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Simple Summary: Supplementation with high levels of vitamin E (Vit E) is usually recommended
for diets used during the post-weaning (PW) period, when piglets show reduced growth rate and
are more susceptible to disease. We tested two commercial antioxidants (AOX) in pre-starter and
starter diets to evaluate the growth performance and oxidative status of weaned piglets. At the end
of each feeding phase, growth data and serum samples were collected. Data analysed were body
weight (BW), average daily gain (ADG), average daily feed intake, and feed conversion ratio (FCR).
As oxidative stress indicators, total antioxidant capacity, total serum thiols, superoxide dismutase,
glutathione peroxidase, thiobarbituric acid reactive substances (TBARS), and Vit E (α-tocopherol)
were determined in serum. At the end of the study, cortisol and interleukin-6 were also determined,
as well as TBARS and α-tocopherol concentrations in liver and muscle. The lowest BW, ADG, and
FCR were found in piglets fed a low Vit E diet without AOX for the starter period. The α-tocopherol
levels in serum and liver and differences among treatments were in agreement with the experimental
design. Using AOXs or usual Vit E levels in feed was shown to be a key factor in maintaining optimal
performance in the PW period.

Abstract: This work aimed to evaluate the effect of adding two different commercial antioxidants
(AOX) products to pre-starter and starter diets using low vitamin E (Vit E as DL-α-tocopheryl acetate)
levels on the growth performance and oxidative stress of piglets for the first six weeks post-weaning
(PW). They were sorted by initial body weight (BW: 6.175 ± 0.931 kg) and randomly allotted to
four dietary treatments (with six replicates per treatment): a positive control (PC) and a negative
control (NC) diet, with normal and low dose of vitamin E (80 and 15 mg kg−1, respectively), both
without AOX; the other two experimental diets with a low dose of vitamin E (LVE) plus LOXIDAN
VD100 (LVE + AOX1) or LOXIDAN E Ros (LVE + AOX2). Growth data were recorded, and blood
samples were taken, at the beginning (day 0) and at the end of each feeding period: pre-starter and
starter (at days 14 and 42, respectively). No differences among dietary treatments were found with
respect to growth performance in the pre-starter period (p ≥ 0.05). However, at the end of the starter
period, a lower BW was found in piglets fed the NC diet compared to the other dietary treatments.
Differences in daily gain and feed conversion ratio were also found either for the starter period or
when the whole period was considered (p < 0.05), whereby piglets fed PC or LVE diets supplemented
with AOX showed better growth performance compared to piglets fed the NC diet. Regarding Vit
E (α-tocopherol) serum levels, there were no differences among treatments at day 0; but the serum
values of this vitamin decreased in LVE diets at 14 and 42 days, but not in the PC. On day 42, the
highest levels of α-tocopherol in liver were also found in piglets fed PC (p < 0.05). Nevertheless, in
general, from a metabolic point of view and after checking the serum biochemical profile of piglets,
there were no differences in other oxidative stress markers (p ≥ 0.05). The results showed that the
AOX products used were able to compensate for the lower Vit E supply with respect to growth
performance in the starter phase. The use of AOXs or usual levels of Vit E in feed constitutes a key
factor in achieving optimal growth performance of piglets in the PW period.
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1. Introduction

Oxidative stress is harmful to animal health and may result in lower growth perfor-
mance, disease, and even death [1]. It is the result of an imbalance between the generation
of free radicals and the antioxidant capacity of animals [1,2]. Free radicals are constantly
being generated from oxygen by many metabolic pathways. However, there is an efficient
antioxidant system that eliminates generally excessive oxidative radicals and protects
the organism against cell injury. This antioxidant system is formed by some endogenous
antioxidant enzymes, such as superoxide dismutase, glutathione peroxidase, and catalase,
and non-enzymatic components, such as vitamins E and C, carotenoids, and phenolics
(considered as the main exogenous antioxidants) [2,3]. Moreover, oxidation processes are
responsible for decreasing the nutritional value and palatability of feeds [4], with vitamin
E being the major antioxidant in tissues, protecting cell membranes from attack by free
radicals, and being considered the first defensive line against lipid peroxidation [5]. Thus,
the intake of oxidized feed increases the number of free radicals in the animal.

Oxidative stress is influenced by dietary, social, and environmental factors and may
decrease feed intake and performance, affecting redox status and increasing the risk of
diarrhoea in pigs [6]. This is especially critical during the post-weaning period, when young
animals show a decline in serum vitamin E concentration [7], a lower growth rate, and
greater susceptibility to diseases [8]. At weaning, social and environmental stresses occur
as piglets are separated from their mothers and moved to other facilities, whereas dietary
stress is a result of changing from sow’s milk to solid feed (mainly plant-based) [9,10].

Adding antioxidants in small quantities to diets has been a common practice for a
long time for the purpose of preventing or greatly retarding the oxidation of nutrients such
as fats [11], alleviating the negative effects of peroxidised lipids [12]. Additionally, supple-
mentation of different antioxidants is usually recommended for those diets used during
critical periods in order to enhance the antioxidant system and reduce oxidative stress
in livestock [13]. Some natural and synthetic antioxidants and/or commercial blends are
available for use in the pig industry [14]. However, the effects of many commercial blends,
the composition of which is not fully known as a result of marketing reasons and patent
protections, have not always been sufficiently demonstrated in the scientific literature.

The aim of this work is to evaluate the effect on growth performance and oxidative
stress of adding two different commercial antioxidant (AOX) products to pre-starter and
starter diets using low Vit E levels in piglets for the first six weeks post-weaning (PW).

2. Materials and Methods

All the experimental procedures were carried out in accordance with the Ethics
Committee of the University of Murcia (A13170502), following the European regulations
(2010/63/EU Directive) for the protection of animals used for scientific purposes.

2.1. Animals and Facilities

A total of 120 non-castrated male piglets (Large-White) were used. The study was
carried out at the Veterinary Farm of the University of Murcia (South-East Spain) for the
first six weeks PW. Piglets were weaned at 28 days of age, and then, they were sorted by
initial body weight (BW: 6.175 ± 0.931 kg) and randomly allotted to pens; five piglets were
housed per pen (on a plastic slat floor), and they were reared under intensive conventional
conditions and usual handling. Pens were assigned to one of the four dietary treatments
(described below), with six pens per treatment. Each pen was provided with a standard
feeder and a nipple drinker, where piglets were allowed ad libitum access to feed and
water throughout the experiment.
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2.2. Dietary Treatments and Feeding Program

Four dietary treatments were established with normal and reduced dosages of vita-
min E (Vit E) in feed as follows: a positive control (PC) diet with a normal dose of Vit E
(80 mg DL-α-tocopheryl acetate kg−1) and a negative control (NC) diet with a low dose
of vitamin E (LVE) supplementation (15 mg DL-α-tocopheryl acetate kg−1), both without
AOX; another two experimental diets with LVE plus commercial AOX1 (LOXIDAN VD100,
dosage 150 g t−1) (LVE + AOX1), or AOX2 (LOXIDAN E Ros, dosage 300 g t−1) (LVE +
AOX2). Kaesler Nutrition GmbH (Cuxhaven, Germany) provided the commercial antioxi-
dant products used in this study. LOXIDAN VD100 is a formula based on three antioxidant
substances: butylated hydroxytoluene (BHT), propyl gallate, and citric acid; LOXIDAN E
Ros is a formulation of purely natural antioxidants: rosemary extract and a mixture of α, β,
γ, and δ tocopherol extracts from natural origin (E306) and from vegetable oils (1b306(i)).

The feeding program was divided in two phases throughout the 6-week period: pre-
starter (for the first 2 weeks) and starter (for the next 4 weeks). Within each feeding period,
all diets were pelleted and formulated so as to be isoenergetic and iso-nitrogenous, based
on digestible amino acids according to the recommendations of FEDNA [15]. All diets were
manufactured by a commercial company (Alia, Lorca, Spain), and its basal composition is
shown in Table 1. Pre-starter and starter feed samples were analysed for dry matter and
crude protein using procedures of AOAC (Association of Official Analytical Chemists) [16]
(Method 950.46 and Method 960.52, respectively).

Table 1. Ingredients and composition of basal diets (as-fed basis).

Item Pre-Starter Starter

Ingredients, g/kg
Corn 300.00 300.00

Wheat 329.60 414.40
Barley 50.00 50.00

Whey, sweet 50.00 -
Soybean meal (450 g CP/kg) 123.00 121.00
Hamlet Protein-300 (HP-300) 79.00 58.00

Soybean oil 15.00 12.00
Glucose 10.00 -

Monocalcium phosphate 16.5/22.7 7.50 8.00
Calcium carbonate 6.70 7.20

Salt 4.00 4.90
DL-Methionine 2.20 1.90

Liquid Lysine (500 g/kg) 10.20 10.00
L-Threonine 2.80 2.60

Premix 1 10.00 10.00

Calculated composition 2

ME, MJ/kg 13.80 13.60
CP, g/kg 182.2 172.2

Ileal digestible AA, g/kg
Lys 12.5 11.5

Met + cys 7.2 7.3
Thr 8.2 8.3
Trp 2.7 2.6

Calcium 6.9 6.8
Total phosphorus 5.4 5.3

Digestible phosphorus 2.2 2.2
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Table 1. Cont.

Item Pre-Starter Starter

Analysed composition 3, g/kg
DM 916.3 905.5
CP 175.5 160.3

1 Supplied per kg of pre-starter and starter diets with normal (DL-α-tocopheryl acetate (3a700), 80 mg) and low
dosages (DL-α-tocopheryl acetate (3a700), 15 mg) of vitamin E: vitamin A (3a672a), 12,000 IU; vitamin D3 (3a671),
2000 IU; vitamin K3 (3a710), 2 mg; vitamin B1 (3a821), 1.5 mg; riboflavin, 4 mg; vitamin B6 (3a831), 2.5 mg;
vitamin B12, 0.025 mg; niacin (3a315), 25 mg; folic acid (3a316), 0.5 mg; biotin (3a880), 0.1 mg; choline chloride
(3a890), 220 mg; pantothenic acid (3a841), 13 mg; vitamin C (3a300), 100 mg; Iron (II) chelate of the amino acid
glycine (3b108), 7.7 mg; Mn (3b503), 40 mg; Zn (3b603), 120 mg; Fe (3b101), 120 mg; Cu (3b405), 150 mg; I (3b202),
0.65 mg; Se (E8), 0.25 mg; L-Valine (3c371), 1700 mg; L-Tryptophan (3c440), 800 mg; Endo-1,4-β-xylanase (EC
3.2.1.8), 200 FXU; 6-phytase (EC 3.1.3.26), 500 FYT. 2 According to FEDNA [17]. 3 Based on analyses in duplicate
per dietary treatment and corresponding to the average of each feeding period.

2.3. Growth Performance

The following growth data were recorded at the beginning and at the end of each
feeding period (pre-starter and starter): body weight (BW), average daily gain (ADG),
average daily feed intake (ADFI), and feed conversion ratio (FCR). This latter was calculated
by dividing ADFI by ADG for each period. Mortality was also noted daily.

2.4. Blood and Tissue Samples

Blood samples were taken from two piglets per pen at the beginning and at the
end of each feeding period (days 0, 14, and 42). On day 0, piglets within each pen were
chosen according to their BW as being close to the average weight of the pen; the same
animals were subsequently bled over time. Whole blood samples (4 mL) were collected by
jugular venipuncture into vacuum tubes without additives (Vacuette®, Greiner Bio-One
International GmbH, Kremsmünster, Austria) for serum biochemistry. Within 20 min after
collection, the samples were stored at 4 ◦C, and then centrifuged at 2000× g for 10 min.
The serum was collected and immediately frozen at −20 ◦C until further analysis.

Total antioxidant capacity (TAC), total serum thiols (Thiol), superoxide dismutase
(SOD), glutathione peroxidase (GPx), thiobarbituric acid reactive substances (TBARS), and
Vit E (α-tocopherol) were determined in serum as biomarkers of oxidative stress (days 0,
14, and 42). Serum cortisol and interleukin-6 (IL-6) were also determined at the end of the
study (on day 42).

Serum TAC was determined using a method based on the inhibition of the radical
ABTS [2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)] by the sample, as previously
described by Erel [18]. Thiol concentrations were measured according to the method
described by Jocelyn [19] and modified by Costa et al. [20]. The activities of SOD and
GPx in serum were determined using the commercial kits Ransod and Ransel (Randox
Labs, Crumlin, UK), respectively. Levels of TBARS were obtained following the method
described by Buege and Aust [21] using a microplate reader (Powerwave XS, Biotek instru-
ments, Winooski, VT, USA). The α-tocopherol was analysed by HPLC using a previously
described assay by Nirungsan and Thongnopnua [22]. Cortisol was analysed using a
chemiluminescence system with commercially available kits (Immulite®, Siemens Health-
ineers, Erlangen, Germany). Finally, IL-6 was determined using Pig Interleukin 6 (IL-6)
ELISA Kit of Cusabio Biotech (Wuhan, China) and analysed in an automated plate reader.
All biomarkers of oxidative stress, except for α-tocopherol and TBARS, were analysed in
an Olympus AU600 automated chemistry analyser (Olympus Diagnostica Europe GmbH,
Ennis, Ireland). All methods showed an inter- and intra-assay imprecision lower than 15%.

At the end of the study (on day 42), two piglets per pen were slaughtered in order
to take liver and muscle (musculus longissimus dorsi) samples. TBARS and α-tocopherol
were also determined in both samples. For those analyses, approximately 0.5 g of each
tissue sample (liver and muscle) was cut, weighed, and homogenised with an automatic
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homogeniser (Precellys Evolution, Bertin Technologies, Saint-Quentin, Yvelines, France) in
1:2 (weight/volume, w/v) phosphate-buffered saline [23]. Homogenisation was performed
at 8800 rpm in two and three cycles of 20 s for liver and muscle, respectively, with a 30 s
pause between cycles. After that, the samples were centrifuged at 10,000× g for 15 min at
4 ◦C. The supernatant was harvested in Eppendorf tubes and analysed.

2.5. Statistical Analysis

All data were analysed using the SPSS program (SPSS Inc., Chicago, IL, USA). Initially,
a chi-square test was used to determine potential associations between dietary treatment
and piglet mortality throughout the study period. Growth performance and serum data,
which were only determined at 42 day (cortisol and IL-6), were analysed by one-way
ANOVA. For analysis of the weight at the end of each feeding period, a covariance model
(ANCOVA) was used, including the BW at the beginning of the period as a covariate.
The antioxidant and stress parameters from the blood samples (where multiple data were
available for each animal) were analysed using a mixed model, which took into account
the effect of dietary treatment, sampling time (with three levels: at days 0, 14, and 42), and
its interaction as fixed factors, as well as the effect animal as random effect. The pen and
animal were considered to be the experimental unit for growth performance and serum
data, respectively. All reported means are least square means, and pairwise comparisons of
means were performed using the least significant difference (LSD) test. Pearson correlation
coefficients were used to determine the relationship between ADG and ADFI within each
feeding period. Additionally, linear correlations were calculated between concentrations of
the serum biomarkers of oxidative stress for each sampling time. The significance level
was set at p < 0.05.

3. Results
3.1. Diets and Growth Performance

Chemical analyses showed that all diets were manufactured correctly according to
the estimated composition (Table 1). For crude protein, the analytical values were lower
than the estimates, both in the pre-starter and the starter period, although the values were
similar among the various dietary treatments (ranging from 174 to 176 g kg−1 and from
158 to 162 g kg−1, respectively).

The average BW of piglets at the beginning of the study was 6.175 kg, without
differences due to dietary treatments in accordance with the experimental design (p ≥ 0.05)
(Table 2). Piglets reached a final BW of about 10 kg at the end of the pre-starter period, with
no differences among treatments (p ≥ 0.05). However, at end of the starter period, lower
weights were found for the piglets fed the NC diet (21.404 kg) when compared with the
other dietary treatments (p < 0.001).

The ADG for the pre-starter period was 0.274 kg d−1. No differences were found
among dietary treatments for ADG (p ≥ 0.05). There were also no differences in ADFI
in the pre-starter period (p ≥ 0.05), with feed intake being higher than 350 g d−1 for all
treatments. In addition, there was a strong correlation between ADG and ADFI (r = 0.786;
p < 0.01). For FCR, no differences were found among the dietary treatments (p ≥ 0.05).

For the starter period, or when the whole period was considered, there were differ-
ences for ADG among the treatments (p < 0.05). The lowest ADG was found in piglets
fed the NC diet (0.416 and 0.365 kg d−1 for the starter and whole period, respectively).
The lowest ADFI was found numerically in piglets fed the NC diet, but without reaching
statistical significance (p ≥ 0.05). Moreover, strong positive correlations between ADG
and ADFI were found both for the starter period (r = 0.894; p < 0.01) and for when the
entire 6 weeks were considered (r = 0.909, p < 0.01). Finally, FCR was improved with LVE +
AOX1 and LVE + AOX2 diets in comparison with the NC diet (p < 0.05) and maintained
this ratio with respect to the PC diet both in the starter period and when the whole period
was considered.
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On the other hand, these results were not affected by health problems. In this regard,
the mortality rate was 4.6% for the whole period, and no significant differences were found
among treatments (χ2~p-value = 0.873).

Table 2. Body weight (BW), average daily gain (ADG), average daily feed intake (ADFI), and feed conversion ratio (FCR) by
treatment in the pre-starter and starter feeding period.

Diets 1

Item PC NC LVE + AOX1 LVE + AOX2 SEM 2 p-Value

No. of pens 6 6 6 6

BW, kg
Start of the study (at 0 day) 6.182 6.192 6.160 6.167 0.193 1.000

End of pre-starter period (at 14 day) 3 9.757 9.776 10.022 10.178 0.080 0.223
End of starter period (at 42 day) 4 24.941a 21.404 b 24.053 a 24.897 a 0.241 0.000

Pre-starter period, 0–14 day
ADG, kg day−1 0.260 0.263 0.283 0.291 0.007 0.384
ADFI, kg day−1 0.382 0.370 0.367 0.410 0.014 0.718

FCR, kg feed kg−1 gain 1.483 1.412 1.326 1.439 0.033 0.425

Starter period, 14–42 d
ADG, kg day−1 0.540 a 0.416 b 0.492 a 0.518 a 0.011 0.004
ADFI, kg day−1 0.857 0.763 0.810 0.846 0.018 0.300

FCR, kg feed kg−1 gain 1.586 a 1.836 b 1.649 a 1.632 a 0.014 0.000

Whole period, 0–42 day
ADG, kg day−1 0.447 a 0.365 b 0.423 a 0.443 a 0.009 0.023
ADFI, kg day−1 0.699 0.632 0.663 0.700 0.016 0.407

FCR, kg feed kg−1 gain 1.567 a 1.733 b 1.579 a 1.589 a 0.013 0.001
1 Dietary treatments: positive control (PC) and negative control (NC) with normal and low-dose vitamin E (Vit E), respectively; low-dose
Vit E (LVE) supplemented with LOXIDAN VD100 (AOX1) or LOXIDAN E Ros (AOX2). 2 SEM: Standard error of the mean. 3 BW adjusted
for differences in initial weight, being the regression coefficient for BW at 0 d (kg): 1.395 ± 0.093 (p < 0.001). 4 BW adjusted for differences in
initial weight, being the regression coefficient for BW at 14 d (kg): 2.648 ± 0.280 (p < 0.001). a,b Means within a row with different letters are
significantly different at p < 0.05.

3.2. Oxidative and Stress Status

Table 3 shows the effects of dietary treatment and sampling time on the serum bio-
chemical profile indicators of the piglets throughout the experiment. With respect to the diet
effect, the serum parameters evaluated were not significantly different among treatments
(p ≥ 0.05), except for α-tocopherol (p < 0.001). For the latter, it was observed that piglets
fed a PC diet reached higher values in comparison with other dietary treatments (0.381 vs.
0.232, 0.199, and 0.234 µg mL−1 for PC, NC, LVE + AOX1, and LVE + AOX2, respectively).

Table 3. Effect of dietary treatment and sampling time on total antioxidant capacity (TAC), total serum thiols (Thiol),
superoxide dismutase (SOD), glutathione peroxidase (GPx), thiobarbituric acid reactive substances (TBARS), and α-
tocopherol in serum.

Diets 1 (A) Sampling Time (B) SEM 2 p-Value

Item PC NC LVE +
AOX1

LVE +
AO2 Day 0 Day

14
Day
42 A B A × B

Sample size 3 36 36 36 36 48 48 48
TAC, mmol L−1 0.395 0.382 0.406 0.381 0.399 a 0.370 b 0.404 a 0.006 0.448 0.030 0.646
Thiol, mmol L−1 0.182 0.185 0.196 0.176 0.196 a 0.170 b 0.188 a 0.004 0.402 0.002 0.214

SOD, U mL−1 1.39 1.32 1.75 1.13 1.48 1.35 1.37 0.171 0.690 0.823 0.199
GPx, U L−1 2457 2550 2571 2236 2505 2378 2482 50.8 0.082 0.251 0.058

TBARS, µmol L−1 3.41 3.07 3.32 3.22 3.61 a 3.06 b 3.10 b 0.103 0.684 0.035 0.341
α-tocopherol, µg mL−1 0.381 a 0.232 b 0.199 b 0.234 b 0.327 a 0.216 b 0.243 b 0.012 <0.001 <0.001 <0.001

1 Dietary treatments: positive control (PC) and negative control (NC) with normal and low-dose Vit E, respectively; low-dose Vit E (LVE)
supplemented with LOXIDAN VD100 (AOX1) or LOXIDAN E Ros (AOX2). 2 SEM: Standard error of the mean 3 Sample size: 12 animals
per treatment at day 0, 14, and 42. a,b Means within diets or sampling time with different letters are significantly different at p < 0.05.
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The sampling time significantly affected TAC, thiol, TBARS, and α-tocopherol values
(p < 0.05), with the lowest levels being obtained at 14 d for TAC and thiol, and at 14 and
42 d for TBARS and α-tocopherol.

No interactions were found between diet and sampling time for most of the serum
indicators tested, and there was only a significant interaction between both factors for
α-tocopherol (p < 0.001). Indeed, α-tocopherol levels were not different among treatments
at day 0; but the serum values of this vitamin decreased in the three LVE diets at 14 and
42 days, but not in the PC (Figure 1).

Pearson’s correlation coefficients (r) were calculated between concentrations of the
serum biomarkers of oxidative stress for each sampling time (at days 0, 14, and 42) (Table 4).
Regardless of the sampling day, consistent and strong correlations were found between
TAC and Thiol, TAC and SOD, and Thiol and SOD. All these correlations were positive
(p < 0.01) ranging from 0.765 to 0.902 between TAC and Thiol, from 0.532 to 0.792 between
TAC and SOD, and from 0.569 to 0.938 between Thiol and SOD. No significant correlations
were found between TAC and TBARS, Thiol and α-tocopherol, GPx and TBARS, GPx and
α-tocopherol, or TBARS and α-tocopherol (p ≥ 0.05), whatever the day considered. The
remaining combinations examined were not constant or repeatable over time; when their
correlations were significant, the coefficient (r) was always lower than 0.5, except for SOD
and α-tocopherol at day 0 (r = 0.547; p < 0.01).

Table 4. Correlation matrix between total antioxidant capacity (TAC), total serum thiols (Thiol), superoxide dismutase
(SOD), glutathione peroxidase (GPx), thiobarbituric acid reactive substances (TBARS), and α-tocopherol for each sampling
time (at days 0, 14, and 42).

Thiol SOD GPx TBARS α-Tocopherol

Sampling
Time 1 Day 0 Day

14
Day
42 Day 0 Day

14
Day
42 Day 0 Day

14
Day
42 Day 0 Day

14
Day
42 Day 0 Day

14
Day
42

TAC 0.765
**

0.768
**

0.902
**

0.583
**

0.532
**

0.792
** −0.093 0.276 0.367

** 0.173 0.131 0.156 0.498
** 0.056 −0.118

Thiol 0.569
**

0.813
**

0.938
** −0.007 0.349 * 0.410

** 0.319 * 0.150 0.231 0.271 −0.041 −0.280

SOD −0.409
** 0.266 0.466

** 0.091 0.121 0.286 * 0.547
** −0.225 −0.205

GPx −0.039 0.176 0.216 −0.262 0.196 0.020
TBARS 0.106 −0.180 −0.028

Note: “*” and “**” indicate significant correlation at <0.05 and 0.01 levels, respectively. 1 Sample size: 48 animals for each sampling time
(n = 48).
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Thiol, mmol L−1 0.182 0.185 0.196 0.176 0.196 a 0.170 b 0.188 a 0.004 0.402 0.002 0.214 

SOD, U mL−1 1.39 1.32 1.75 1.13 1.48 1.35 1.37 0.171 0.690 0.823 0.199 

GPx, U L−1 2457 2550 2571 2236 2505 2378 2482 50.8 0.082 0.251 0.058 

TBARS, µmol L−1 3.41 3.07 3.32 3.22 3.61 a 3.06 b 3.10 b 0.103 0.684 0.035 0.341 

α-tocopherol, µg mL−1 0.381 a 0.232 b 0.199 b 0.234 b 0.327 a 0.216 b 0.243 b 0.012 <0.001 <0.001 <0.001 
1 Dietary treatments: positive control (PC) and negative control (NC) with normal and low-dose Vit E, respectively; 
low-dose Vit E (LVE) supplemented with LOXIDAN VD100 (AOX1) or LOXIDAN E Ros (AOX2). 2 SEM: Standard error 
of the mean 3 Sample size: 12 animals per treatment at day 0, 14, and 42. a,b Means within diets or sampling time with 
different letters are significantly different at p < 0.05. 

The sampling time significantly affected TAC, thiol, TBARS, and α-tocopherol val-
ues (p < 0.05), with the lowest levels being obtained at 14 d for TAC and thiol, and at 14 
and 42 d for TBARS and α-tocopherol. 

No interactions were found between diet and sampling time for most of the serum 
indicators tested, and there was only a significant interaction between both factors for 
α-tocopherol (p < 0.001). Indeed, α-tocopherol levels were not different among treatments 
at day 0; but the serum values of this vitamin decreased in the three LVE diets at 14 and 
42 days, but not in the PC (Figure 1). 

 
Figure 1. Effect of treatment by sampling day on vitamin E (α-tocopherol). Dietary treatments: positive control (PC) and 
negative control (NC) with normal and low-dose Vit E, respectively; low-dose Vit E (LVE) supplemented with LOXIDAN 
VD100 (AOX1) or LOXIDAN E Ros (AOX2). Means with different upper and lowercase letters within diets or sampling 
time, respectively, are significantly different at p < 0.05. 

Figure 1. Effect of treatment by sampling day on vitamin E (α-tocopherol). Dietary treatments: positive control (PC) and
negative control (NC) with normal and low-dose Vit E, respectively; low-dose Vit E (LVE) supplemented with LOXIDAN
VD100 (AOX1) or LOXIDAN E Ros (AOX2). Means with different upper and lowercase letters within diets or sampling
time, respectively, are significantly different at p < 0.05.
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At the end of the starter feeding period, two metabolites were added to the serum
biochemical profile: cortisol and interleukin 6 (IL-6). The effects of the dietary treatments
on these metabolites are presented in Table 5. For cortisol, no significant differences were
observed among dietary treatments (p ≥ 0.05). The levels of IL-6 were not able to reach the
minimum detection threshold (the threshold value was set at <1.25 pg mL−1). Moreover,
the levels of TBARS and α-tocopherol observed in liver by treatment at 42 days were
studied. TBARS values were significantly higher (p < 0.05) in the PC than other dietary
treatments (6.42 vs. 5.05, 5.38, and 5.50 µmol g−1 for PC, NC, LVE + AOX1, and LVE +
AOX2, respectively). Differences in α-tocopherol were also found (p < 0.05), with higher
values being observed in piglets fed the PC diet (1.25 µg g−1) in comparison with the LVE
+ AOX2 diet (0.95 µg g−1), whereas the other treatments showed intermediate values for
both groups.

Table 5. Effect of dietary treatment on cortisol and interleukin 6 (IL-6) in serum and on thiobarbituric
acid reactive substances (TBARS) and α-tocopherol in liver and Longissimus dorsi muscle at day 42.

Diets 1

Item PC NC LVE + AOX1 LVE + AOX2 SEM 2 p-Value

Sample size 3 12 12 12 12

Serum
Cortisol, µmol g−1 4.48 4.62 3.99 5.32 0.186 0.081

IL-6, pg mL−1 <1.25 <1.25 <1.25 <1.25 - -

Liver
TBARS, µmol g−1 6.42 a 5.05 b 5.38 b 5.50 b 0.161 0.029

α-tocopherol, µg g−1 1.25 a 1.06 ab 1.04 ab 0.95 b 0.038 0.023

Longissimus dorsi
muscle

TBARS, µmol g−1 1.46 1.83 2.32 1.87 0.259 0.712
α-tocopherol, µg g−1 <0.1 <0.1 <0.1 <0.1 - -

1 Dietary treatments: positive control (PC) and negative control (NC) with normal and low-dose Vit
E, respectively; low-dose Vit E (LVE) supplemented with LOXIDAN VD100 (AOX1) or LOXIDAN E
Ros (AOX2). 2 SEM: Standard error of the mean 3 Sample size: 12 animals per treatment. a,b Means
within a row with different letters are significantly different at p < 0.05.

Finally, the values of TBARS and α-tocopherol were also examined in the longissimus
dorsi muscle. In this case, no significant differences were found in TBARS levels in the
muscle among the treatments (p ≥ 0.05), while α-tocopherol did not reach detectable levels
in this tissue for any treatment.

4. Discussion

Post-weaning is a challenging period for the health of piglets, influencing the redox
status of animals. It has been shown that weaning is associated with a reduction in
antioxidant mechanisms [24]. Moreover, an increase in oxidative products after weaning
may affect the growth performance of newly weaned piglets [25]. Therefore, the addition of
different commercial antioxidants to post-weaning diets is often recommended to protect
animals from oxidative stress and maintain growth rates in the early post-weaning period.

In the current study, no differences were found with respect to growth performance
(BW, ADG, ADFI, and FCR) among dietary treatments in the pre-starter period. However,
with respect to the starter period, the growth performance in piglets fed low vitamin E
plus antioxidant diets (LVE + AOX1 and LVE + AOX2) exhibited similar results to that
of piglets fed the PC treatment (with a normal dose of Vit E), both of which were better
than those piglets fed the NC diet (low Vit E group without adding antioxidants). In this
feeding period, the AOX addition using low Vit E levels compared to the NC treatment
increased BW (+14%), ADG (+21%), and decreased FCR (−11%).
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It should be noted that many of the studies examining the effect of Vit E supplementa-
tion did not show significant effects on the post-weaning growth performance of piglets,
regardless of whether they applied different doses, whether different sources of the vitamin
were used, whether it was used in combination with vitamin C, or even whether it was
tested using different administration methods (e.g., in water or in feed) [7,26–28]. On the
other hand, some authors observed quantitative improvements in the growth performance
of post-weaning piglets when Vit E levels were increased at moderate doses compared
to a control group without Vit E [29]. This fact could be related to the short duration of
the first post-weaning phases, since these significant effects were more frequently found
in feeding trials covering the growing period [30,31]. Other authors [12] have suggested
that the lacking or minimal effects at early ages may be due to the initial diets (pre-starter
vs. starter) being composed of highly digestible and palatable ingredients. Our results
showed that the lowest BW, ADG, and FCR were found in piglets fed low Vit E diet with-
out adding AOX (NC diet), either for the starter period or when the whole period was
considered. Likewise, Silva et al. [12] reported negative effects during the later feeding
stages (from 21 d PW) on BW, ADG, ADFI, and gain: feed ratio through the addition of
peroxidised soybean oil, where the supplementation with Vit E and polyphenols did not
lead to significant improvements in growth performance despite the enhanced antioxidant
capacity of the piglets. However, Lu et al. [13], who also supplemented diets high in
oxidants with antioxidants, found that dietary addition of a blend providing ethoxyquin
and propyl gallate (or this AOX blend + Vit E) was effective in improving growth. These
results were not obtained when Vit E was applied alone. Along the same lines, our results
showed that both commercial AOXs tested were able to compensate growth performance
with respect to the PC diet in the starter phase despite the lower Vit E supply (LVE diets).
Therefore, although both AOX products differed in their formulation, they showed similar
effects on all the productive parameters, possibly through different metabolic pathways
and mechanisms. With regard to their origin (and components) the two AOXs tested were
based on synthetic (BHT, propyl gallate and citric acid) and pure natural (tocopherol and
rosemary extract) antioxidants; both were without ethoxyquin. Currently, the European
Union bans the use of ethoxyquin in the manufacturing of feeds for all animal species and
categories [32]. Hence, it is also necessary to find an alternative solution.

At the beginning of the study, no differences were found among dietary treatments
(day 0). In contrast, piglets fed LVE diets (including NC diet) showed low serum levels
of this vitamin at the end of both feeding periods (at day 14 and 42) compared to piglets
fed the PC diet (with a normal dose of Vit E). On average, the supplementation of Vit E
increased serum levels by 72%, which is in agreement with the increase reported (85%)
by Silva-Guillen et al. [12] compared with control and polyphenol treatments, although
the inclusion levels tested and the serum concentrations of Vit E in that study were higher
than those in our study. Therefore, the serum α-tocopherol levels and the differences
found among the dietary treatments were in agreement with the experimental design. In
this sense, Leskovec et al. [33], by adding olive leaf extract at different concentrations to
oxidative stress-inducing diets compared to Vit E, found that piglets fed diets without
Vit E supplementation had lower levels of plasma α-tocopherol in comparison with the
supplemented group without affecting ADG. On the other hand, it is also known that the
α-tocopherol concentration by itself shows a decline after weaning [7].

No effect was found on the other serum indicators sampled throughout the experiment
as a result of diet (TAC, Thiol, SOD, GPx, TBARS, cortisol, and IL-6). In general, from a
metabolic point of view, and after checking the serum biochemical profile of the piglets, our
results did not show differences in terms of other oxidative stress markers that could explain
the differences in growth performance among treatments. Regardless, the piglets in our
study were expected to have lower basal oxidative stress-induced damage compared with
other studies using pro-oxidant diets [12,13], other than that resulting from oxidative stress
caused by weaning itself. Moreover, several authors found that the use of AOXs improved
some of these indicators, although it was not always the same marker. This fact could be
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related to the type of diets and AOXs used, the different doses and mechanisms of action
of each antioxidant applied, whether they were applied alone or in combination [12,33], or
even the influence of some environmental and management conditions that can affect the
growth of piglets and their health, as well as their impact on oxidative stress [25,33]. In fact,
it is clear that interactions occur among all the AOXs, and they work in a complex network
to recycle and regenerate one another [34]. On the other hand, the stability of the added
Vit E seems to be affected by the destruction through oxidation processes. The addition of
some AOXs may reduce these oxidation processes, resulting in increased availability of Vit
E [35]. Along the same lines, despite the commercial antioxidants tested not leading to an
increase in serum α-tocopherol, they were able to maintain the growth of weaned piglets,
probably due to metabolic effects different from those of Vit E. Nevertheless, it is necessary
to elucidate the mechanisms of action of both natural and synthetic antioxidants, while
trying to understand the mechanisms behind oxidative stress [36,37].

In addition, the results of our study showed that only three out of 15 Pearson’s cor-
relation coefficients for the serum biomarkers of oxidative stress (TAC, Thiol, SOD, GPx,
TBARS, and α-tocopherol) were positive and strongly associated (higher than 0.5) regard-
less of the sampling time, whereas lower, non-repeatable correlations or no correlations
were found for the remaining combinations. This low association between them would
suggest that the mechanisms of oxidative balance and homeostasis are intricate and com-
plex. Therefore, taking in mind that oxidative stress is not a singular metabolic event, other
biomarkers could be considered to explain the effect of different types of antioxidants, or
to accurately predict animal growth performance response [38].

Finally, the levels of α-tocopherol and TBARS were examined in the liver and the
longissimus dorsi muscle. Both the hepatic α-tocopherol and TBARS levels were significantly
higher in the PC group than in groups that received the other dietary treatments. In
general, it was found that liver α-tocopherol concentration increased as the dietary Vit
E increased [28,39]. Additionally, as the blood level of α-tocopherol increased, the liver
appeared to retain more α-tocopherol than adipose or tissue muscle [7]. On the other
hand, the higher levels of TBARS in the liver of piglets fed with a normal dose of Vit
E (PC diet) were unexpected, as most authors reported either no effect or a decrease in
malondialdehyde equivalents (usually reported as TBARS assay values) when antioxidants
were added to the diet [40,41]. However, Lu et al. [13] found that the supplementation of
Vit E alone could not prevent the negative effects of the oxidative stress-inducing diet, and
piglets fed with this diet tended to have greater liver TBARS concentrations at the end of
the study when compared with other diets containing an antioxidant blend (ethoxiquin
and propyl gallate). The results for TBARS and α-tocopherol in the liver samples, although
apparently contradictory, showed that the liver was the organ with the highest metabolic
activity [42], and therefore, spot observations could be insufficient to obtain complete
information regarding the multiple and complex metabolic pathways that take place in
this organ.

The α-tocopherol did not reach a detectable level in muscle for any treatment, in
contrast to results found in piglets [27] or growing-finishing pigs [43,44]. In addition,
despite α-tocopherol not being detected, no differences were found among treatments for
the TBARS levels in longissimus dorsi muscle. It should be taken into account that our study
was carried out in young animals selected for lean growth, whereas Vit E is fat-soluble
and accumulates mainly in fatty tissues. Therefore, the response of different tissues varied
depending upon their metabolic activities. Along the same lines, Jensen et al. [39] reported
lower levels of α-tocopherol as a response to dietary intake in muscle and brain when
compared with other tissues, such as kidney fat, subcutaneous fat, and liver. Moreover, it
was shown that α-tocopherol accumulation is muscle-dependent, with greater amounts
in red muscles (M. psoas major) than in white muscles (M. longissimus dorsi) [45], as a
result of muscle fibre types and the number of subcellular components (mitochondria and
microsomes) [38].
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It is remarkable that α-tocopherol levels in tissues also depend on supplementation
time. In this sense, it has been reported that α-tocopherol levels generally increased over a
49-day supplementation period [46], while our study only covered the first 42 days PW.
Thus, Jensen et al. [46] showed that porcine liver responded rapidly to dietary α-tocopheryl
acetate intake, while muscle and adipose tissue responded at a slower rate, demonstrating
that α-tocopherol concentrations in serum and liver reflect the immediate nutritional status
of the animal, while levels in adipose and skeletal tissue reflect its long-term nutritional
history [47].

5. Conclusions

The results showed that AOXs were able to compensate growth performance in the
starter phase despite the lower Vit E supply. However, the mode of action could not be
explained only with reference to the markers sampled for oxidative stress. The antioxidant
products used in this trial (AOX1 and AOX2) can give greater flexibility with respect to the
typically used levels of Vit E in order to maintain optimal growth performance in piglets
during the PW period. Further studies covering subsequent feeding stages will also be
needed to assess potential long-term effects.

Author Contributions: Conceptualization, J.O. and J.M.; methodology, J.O., F.H., and J.M.; formal
analysis, J.O., C.P.R., and J.M.; investigation, J.O., F.H., S.M.-M., C.J.S., and J.M.; writing—original
draft preparation, J.O. and J.M.; writing—review and editing, J.O., F.H., S.M.-M., C.J.S., C.P.R.,
and J.M.; supervision, J.O. and J.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by Kaesler Nutrition GmbH (Cuxhaven, Germany).

Institutional Review Board Statement: This study was carried out at the installations of the Veteri-
nary Teaching Farm of the University of Murcia, Spain, according to the protocol approved by the
Animals Experimentation Ethics Committee of the University of Murcia and the Authorities of the
Region of Murcia (31 May 2017, n. A-13170502), and following the European Union guidelines for
the care and use of research animals (Directive 2010/63/EU of the EU Parliament and of the Council
of 22 September 2010 on the protection of animals used for scientific purposes).

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing is not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lykkesfeldt, J.; Svendsen, O. Oxidants and antioxidants in disease: Oxidative stress in farm animals. Vet. J. 2007, 73, 502–511.

[CrossRef]
2. Pisoschi, A.M.; Pop, A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem. 2015, 97, 55–74.

[CrossRef] [PubMed]
3. Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free

Radic. Biol. Med. 2010, 49, 1603–1616. [CrossRef] [PubMed]
4. DeRouchey, J.M.; Hancock, J.D.; Hines, R.H.; Maloney, C.A.; Lee, D.J.; Cao, H.; Dean, D.W.; Park, J.S. Effects of rancidity and

free fatty acids in choice white grease on growth performance and nutrient digestibility in weanling pigs. J. Anim. Sci. 2004, 82,
2937–2944. [CrossRef]

5. Pekmezci, D. Vitamin E and immunity. Vitam. Horm. 2011, 86, 179–215. [CrossRef] [PubMed]
6. Campbell, J.M.; Crenshaw, J.D.; Polo, J. The biological stress of early weaned piglets. J. Anim. Sci. Biotechnol. 2013, 4, 19. [CrossRef]

[PubMed]
7. Moreira, I.; Mahan, D.C. Effect of dietary levels of vitamin E (all-rac-αtocopheryl acetate) with and without added fat on weanling

pig performance and tissue α-tocopherol concentration. J. Anim. Sci. 2002, 80, 663–669. [CrossRef]
8. Boudry, G.; Peron, V.; Le Huërou-Luron, I.; Lalles, J.P.; Seve, B. Weaning induces both transient and long-lasting modifications of

absorptive, secretory, and barrier properties of piglet intestine. J. Nutr. 2004, 134, 2256–2262. [CrossRef]
9. Le Dividich, J.; Sève, B. Effects of underfeeding during the weaning period on growth metabolism, and hormonal adjustments in

the piglet. Dom. Anim. Endocrinol. 2000, 19, 63–74. [CrossRef]
10. Weary, D.M.; Jasper, J.; Hötzel, M.J. Understanding weaning distress. Appl. Anim. Behav. Sci. 2008, 110, 24–41. [CrossRef]

http://doi.org/10.1016/j.tvjl.2006.06.005
http://doi.org/10.1016/j.ejmech.2015.04.040
http://www.ncbi.nlm.nih.gov/pubmed/25942353
http://doi.org/10.1016/j.freeradbiomed.2010.09.006
http://www.ncbi.nlm.nih.gov/pubmed/20840865
http://doi.org/10.2527/2004.82102937x
http://doi.org/10.1016/B978-0-12-386960-9.00008-3
http://www.ncbi.nlm.nih.gov/pubmed/21419272
http://doi.org/10.1186/2049-1891-4-19
http://www.ncbi.nlm.nih.gov/pubmed/23631414
http://doi.org/10.2527/2002.803663x
http://doi.org/10.1093/jn/134.9.2256
http://doi.org/10.1016/S0739-7240(00)00067-9
http://doi.org/10.1016/j.applanim.2007.03.025


Animals 2021, 11, 266 12 of 13

11. Chipault, J.R. Antioxidants for Food Use. In Autoxidation and Antioxidants; Lundberg, W.O., Ed.; Wiley: New York, NY, USA, 1962;
Volume 2, pp. 477–542.

12. Silva-Guillen, Y.V.; Arellano, C.; Boyd, R.D.; Martinez, G.; van Heugten, E. Growth performance, oxidative stress and immune
status of newly weaned pigs fed peroxidized lipids with or without supplemental vitamin E or polyphenols. J. Anim. Sci.
Biotechnol. 2020, 11, 1–11. [CrossRef] [PubMed]

13. Lu, T.; Harper, A.F.; Zhao, J.; Estienne, M.J.; Dalloul, R.A. Supplementing antioxidants to pigs fed diets high in oxidants: I. Effects
on growth performance, liver function, and oxidative status. J. Anim. Sci. 2014, 92, 5455–5463. [CrossRef] [PubMed]

14. European Commission. European Union Register Offeed Additives. Available online: https://ec.europa.eu/food/safety/animal-
feed/feed-additives/eu-register_en (accessed on 1 July 2020).

15. De Blas, C.; Gasa, J.; Mateos, G.G. Necesidades Nutricionales Para Ganado Porcino, 2nd ed.; De Blas, C., Gasa, J., Mateos, G.G., Eds.;
Fundación Española para el Desarrollo de la Nutrición Animal: Madrid, Spain, 2013.

16. AOAC. Official Methods of Analysis of the Association Official Analytical Chemists, 15th ed.; Association of Official Analytical Chemists:
Washington, DC, USA, 1990.

17. Fundación Española para el Desarrollo de la Nutrición Animal. Tablas FEDNA de Composición y Valor Nutritivo de Alimentos Para la
Fabricación de Piensos Compuestos, 3rd ed.; de Blas, C., Mateos, G.G., García-Rebollar, P., Eds.; FEDNA: Madrid, Spain, 2010.

18. Erel, O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS
radical cation. Clin. Biochem. 2004, 37, 277–285. [CrossRef] [PubMed]

19. Jocelyn, P. Spectrophotometric assay of thiols. Methods Enzymol. 1987, 143, 44–67. [CrossRef]
20. Costa, C.M.; Santos, R.C.C.; Lima, E.S. Procedimento automatizado simples para determinação de tióis em amostras de soro

humano. J. Bras. Patol. Med. Lab. 2006, 42, 345–350. [CrossRef]
21. Buege, J.A.; Aust, S.D. Microsomal lipid peroxidation. Methods Enzymol. 1978, 52, 302–310. [CrossRef]
22. Nirungsan, K.; Thongnopnua, P. Simple and rapid high-performance liquid chromatographic method for endogenous α-

tocopherol determination in human plasma. Biomed. Chromatogr. 2006, 20, 774–781. [CrossRef]
23. Pfalzgraf, A.; Frigg, M.; Steinhart, H. α-Tocopherol Contents and Lipid Oxidation in Pork Muscle and Adipose Tissue during

Storage. J. Agric. Food Chem. 1995, 43, 1339–1342. [CrossRef]
24. Zhu, L.H.; Zhao, K.L.; Chen, X.L.; Xu, J.X. Impact of weaning and an antioxidant blend on intestinal barrier function and

antioxidant status in pigs. J. Anim Sci. 2012, 90, 2581–2589. [CrossRef]
25. Buchet, A.; Belloc, C.; Leblanc-Maridor, M.; Merlot, E. Effects of age and weaning conditions on blood indicators of oxidative

status in pigs. PLoS ONE 2017, 12, e0178487. [CrossRef]
26. Bonnette, E.D.; Kornegay, E.T.; Lindemann, M.D.; Hammerberg, C. Humoral and cell-mediated immune response and perfor-

mance of weaned pigs fed four supplemental vitamin E levels and housed at two nursery temperatures. J. Anim. Sci. 1990, 68,
1337–1345. [CrossRef] [PubMed]

27. Rey, A.I.; López-Bote, C.J.; Litta, G. Effects of dietary vitamin E (DL-α-tocopheryl acetate) and vitamin C combination on piglets
oxidative status and immune response at weaning. J. Anim. Feed Sci. 2017, 26, 226–235. [CrossRef]

28. Wilburn, E.E.; Mahan, D.C.; Hill, D.A.; Shipp, T.E.; Yang, H. An evaluation of natural (RRR-α-tocopheryl acetate) and synthetic
(all-rac-α-tocopheryl acetate) vitamin E fortification in the diet or drinking water of weanling pigs. J. Anim. Sci. 2008, 86, 584–591.
[CrossRef] [PubMed]

29. Chen, C.; Wang, Z.; Li, J.; Li, Y.; Huang, P.; Ding, X.; He, S.; Yang, H.; Yin, Y. Dietary vitamin E affects small intestinal
histomorphology, digestive enzyme activity, and the expression of nutrient transporters by inhibiting proliferation of intestinal
epithelial cells within jejunum in weaned piglets. J. Anim. Sci. 2019, 97, 1212–1221. [CrossRef] [PubMed]

30. Asghar, A.; Gray, J.I.; Miller, E.R.; Ku, P.K.; Booren, A.M.; Buckley, D.J. Influence of supranutritional vitamin E supplementation
in the feed on swine growth performance and deposition in different tissues. J. Sci. Food Agric. 1991, 57, 19–29. [CrossRef]

31. Niculita, P.; Popa, M.E.; Ghidurus, M.; Turtoi, M. Effect of vitamin E in swine diet on animal growth performance and meat
quality parameters. Pol. J. Food Nutr. Sci. 2007, 57, 125–129.

32. European Union. Commission Implementing Regulation (EU) 2017/962 of 7 June 2017 suspending the authorisation of ethoxyquin
as a feed additive for all animal species and categories (text with EEA relevance). Off. J. Eur. Union 2017, L145, 13–17.

33. Leskovec, J.; Rezar, V.; Nemec Svete, A.; Salobir, J.; Levart, A. Antioxidative effects of olive polyphenols compared to vitamin E in
piglets fed a diet rich in N-3 PUFA. Animals 2019, 9, 161. [CrossRef]

34. Chan, A.C.; Chow, C.K.; Chiu, D. Interaction of antioxidants and their implication in genetic anemia. Proc. Soc. Exp. Biol. Med.
1999, 222, 274–282. [CrossRef]

35. Luehring, M.; Blank, R.; Wolffram, S. Vitamin E-sparing and vitamin E-independent antioxidative effects of the flavonol quercetin
in growing pigs. Anim. Feed Sci. Technol. 2011, 169, 199–207. [CrossRef]

36. Carocho, M.; Ferreira, I.C.F.R. A review on antioxidants, prooxidants and related controversy: Natural and synthetic compounds,
screening and analysis methodologies and future perspectives. Food Chem. Toxicol. 2013, 51, 15–25. [CrossRef] [PubMed]
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