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Amnestic mild cognitive impairment (aMCI) and sporadic Alzheimer’s disease (AD) are
multifactorial conditions resulting from a complex crosstalk among multiple molecular
and biological processes. The present study investigates the association of variants
localized in genes and miRNAs with aMCI and AD, which may represent susceptibility,
prognostic biomarkers or multi-target treatment options for such conditions. We
included 371 patients (217 aMCI and 154 AD) and 503 healthy controls, which
were genotyped for a panel of 120 single nucleotide polymorphisms (SNPs) and,
subsequently, analyzed by statistical, bioinformatics and machine-learning approaches.
As a result, 21 SNPs were associated with aMCI and 13 SNPs with sporadic AD.
Interestingly, a set of variants shared between aMCI and AD displayed slightly higher
Odd Ratios in AD with respect to aMCI, highlighting a specific risk trajectory linking aMCI
to AD. Some of the associated genes and miRNAs were shown to interact within the
signaling pathways of APP (Amyloid Precursor Protein), ACE2 (Angiotensin Converting
Enzyme 2), miR-155 and PPARG (Peroxisome Proliferator Activated Receptor Gamma),
which are known to contribute to neuroinflammation and neurodegeneration. Overall,
results of this study increase insights concerning the genetic factors contributing to the
neuroinflammatory and neurodegenerative mechanisms underlying aMCI and sporadic
AD. They have to be exploited to develop personalized approaches based on the
individual genetic make-up and multi-target treatments.
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INTRODUCTION

In the last decades, several research efforts have been made to
dissect the complex scenario underlying neurodegeneration, with
a particular attention to mild cognitive impairment (MCI) and
Alzheimer’s disease (AD). In particular, amnestic MCI (aMCI)
is the prodromal stage of AD and is characterized by memory
deficits, often associated with deterioration of other cognitive
abilities (Albert et al., 2011), and with quite intact activities
of daily living. Patients with aMCI have a high risk to rapidly
progress toward AD, whereas patients suffering from non-
amnestic MCI (naMCI) may progress to other forms of dementias
such as Frontotemporal Dementia or Dementia with Lewy Bodies
(Bondi et al., 2017; Tao et al., 2020). Structural/pathological
brain features of AD are neuron loss in the hippocampus
and neocortex/entorhinal cortex, and atrophy of temporal and
parietal cortex (Yacoubian, 2017). Additional neuropathological
hallmarks of AD are the presence of extracellular β-amyloid
(Aβ) plaques and intracellular neurofibrillary tangles (NFTs)
resulting from the deregulation of Amyloid Precursor Protein
(APP) and the increasing of Phosphorylated-Tau (P-Tau) protein,
respectively (Yacoubian, 2017). MCI and AD are preceded
by a long asymptomatic, preclinical, phase that may start as
long as 20 years before the appearance of the first symptoms,
with the occurrence of brain changes, synaptic dysfunction,
synapse loss and amyloid buildup (Yacoubian, 2017; Bottero
and Potashkin, 2019; DeTure and Dickson, 2019). For many
years, the so-called “amyloid hypothesis” provided a view of
AD as a neuron-centric, linear model of disease initiated
by Aβ deposition and followed by a cascade of abnormal
events that, ultimately, led to progressive neurodegeneration
(De Strooper and Karran, 2016; Selkoe and Hardy, 2016).
Although this model represented an important milestone for
investigating potential diagnostic hallmarks and drug targets
for AD, the extensive progress in the field of biomedicine
put in question the linearity of the “amyloid hypothesis” as
the primary causative mechanism of disease (De Strooper and
Karran, 2016; Selkoe and Hardy, 2016). It is nearly apparent
that the neuron-centric “amyloid hypothesis” is probably just
a part of a more compound story, which includes different
cell types interacting together, several genetic determinants
and diverse biological pathways affecting both aging and
neurodegenerative conditions (De Strooper and Karran, 2016;
Tábuas-Pereira et al., 2020). Although the allele epsilon 4 of APOE
(Apolipoprotein E) gene represents the major risk variant for
sporadic AD, the Genome-Wide Association Studies (GWAS)
have identified several genetic variants conferring a small but
significant risk to develop AD and MCI. These variants have
been localized in the proximity of several genes, including
SORL1 (Sortilin Related Receptor 1), BIN1 (Bridging Integrator
1), CR1 (Complement C3b/C4b Receptor 1-Knops Blood Group),
CLU (Clusterin), PICALM (Phosphatidylinositol Binding Clathrin
Assembly Protein), ABCA7 (ATP Binding Cassette Subfamily A
Member 7), MS4A (Membrane Spanning 4-Domains A10)-cluster,
TOMM40 (Translocase Of Outer Mitochondrial Membrane 40),
TREM2 (Triggering Receptor Expressed On Myeloid Cells 2),
ADAM10 (ADAM Metallopeptidase Domain 10) and many others

(Verheijen and Sleegers, 2018; Fan et al., 2019; Sierksma et al.,
2020; Tábuas-Pereira et al., 2020). To date, several biological
pathways (transport and metabolism of lipids, intracellular
vesicular trafficking, immuno-inflammatory response, apoptosis,
synaptic failure, oxidative stress, calcium metabolism, iron
homeostasis, mitochondrial dysfunction) have been proposed as
driver mechanisms of AD and MCI (Verheijen and Sleegers,
2018). However, the extent to which the genetic background
or genomic architecture, the biological pathways other than Aβ

cascade or Tau pathology eventually shapes the risk and the
trajectory of disease in individuals are still under debate. Given
these premises, the present study aimed at investigating the
association of variants localized within genes and miRNAs that
could enhance the knowledge of the genetic factors contributing
to the susceptibility and pathophysiology of aMCI and AD.

MATERIALS AND METHODS

Selection of Genetic Variants
The study was performed utilizing a panel of 120 variants
available from two previous studies (Strafella et al., 2021a,b)
conducted on other complex disorders, which are known
to share some disease mechanisms with MCI and AD. The
genetic variants of interest have been selected in relation
to their location within or nearby genes primarily involved
in cellular homeostasis, inflammation, immune response,
signal transduction, neuronal development and functioning,
synaptogenesis as well as genes known to be involved in AD, MCI
and other complex diseases characterized by neurodegeneration
(namely, Parkinson’s Disease and Multiple Sclerosis). A detailed
description of the methods utilized for selecting the variants
of interest is available within the referenced paper and its
Supplementary Material (Strafella et al., 2021a).

The existence of Linkage Disequilibrium (LD) patterns among
variants located on the same chromosomes was evaluated in
European samples derived from 1,000 Genomes database. LD
analysis was performed through the LDmatrix tool of LDlink
software (Machiela and Chanock, 2015), obtaining a heatmap
matrix representing the LD patterns among the variants for
each chromosome. Moreover, D’ and R2 values have been
obtained for each pairwise LD, as well. Considering the variants
located in chromosome 1, high LD scores were obtained for
rs2300747-rs1335532; rs1772159-rs823137; rs786843-rs1505067.
On chromosome 7, LD was detected for rs2280714-rs10954213.
On chromosome 8, high LD was reported for rs9331896-
rs11136000. Concerning chromosome 10, rs12722489-rs2075650
revealed total LD. On chromosome 20, rs2248359-rs2248137
revealed high LD. Finally, the rs1137070-rs2072743 variants
located on chromosome X reported high LD value.

Study Subjects
The study cohort involved 371 Italian unrelated patients recruited
from the Outpatient Memory Clinic of the Laboratory of
Neuropsychiatry of IRCCS Santa Lucia Foundation in Rome
(Italy) in the time range included from 2010 to 2021. The
patients’ cohort consisted of 154 patients with sporadic AD
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and 217 patients with aMCI. The sample size of both cohorts
were also calculated by the one-sample proportion test in order
to check if they were enough to find even the less common
variants and reduce the possible biases given by low sample
size. To this purpose two one-sample proportions test with
continuity correction were computed to obtain a 95% Confidence
Interval (CI) estimate of population proportion and calculate the
sample size. Every CI was calculated using the point estimate
of the Minor Allele Frequency (MAF) of the SNP showing the
lowest frequency distribution. The expected frequency of the
European population was retrieved using Ensembl database. At
95% confidence level, the true MAF frequency of the less common
variant (rs11218343) was expected to lie between 0.03 and 0.08,
with a Margin of Error (ME) of 0.03 for AD and between 0.03
and 0.07, with a Margin of Error (ME) of 0.02 for MCI. Given
these results, the minimum sample size required for the present
study was 138 subjects for AD and 130 for MCI (considering a
95%CI and the calculated ME), showing thereby that the size of
both patient’s cohorts were appropriate for further processing.

Diagnosis of aMCI was made according to established criteria
by trained neurologists who interviewed patients and next-ok-
kin (Petersen and Negash, 2008; Petersen et al., 2014). Inclusion
criteria for subjects in the aMCI group were the following: (1)
subjective memory impairment corroborated by an assistant and
confirmed by a score below the normality cut-off on one episodic
memory test of the neuropsychological screening battery; (2)
lack of fulfillment of NIH-NIA (National Institutes of Health-
National Institute on Aging) criteria for AD (McKhann et al.,
2011); (3) absence or very mild impact of the memory deficit on
the activities of daily living, as confirmed by a normal score on
IADL (Instrumental activities daily living) and by a total CDR
(Clinical Dementia Rating) score = 0.5, consistent with a minimal
change in the patient’s habits; (4) lack of any evidence indicative
of neurological or systemic disorders able to induce memory
deficits, as confirmed by non-pathological findings for thyroid
functioning, vitamin B12, folic acid levels and internal medicine
and neurological examination. MR (Magnetic Resonance) brain
imaging was also negative for focal lesions (minimal diffuse
changes or minimal lacunar lesions of white matter were allowed)
as computed according to the semi-automated method recently
published by our group (Spalletta et al., 2020). These criteria were
used by the staff physicians to produce a diagnosis of MCI. To

identify a homogenous group of MCI patients, and reduce the
possibility of including a heterogeneous syndrome with non-AD
related etiologies, MCI patients with Major Depressive Disorder
were excluded if meaningful clinical improvement in cognition
(defined as no longer fulfilling MCI criteria) accompanying
improvement in depression was observed within 6 months of
antidepressant treatment initiation. Finally, a thorough clinical
examination was used to exclude patients with cognitive deficits
secondary to underlying somatic disorders such as unbalanced
diabetes, heart disease, or other major medical illnesses that could
cause cognitive impairment.

Patients with AD met the clinical criteria for Alzheimer’s
dementia established by the National Institute on Aging and
the Alzheimer’s Association (McKhann et al., 2011). Their
medical history, neurological examination, brain imaging and
laboratory tests confirmed that the dementia symptoms were
indicative of sporadic AD.

The detailed patients’ characteristics are summarized in
Table 1. In patients with positive family history for AD,
the presence of known pathogenic mutations associated with
monogenic forms of AD was excluded. The research was
approved by the Ethical committee (CE/PROG.650 approved
on 01/03/2018) of IRCCS Santa Lucia Foundation Hospital
of Rome and was performed according to the Declaration
of Helsinki. Written informed consent was obtained for all
patients. As reference group, 503 samples representative of
the European general population were retrieved from 1,000
Genomes databases.

DNA Extraction and Quantification
Genomic DNA was extracted from 200–400 µL of whole
blood with MagPurix Blood DNA Extraction Kit and MagPurix
Automatic Extraction System (Resnova, Italy) according to
the manufacturer’s instructions. The concentration and quality
of the extracted DNA have been assessed by DeNovix
Spectrophotometer (Resnova, Italy). In particular, DNA samples
reported a concentration range of 50–150 ng/µL and A260/230
and A260/280 ratios included between 1.7 and 1.9.

Genotyping Analysis
Firstly, the APOE genotype was assessed in the patient’s cohort.
To this purpose, Real-Time PCR and Taqman Genotyping

TABLE 1 | Characteristics of patients with aMCI and sporadic AD.

Subjects Gender
(F:M)

Age Scholarity (years) Age of
Onset

MMSE IADL ADL NPI Familiarity:
neurological
diseases (%)

Familiarity:
psychiatric

diseases (%)

aMCI
(N = 217)

52:48 70.74 ± 7.74 10.29 ± 4.36 68.86
± 9.71

27.45
± 1.96

7.59
± 2.69

6.29
± 0.82

11.20
± 8.86

37.8 10.4

AD
(N = 154)

66:34 74.9 ± 7.55 8.44 ± 4.38 71.78
± 7.65

21.20
± 3.94

13.95
± 5.73

8.50
± 2.95

21.99
± 13.36

34.9 16.7

Detailed information about the patients recruited for the study are summarized.
Mean ± Standard Deviation (SD) are shown for all the features except for familiarity, which has been reported as percentage in the cohort.
The overall cognitive functions were measured by Mini-Mental State Examination (MMSE).
Patient’s functional abilities in daily living were measured by Activities of Daily Living (ADL) and Instrumental Activities of Daily Living (IADL).
Psychopathology-related and behavioral symptoms were measured by means of Neuropsychiatric Inventory (NPI) scale.
aMCI, amnestic Mild Cognitive Impairment; AD, Alzheimer’s disease.
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assay was utilized to screen the patients for the rs7412 (C/T)
and rs429358 (T/C) polymorphisms, the haplotype of which
determine the APOE genotype. In particular, the possible
APOE genotypes (ε1, ε2, ε3 or ε4) were classified according to
the following allele combinations (ε1: rs7412_T/rs429358_C;
ε2: rs7412_T/rs429358_T; ε3: rs7412_C/rs429358_T; ε4:
rs7412_C/rs429358_C).

Successively, the DNA samples were subjected to a massive
genotyping performed by OpenArray Real-Time PCR technology
on Quant Studio 12K Flex Real Time PCR System (Thermo
Fisher Scientific, CA, United States). Open Array technology
employs TaqMan OpenArray plates with 3,072 through-holes,
in which the Taqman probes (Thermo Fisher Scientific, CA,
United States) are spotted. The customized panel of 120 assays
designed for the selected variants enabled the simultaneous
genotyping of 24 DNA samples per plate. For each sample,
30–150 ng of extracted DNA have been re-suspended in 3 µL
of pure distilled water and manually loaded into 384 well-
plates together with 3 µL of TaqMan OpenArray Genotyping
Master Mix according to manufacturer’s instructions. Negative
controls were obtained by combining water and Master Mix
in a 1:1 ratio. The obtained mix have been automatically
transferred on the TaqMan OpenArray plates through the
QuantStudio 12K Flex Accufill System. The loaded plates have
then been inserted into the QuantStudio 12K Flex Real Time
PCR system (Thermo Fisher Scientific, CA, United States) to
perform the Real-Time PCR run. Results have been analyzed
by the Taqman Genotyper Software (Thermo Fisher Scientific,
CA, United States) that enabled to perform the genotypes calling
and the quality control. In particular, cluster normalization
was performed with default parameters to normalize run-to-
run variations in cluster positions caused by differences in
reagent lots and experimental conditions. After normalization,
the call rate (defined as the percentage of successful calls)
was evaluated for each SNP considering a cut-off of 90%.
Therefore, the SNP assays that failed to reach this threshold
were excluded from further analyses. The removed variants were
rs45596840, rs6811520, rs786843, rs20417, rs17174870, rs356219
and rs2672603 for aMCI cohort; and rs786843, rs4648356,
rs45596840, rs6811520, rs20417, rs356219, rs17174870, rs6964,
rs2925980, rs2672603 for AD group.

Statistical Analysis
All the statistical analyses were performed with R software (v.
4.0.3) and packages (R Core Team, 2020). Hardy-Weinberg
Equilibrium (HWE) for the study cohort was tested by means
of two sided Fisher’s Exact test at each locus by comparing
the observed genotype frequencies with those expected under
HWE. The resulting data were considered in HWE with p-value
(p) > 0.05. Two association studies implementing a case-control
design (AD vs. CTR; aMCI vs. CTR) were conducted to assess the
differences between allele and genotype frequencies. Genotype
data were analyzed using multiple Two-sided Fisher’s Exact Tests
and alleles and genotypes Odds Ratio (OR), with estimation
of 95% confidence intervals. The significance threshold was
set at p < 0.05 and the obtained p were adjusted for False
Discovery Rate (FDR) by calculating the q-value (q) and setting

the significance threshold at q < 0.05 (Storey et al., 2021). In the
present study, only significant data passing the q threshold were
considered and subjected to further statistical and bioinformatic
analysis. Concerning the assessment of APOE genotype, patients
and controls were stratified in APOE-ε4 carriers and non-carriers,
in order to test the ability of this genotype to discriminate AD
and aMCI cases vs. the reference group. To this purpose, r:vcd
package (v.1.4–8) was utilized to test the classification model.

LD patterns among the associated variants were evaluated
based on the location within the same chromosome. The LD and
haplotype analyses were performed on Haploview 4.2 (Barrett
et al., 2005) with default parameters, and D’ and R2 scores were
obtained for each pairwise LD. The SNP showing significant
differences in the allelic frequency distributions between cases
(AD or MCI) and reference samples (CTR) (namely AD/CTR and
aMCI/CTR) were used as input data for two Machine Learning
(ML) classifiers, computing the evaluation metrics [namely, Area
Under the Curve of the Receiver Operating Characteristic (AUC-
ROC), accuracy, sensitivity, and specificity] both on the cross-
validation and the test set.

For the AD/CTR and aMCI/CTR classifiers, AD and aMCI
subjects with more than 40% of missing values in the dataset were
removed while the remaining missing values were imputed using
a Linear Discriminant Analysis (LDA) approach in the MICE
(Multivariate Imputation by Chained Equation) package (Zhang,
2016). The data were split into train and test sets and fed to a set of
13 ML classifiers with 5 different resampling strategies pipelines.
The set of models included Logistic Regression, Bayesian
Generalized Linear Model (BGLM), Elastic Net, LogitBoost,
Logic Regression, Support Vector Machine with linear and
radial kernel, Binary Discriminant Analysis, Naive Bayes,
Classification Tree, Random Forest, Bagged CART (Classification
And Regression Tree), Stochastic Gradient Boosting (GBM).
Resampling strategies included none, up-sampling, down-
sampling from Caret package (v. 6.0–86) (Kuhn, 2015), ROSE
(Random Over-Sampling Examples, v. 0.0–3) (Lunardon et al.,
2014) and Smote in DMwR package (v. 0.4.1) (Chawla et al.,
2002). For AD/CTR classifier, a BGLM trained on up-sampled
data during k-fold cross-validation (k = 5, folds = 10) was selected
as the final model based on the evaluation metrics computed on
the independent test set. For the MCI/CTR classifier, a Random
Forest model trained on down-sampled data during the repeated
k-fold cross-validation (k = 5, folds = 10) was selected as the
final model based on the evaluation metrics computed on the
independent test set. In addition, variable importance measure
from Random forest were also obtained, to select the most
relevant predictive variables for MCI risk.

Moreover, the ORs of the SNPs associated with both aMCI and
AD have been tested with a one-sample proportion test to assess
if the probability of observing lower ORs in aMCI compared to
AD was different from chance.

Bioinformatic Analysis
Bioinformatic analysis investigated the possible interaction
among the genes and miRNAs harboring the associated
variants in the context of biological pathways relevant to the
physiopathology of aMCI and AD conditions. Considering that
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some associated variants were located within miRNA genes,
the TargetScanHuman (Agarwal et al., 2015) and miRPathDB
(Kehl et al., 2020) tools were utilized to identify which of
the associated genes were targeted by the miRNAs of interest
and link them with specific biological pathways involved
in MCI and AD. Furthermore, Ingenuity Pathway Analysis
(IPA) software (Qiagen, CA, United States) was utilized to
investigate interactions among genes, miRNAs and pathways
characterizing the complex biological matrix underlying MCI
and AD pathophysiology. IPA is an all-in-one web-based
software application that allow the analysis and integration of
different kinds of genetic data, facilitating their interpretation,
the identification of specific targets or candidate biomarkers and
placing them in the context of larger biological or chemical
systems. The software is backed by the Ingenuity Knowledge
Base, which consists of highly structured, detail-rich biological
and chemical findings. In general, all the results generated by
IPA software are referred as significant on the base of the
significance enrichment score fixed at p < 0.05 that is calculated
by Fisher’s Exact Test. In particular, Upstream Analyses, Disease
and Functions and Path Designer IPA tools were employed in
this study. The Upstream Analyses were utilized to identify the
candidate genes taking part into signaling pathways specifically
involved in biological pathways relevant to AD and/or MCI. The
Disease and Functions tool was employed to categorize the genes
associated with AD and MCI into specific pathophysiological
pathways, functions or diseases. In this case, literature data were
coupled with results retrieved from Disease and Function tool,
in order to provide a more comprehensive visualization of the
relationship among the associated genes, cellular and molecular
pathways and diseases of interest. To this purpose, the Path
Designer tool was exploited to depict the interaction among
genes, miRNAs and their related targets.

RESULTS

APOE Assessment and Association
Analysis
The assessment analysis of APOE alleles (ε1, ε2, ε3 or ε4), revealed
the presence of different frequency distributions among sporadic
AD cases, aMCI and control subjects. As expected, ε1 was not
found in all cohorts. In AD patients, the APOE alleles presented
the following frequency distributions ε2: 1.5%, ε3: 75.5%, ε4: 23%,
whereas in aMCI cases, the frequencies of APOE alleles (ε2: 6.4%,
ε3: 80.1%, ε4: 13.5%) resembled those ones of controls (ε2: 8%, ε3:
78%, ε4: 14%). Supporting these results, the classification model
performed by the r:vcd package revealed that APOE-ε4 genotype
was able to significantly discriminate AD cases from controls
(p = 6.00 × 10−4) but could not distinguish aMCI cases from
controls (p = 0.64).

Statistical Association Analysis
The statistical association analysis reported 21 SNPs and 13 SNPs
associated with aMCI and sporadic AD, respectively. Tables 2, 3
report the association results of the SNPs, which passed the fixed p
and q thresholds and were thereby considered for further analysis.

In particular, the association analysis revealed a set of variants
shared between aMCI and AD (Figure 1A), which displayed
slightly higher ORs in AD cohort with respect to aMCI group
(Figure 1B). This data was found to be statistically significant
(p < 1.00 × 10−3) according to the one sample proportion
test, suggesting that aMCI patients carrying these shared variants
could be more susceptible to develop AD.

The variants associated with AD and aMCI appeared to be
scattered throughout several chromosomal loci. Given this result,
we evaluated the LD patterns for the SNPs located on the same
chromosome in order to search for different LD patterns between
cases and control samples, which may affect the susceptibility to
AD and aMCI. The LD analysis did not report any significant
difference between LD patterns observed in cases and control
subjects, meaning that they represent independent association
signals for AD and aMCI risk.

Classification of Predictive Variables for
Amnestic Mild Cognitive Impairment and
Alzheimer’s Disease Susceptibility by
Machine Learning Approaches
Several machine-learning approaches have been tested in
order to find the most suitable one able to identify relevant
predictors of aMCI and AD risk, considering the associated
SNPs, APOE genotype and patient’s characteristics as candidate
variables. For the aMCI cases, random forest resulted to be
the most appropriate over 65 tested models. The variable
importance measures obtained from random forest highlighted
rs2910164 (MIR146A, MicroRNA 146a), rs9891119 (STAT3,
Signal Transducer And Activator Of Transcription 3), rs3745453
(ZSWIM4, Zinc Finger SWIM-Type Containing 4), rs1800795
(IL6, Interleukin 6), rs11614913 (MIR196A2, MicroRNA 196a2),
rs1077667 (TNFSF14, TNF Superfamily Member 14), rs10466829
(CLECL1, C-Type Lectin Like 1), rs35349669 (INPP5D, Inositol
Polyphosphate-5-Phosphatase D), rs2300747 (CD58, CD58
Molecule), rs6897932 (IL7R, Interleukin 7 Receptor), rs1250550
(ZMIZ1, Zinc Finger MIZ-Type Containing 1), rs3746444
(MIR499A, MicroRNA 499a) and male sex, as the most relevant
predictors for aMCI risk, showing a variable importance
score > 60 (Figure 2). The assessment of quality parameters
revealed that this model showed an AUC = 0.71, with a 0.74 of
sensitivity and 0.68 of specificity. Concerning AD cases, Bayesian
Generalized Linear Model showed to be the most performant
model to assess the most predictive variables for AD risk over
52 tested models. In particular, rs1800795 (IL6), rs62182086
(PNKD, PNKD Metallo-Beta-Lactamase Domain Containing),
rs11218343 (SORL1), rs3745453 (ZSWIM4), rs1491942 (LRRK2,
Leucine Rich Repeat Kinase 2) and female sex appeared as the
most significant variables for predicting AD risk (Table 4). As
quality parameters, an AUC = 0.74, a sensitivity = 0.80 and a
specificity = 0.69 were reported for this model.

Bioinformatic Analysis
The association analysis put in evidence common and shared
genes associated with aMCI and AD (Figure 1), consistent with
the existence of a link between these two conditions. The “Disease
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TABLE 2 | Genetic variants significantly associated with aMCI.

SNP
(Gene)

Variant type Allele count in cases
(Frequency)

Allele count in controls
(Frequency)

p-value q-value OR (95%CI)

rs1800795
(IL6)

Intron C: 118 (0.276)
G: 310 (0.724)

C: 418 (0.416)
G: 588 (0.584)

5.06 × 10−7 8.08 × 10−6 G = 1.87
(1.46–2.39)

rs1077667
(TNFSF14)

Intron C: 372 (0.873)
T: 54 (0.127)

C: 776 (0.771)
T: 230 (0.229)

6.39 × 10−6 8.76 × 10−5 C = 2.04
(1.48–2.82)

rs9891119
(STAT3)

Intron A: 311 (0.748)
C: 105 (0.252)

A: 637 (0.633)
C: 369 (0.367)

2.59 × 10−5 3.06 × 10−4 A = 1.72
(1.33–2.22)

rs2248359
(CYP24A1)

Regulatory region C: 203 (0.472)
T: 227 (0.528)

C: 597 (0.593)
T: 409 (0.407)

2.87 × 10−5 3.06 × 10−4 T = 1.63
(1.29–2.06)

rs2300747
(CD58)

Intron A: 380 (0.927)
G: 30 (0.073)

A: 863 (0.858)
G: 143 (0.142)

2.29 × 10−4 2.20 × 10−3 A = 2.10
(1.39–2.16)

rs12722489
(IL2RA)

Intron C: 399 (0.924)
T: 33 (0.076)

C: 863 (0.858)
T: 143 (0.142)

4.18 × 10−4 3.37 × 10−3 C = 2.00
(1.35–2.98)

rs3734050
(FAT2)

Intron C: 408 (0.949)
T: 22 (0.051)

C: 897 (0.892)
T: 109 (0.108)

4.24 × 10−4 3.37 × 10−3 C = 2.25
(1.40–3.62)

rs11218343
(SORL1)

Intron T: 404 (1.000)
C: 0 (0.000)

T: 963 (0.957)
C: 43 (0.043)

4.76 × 10−7 8.08 × 10−6 T = na

rs729022
(SYT11)

3′UTR C: 104 (0.245)
T: 320 (0.755)

C: 341 (0.339)
T: 665 (0.661)

4.57 × 10−4 3.37 × 10−3 T = 1.58
(1.22–2.04)

rs2283792
(MAPK1)

Intron T: 164 (0.380)
G: 268 (0.620)

T: 483 (0.480)
G: 523 (0.520)

5.15 × 10−4 3.53 × 10−3 G = 1.51
(1.20–1.90)

rs2910164
(MIR146A)

Mature miRNA C: 136 (0.315)
G: 296 (0.685)

C: 231 (0.230)
G: 775 (0.770)

9.51 × 10−4 6.08 × 10−3 G = 1.54
(1.19–1.99)

rs35349669
(INPP5D)

Intron C: 272 (0.633)
T: 158 (0.367)

C: 543 (0.540)
T: 463 (0.460)

1.13 × 10−3 6.80 × 10−3 C = 1.47
(1.16–1.85)

rs2248137
(CYP24A1)

Intron C: 212 (0.505)
G: 208 (0.495)

C: 599 (0.595)
G: 407 (0.405)

1.87 × 10−3 1.05 × 10−2 G = 1.44
(1.14–1.83)

rs1505067
(SEMA5A)

3′UTR C: 195 (0.458)
T: 231 (0.542)

C: 374 (0.372)
T: 632 (0.628)

2.59 × 10−3 1.38 × 10−2 T = 1.42
(1.12–1.80)

rs3746444
(MIR499A)

Mature miRNA A: 314 (0.737)
G: 112 (0.263)

A: 811 (0.806)
G: 195 (0.194)

4.77 × 10−3 2.26 × 10−2 G = 1.48
(1.12–1.95)

rs6897932
(IL7R)

Missense C: 342 (0.799)
T: 86 (0.201)

C: 733 (0.729)
T: 273 (0.271)

5.10 × 10−3 2.26 × 10−2 C = 1.48
(1.12–1.95)

rs1250550
(ZMIZ1)

Intron C: 327 (0.775)
A: 95 (0.225)

C: 706 (0.702)
A: 300 (0.298)

5.26 × 10−3 2.26 × 10−2 C = 1.46
(1.12–1.91)

rs11614913
(MIR196A2)

Mature miRNA C: 278 (0.668)
T: 138 (0.332)

C: 593 (0.589)
T: 413 (0.411)

5.90 × 10−3 2.36 × 10−2 C = 1.40
(1.10–1.78)

rs10466829
(CLECL1)

Intron G: 185 (0.434)
A: 241 (0.566)

G: 515 (0.512)
A: 491 (0.488)

7.81 × 10−3 2.99 × 10−2 A = 1.37
(1.08–1.73)

rs3745453
(ZSWIM4)

3′UTR A: 303 (0.750)
G: 101 (0.250)

A: 683 (0.679)
G: 323 (0.321)

8.48 × 10−3 3.13 × 10−2 A = 1.42
(1.09–1.84)

rs62182086
(PNKD)

Intron A: 384 (0.910)
G: 38 (0.090)

A: 866 (0.861)
G: 140 (0.139)

1.07 × 10−2 3.68 × 10−2 A = 1.63
(1.12–2.39)

OR, odd ratio; CI, confidence interval.

and Function” analysis allowed gathering the genes into specific
pathways and visualize them in the context of pleiotropic cellular
and molecular functions on the one hand, and of neurological
functions and disorders, on the other hand. As a result, the aMCI-
associated genes were primarily implicated into the regulation
of pleiotropic biological pathways that affect the maintenance of
cellular homeostasis and the response to aging and exogenous
stress, although they were also linked to neuroinflammation,
neuron wiring mechanisms, cerebral disorders and progressive
neurological disorders (Figure 3). As for AD-associated genes,
they were associated with cellular/molecular functions and
disease conditions that are more specific to the neurological area

(Figure 4). In fact, specific association with diseases mediated
by neurodegeneration (i.e., Alzheimer’s disease, Movement
disorders, Ataxia, disorders of basal ganglia) and functions
involved in neuroinflammation, neuronal death, miswiring and
mitochondrial dysfunction have been reported. Genes involved
in cellular homeostasis have also been reported in AD as well,
although at a lesser extent compared to aMCI. These results
are suggestive of a differential role of the associated genes in
determining the susceptibility to aMCI and AD conditions.
Moreover, bioinformatics analysis allowed identifying a set of
genes associated with MCI as downstream regulators of miR-
155 (p = 1.76 × 10−5) and PPARG (p = 1.36 × 10−4) signaling
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TABLE 3 | Genetic variants significantly associated with sporadic AD.

SNP
(Gene)

Variant type Allele count in cases
(Frequency)

Allele count in controls
(Frequency)

p-value q-value OR (95%CI)

rs1800795
(IL6)

Intron C: 80 (0.261)
G: 226 (0.739)

C: 418 (0.416)
G: 588 (0.584)

8.43 × 10−7 9.96 × 10−6 G = 2.01
(1.5–2.6)

rs3745453
(ZSWIM4)

3′UTR A: 229 (0.784)
G: 63 (0.216)

A: 683 (0.679)
G: 323 (0.321)

4.72 × 10−4 4.18 × 10−3 A = 1.72
(1.26–2.34)

rs62182086
(PNKD)

Intron A: 282 (0.928)
G: 22 (0.072)

A: 866 (0.861)
G: 140 (0.139)

1.43 × 10−3 1.01 × 10−2 A = 2.07
(1.30–3.31)

rs3734050
(FAT2)

Intron C: 287 (0.950)
T: 15 (0.050)

C: 897 (0.892)
T: 109 (0.108)

1.63 × 10−3 1.05 × 10−2 C = 2.33
(1.33–4.05)

rs729022
(SYT11)

3′UTR C: 70 (0.250)
T: 210 (0.750)

C: 341 (0.339)
T: 665 (0.661)

4.70 × 10−3 2.30 × 10−2 T = 1.53
(1.13–2.07)

rs11218343
(SORL1)

Intron T: 284 (1.000)
C: 0 (0.000)

T: 963 (0.957)
C: 43 (0.043)

3.69 × 10−5 3.74 × 10−4 T = na

rs10466829
(CLECL1)

Intron G: 120 (0.417)
A: 168 (0.583)

G: 515 (0.512)
A: 491 (0.488)

4.95 × 10−3 2.30 × 10−2 A = 1.47
(1.12–1.93)

rs2303759
(DKKL1)

Missense T: 205 (0.679)
G: 97 (0.321)

T: 765 (0.760)
G: 241 (0.240)

5.50 × 10−3 2.30 × 10−2 G = 1.50
(1.12–2.00)

rs11136000
(CLU)

Intron T: 86 (0.299)
C: 202 (0.701)

T: 390 (0.388)
C: 616 (0.612)

5.60 × 10−3 2.30 × 10−2 C = 1.49
(1.12–1.97)

rs670139
(MS4A4E)

Intron G: 199 (0.696)
T: 87 (0.304)

G: 611 (0.607)
T: 395 (0.393)

6.84 × 10−3 2.55 × 10−2 G = 1.48
(1.12–1.96)

rs10889677
(IL23R)

3′UTR C: 186 (0.620)
A: 114 (0.380)

C: 706 (0.702)
A: 300 (0.298)

8.85 × 10−3 2.99 × 10−2 A = 1.44
(1.09–1.90)

rs3745198
(PLD3)

Intron C: 183 (0.618)
G: 113 (0.382)

C: 537 (0.534)
G: 469 (0.466)

1.14 × 10−2 3.54 × 10−2 C = 1.41
(1.09–1.84)

rs1491942
(LRRK2)

Intron C: 227 (0.747)
G: 77 (0.253)

C: 819 (0.814)
G: 187 (0.186)

1.15 × 10−2 3.54 × 10−2 G = 1.49
(1.08–2.03)

OR, odd ratio; CI, confidence interval.

FIGURE 1 | (A) Venn diagram showing shared and specific genes associated with aMCI and sporadic AD conditions. (B) The graph illustrates the ORs of the shared
variants that are slightly higher in AD patients with respect to aMCI group. Although the rs11218343 is shared between aMCI and AD, it cannot be included in the
graph because the OR is not available.

pathways (Figure 5). Concerning AD-associated genes, some of
them were shown to fall within APP (p = 9.04× 10−4) and ACE2
(p = 2.00 × 10−4) signaling pathways (Figure 6). Additional
bioinformatic analysis evaluated the potential interaction of
miRNAs and genes associated with aMCI and AD, which could
affect the susceptibility to disease by altering gene expression
or regulatory pathways. In this regard, several associated genes
were predicted as targets of the miRNAs by TargetScanHuman
tools (Supplementary Table 1). In addition, miRPathDB

allowed predicting the potential role of these miRNAs into
neurodegenerative and neuroinflammatory pathways underlying
aMCI and AD (Supplementary Table 1).

DISCUSSION

In the present study we show that aMCI and sporadic AD are
multifactorial conditions resulting from a complex crosstalk
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FIGURE 2 | Variable importance plot showing the contribution estimated for each variant associated with aMCI to the predictive model. These estimates (reported in
terms of importance score on the x-axis of the plot) are standardized to achieve a maximum score of 100. The red dashed line indicates the most relevant predictors
with a score > 60.

among multiple molecular and biological processes, whose
perturbation, together with the disruption of compensatory
mechanisms ensuring brain homeostasis, may lead to chronic,
progressive neurodegeneration (De Strooper and Karran,
2016; Tao et al., 2020). Indeed, the present work highlights
interesting insights into the risk factors associated with these
conditions (Figure 1A). In particular, the identification
of shared variants (rs10466829, CLECL1; rs1800795,
IL6; rs3734050, FAT2; rs62182086, PNKD; rs11218343,
SORL1; rs729022, SYT11; rs3745453, ZSWIM4) supports
the existence of “bridge genes” linking both conditions.
Indeed, the risk variants displayed slightly higher ORs in

TABLE 4 | Regression analysis model for evaluating the predictiveness of the
variants associated with sporadic AD.

Variables p-value Standard error

rs1800795 (IL6) 1.08 × 10−8 0.16

rs62182086 (PNKD) 4.26 × 10−7 0.21

rs11218343 (SORL1) 9.79 × 10−6 0.43

Female Gender 1.88 × 10−6 0.17

rs3745453 (ZSWIM4) 1.29 × 10−5 0.16

rs1491942 (LRRK2) 0.0007 0.17

rs10889677 (IL23R) 0.0004 0.16

rs3745198 (PLD3) 0.0003 0.17

rs729022 (SYT11) 0.008 0.16

rs2303759 (DKKL1) 0.008 0.16

APOE-ε4 0.005 0.17

rs670139 (MS4A4E) 0.004 0.16

rs3734050 (FAT2) 0.004 0.23

rs11136000 (CLU) 0.07 0.16

rs10466829 (CLECL1) 0.13 0.20

AD patients compared to aMCI subjects (Figure 1B). This
result suggests that these variants could be predictive of
a higher risk of progressing toward AD and support the
existence of a risk trajectory linking aMCI to AD, although
additional variants are likely to contribute. Overall, the
identification of shared variants suggests their potential use
for screening patients with aMCI who are at higher risk
of developing AD and may need personalized clinical or
follow-up treatments.

The use of machine-learning approaches allowed testing the
ability of the associated variants in discriminating cases from
controls by the use of reliable regression models (Figure 2 and
Table 4). These results support the need of further exploring the
associated variants in order to identify the genetic determinants
that shape the susceptibility for aMCI and sporadic AD and, thus,
may be employed for stratifying patients at higher risk of disease,
who may benefit of early diagnosis and treatments or different
follow-up programs. On this subject, the identification of sex
as a predictive variable of differential susceptibility to disease
highlighted the importance of developing specific approaches
for early treating and monitoring aMCI and AD conditions,
taking into account the different prevalence of disease and the
environmental factors among male and female patients (Guaita
et al., 2015; Nebel et al., 2018).

Among the associated variants, it is interesting to mention
the rs3745198 (PLD3), rs62182086 (PNKD), rs3734050
(FAT2, FAT Atypical Cadherin 2), which are reported as
significant expression Quantitative Loci (eQTLs) in basal
ganglia and cortex on Gtex portal1. Both regions of the brain
are known to be affected by neurodegenerative processes
(Ferese et al., 2015; Yacoubian, 2017; Vitanova et al., 2019)

1https://gtexportal.org/home/
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FIGURE 3 | Disease and Function Analysis for the genes associated with aMCI. The figure illustrates the cellular and molecular functions mainly associated with the
genes of interest.

FIGURE 4 | Disease and Function Analysis for the genes associated with AD. The figure illustrates the cellular and molecular functions mainly associated with the
genes of interest.

FIGURE 5 | miR-155 and PPARG signaling pathways showing the interaction with the genes associated with aMCI.

and the above-mentioned genes have been associated with
neurological disorders mediated by degenerative mechanisms,
including LOAD (PLD3), spinocerebellar ataxia (FAT2,

PLD3), paroxysmal non-kinesigenic dyskinesia (PNKD)
(Nibbeling et al., 2017; Tan et al., 2019; Garone et al., 2020).
Indeed, these variants could be further explored as potential
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FIGURE 6 | APP and ACE2 signaling pathways showing the interaction with the genes associated with AD.

biomarkers associated with a higher predisposition to develop
neurodegenerative disorders, in combination with other
contributing factors.

Moreover, a closer look at the genes harboring the variants
associated with aMCI and sporadic AD in this study revealed
interesting insights concerning the complex molecular and
biological processes involved in the pathophysiology of aMCI
and AD. Most of the genes associated with aMCI were related
to many regulatory mechanisms involved in neuroinflammation,
maintenance of cellular homeostasis and response to stress
(Figure 3). Such mechanisms are generally mediated by brain
cells (i.e., microglia, astrocytes, oligodendrocytes, endothelial),
although peripherally-derived immune cells (i.e., monocytes,
macrophages and dendritic cells) have also been proposed as
participants to inflammatory neuroimmune processes that,
ultimately, contribute to neurodegeneration (Bossù et al.,
2015; De Strooper and Karran, 2016; Dourlen et al., 2019;
Bernaus et al., 2020). The upstream analysis pointed out the
attention toward the interaction among aMCI-associated genes
and miRNAs and miR-155 and PPARG signaling pathways
(Figure 5). Interestingly, both of them are known molecular
players taking part in aging processes, neuroinflammatory
contexts and cognitive impairment and are under active
investigation for therapeutic purposes (Sierksma et al.,
2018; D’Angelo et al., 2019; Hemonnot et al., 2019; Juźwik
et al., 2019; Senatorov et al., 2019; Bernaus et al., 2020).
In addition, the present study highlighted an interaction
between miR-146 and miR-155 signaling pathway, which is
consistent with literature studies showing their cooperation
in the modulation of the microglial inflammatory profile and
supporting them as druggable targets for restoring microglial
activity in multiple neurodegenerative disorders (Sierksma
et al., 2018; Kou et al., 2020; Varma-Doyle et al., 2021). In
this scenario, it is important to include even miR499a and
miR-196a2, which have been associated with aMCI in this

study and with other complex disorders (Kiselev et al., 2015;
Strafella et al., 2021a,b).

In addition, some of the genes and miRNAs carrying
variants associated with aMCI were enriched in iron homeostasis
signaling (IL6, STAT3, MAPK1, SORL1 and CYP24A1), vascular
function and proliferation of endothelial cells (IL6, STAT3,
MAPK1, SEMA5A, ZMIZ1, miR-499a and miR146a) (Figure 3).
These results suggested the potential role of these genes as
contributors to neuroinflammation and neurodegeneration-
related events mediated by iron dyshomeostasis or vascular
dysfunction, which have been associated with cognitive function
and AD pathology (Iturria-Medina et al., 2016; Hemonnot et al.,
2019; Ndayisaba et al., 2019; Giannoni et al., 2020). Indeed, both
of them represent two of the most promising druggable pathways
for developing multi-target therapeutic interventions able to
modify or monitor the disease progression (Iturria-Medina et al.,
2016; Ndayisaba et al., 2019; Giannoni et al., 2020). In this
perspective, the present study supports their therapeutic potential
and encourage functional studies aimed at exploring the possible
contribution of the above-identified genes for the development of
multi-target treatment approaches for MCI.

Concerning AD-associated genes, they were shown to be
mostly enriched in neurological disease conditions and functions
(Figure 4). The upstream analysis revealed interactions among
a set of associated genes (APOE, LRRK2, CLU, SORL1, PLD3,
IL23R, PNKD) and the APP and ACE2 signaling pathways
(Figure 6). Both of them have been extensively investigated in
the context of AD complex pathology and neurodegeneration
and as potential targets for therapeutic purposes (Kaur et al.,
2015; De Strooper and Karran, 2016; Kehoe et al., 2016; Kehoe,
2018; Dourlen et al., 2019). In this regard, the identification
of downstream-regulated genes extend the knowledge of these
two pathways, providing additional targets to be further
investigated for the research of effective multi-target therapeutic
interventions for AD.
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Overall, this study highlighted that the susceptibility to
aMCI condition may be the result of the interaction among
genes and miRNAs involved in neuroinflammation, synaptic
failure, neuron miswiring, alteration of peripheral immune
response, vascular function and iron dysregulation. In this
scenario, these genes can affect the homeostasis of both neuronal
and non-neuronal cells (i.e., microglia, astrocytes, immune
cells, endothelial cells), conferring a higher susceptibility to
aging processes, neuroinflammatory and neurodegenerative
events. Concerning AD susceptibility, the associated genes
and their related interactions confirm the view of the
disease as the result of a complex and heterogeneous matrix
composed of multiple genetic features, biological pathways,
cellular and molecular players which finally disrupt brain
function and homeostasis. In-between, the identification of
risk variants shared with both aMCI and AD, should be
further explored in order to develop personalized approaches
in relation to the individual risk profile and disease stage
of patients. In this perspective, the above-presented data
should be replicated on large-scale studies in order to test
their possible use as functional biomarkers to determine
the susceptibility to aMCI, the risk of progression toward
AD or for developing more effective treatments based on a
multi-target approach.
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