, and the
computed area under the curve was 0.99.

4.9. Gray Matter Volume vs. Age During
Development
Finally, to explore the relationship between gray matter
volume and age over development as a function of QC
threshold, gray matter volume was computed from running
the Mindboggle software (Klein et al., 2017) on the entire
dataset. Mindboggle combines the image segmentation output
from Freesurfer (Fischl, 2012) with that of ANTS (Avants et al.,

2011) to improve the accuracy of segmentation, labeling and
volume shape features. Extremely low quality scans did not make
it through the entire Mindboggle pipeline, and as a result the
dataset size was reduced to 629 for this part of the analysis. The
final QC score for the brain volumes was computed by taking the
average of the predicted braindr rating from the deep learning
model for all five slices. We ran an ordinary least squares (OLS)
model on gray matter volume vs. age on the data with and
without QC thresholding, where the QC threshold was set at
0.7. Figure 4 shows the result of this analysis: an effect size that
nearly doubled and replicated previous findings when QC was
performed on the data.
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