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Abstract: Virus infection, inflammation and genetic factors are important factors in the pathogenesis
of diabetes mellitus. The nuclear factor-kappa B (NF-κB) is a family of transcription factors that bind
the enhancer of the κ light chain gene of B cell immunoglobulin. NF-κB plays an essential role in the
activation and development of B cells, and the activation of NF-κB is critical in the inflammation and
development of diabetes mellitus. Recently, immunoglobulin-free light chain (FLC) λ was found to
be increased in the sera of patients with diabetes mellitus, and the FLC λ and κ/λ ratios are more
specific and sensitive markers for the diagnosis of diabetes relative to glycated hemoglobin A1c.
Thus, FLCs may be promising biomarkers of inflammation that could relate to the activation of
NF-κB. We suggest that NF-κB could be a target for an anti-inflammatory strategy in preventing and
treating diabetes when FLCs are modified. FLCs could be a surrogate endpoint in the management of
diabetes. In this review, the role of inflammation in the pathogenesis of diabetes, as well as the novel
inflammatory biomarkers of FLCs for the management of diabetes, are discussed.

Keywords: anti-inflammation; B cells; biomarker; diabetes; hepatitis C virus; immunoglobulin;
inflammation; light chain; nuclear factor-kappa B; virus

1. Introduction

Diabetes mellitus is caused by chronic high glucose levels in the blood as a result of
the incapability of β cells in the pancreas to produce adequate insulin or ineffective insulin
utilization by cells in the body [1]. There is evidence that virus infection, inflammation and
genetic factors play important roles in the pathogenesis of diabetes [2–5]. Experimental
and clinical studies suggest the inflammatory hypothesis, and clinical trials are ongoing to
confirm the therapeutic effects targeting inflammation to treat or prevent diabetes [6,7].

The nuclear factor-kappa B (NF-κB) was originally identified as a family of transcrip-
tion factors that binds the immunoglobulin κ light chain gene enhancer, plays an essential
role in the activation and development of B cells, and the activation of NF-κB is critical in
the inflammation and development of diabetes mellitus [8–10]. Recently, we found that
immunoglobulin-free light chains (FLCs) are novel biomarkers of inflammation and found
that FLCs are sensitive biomarkers for the diagnosis of inflammatory heart diseases such as
heart failure, myocarditis and atrial fibrillation and diabetes [11–13]. In this review, the role
of inflammation in the pathogenesis of diabetes, and novel inflammatory biomarkers of
FLCs for the management of diabetes, are discussed.

2. Role of Virus in the Pathogenesis of Diabetes Mellitus

Type 1 diabetes mellitus (T1DM) is believed to be caused by genetic and environ-
mental factors, and viruses are the most well-studied environmental triggers. T1DM is
an autoimmune disease in which pancreatic β cells, which produce insulin in normal
circumstances, are destroyed. Although multiple genes have been identified to play a role
in the development of T1DM, environmental factors may be necessary for its progression
to clinical disease [14,15]. Enteroviruses, rotavirus, herpesviruses, and other viruses are
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thought to be triggers of T1DM [2,3,16–18]. Molecular mimicry, direct pancreatic infec-
tion, infection-induced changes to the gut mucosa, and interactions between the immune
system and infection have been proposed as mechanisms of pathogenesis [14,16,17,19].
Enteroviruses are studied most frequently; however, a growing body of research shows the
potential influence of rotavirus on T1DM [20]. Hepatitis C virus (HCV), the most common
cause of hepatic failure, is frequently associated with the development of diabetes mellitus,
especially type 2 (T2DM) [21].

A recent meta-analysis showed that the odds ratio of risk between non-autoimmune
diabetes and virus infections was 10.8 for severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2), 3.6 for HCV, 2.7 for human herpesvirus 8, 2.1 for influenza H1N1 virus,
1.6 for hepatitis B virus, 1.5 for herpes simplex virus 1, 3.5 for cytomegalovirus, 2.9 for
Torque teno virus, 2. 6 for parvovirus B19, 0.7 for coxsackie B virus, and 0.2 for hepatitis G
virus [22].

2.1. SARS-CoV-2

The mechanism of diabetes development in coronavirus disease 2019 (COVID-19)
remains to be clarified [23]. COVID-19 affects people with or without diabetes, and hyper-
glycemia, which is frequently seen in patients with severe COVID-19, is considered as a
marker of disease severity [24,25]. A study of COVID-19 patients reported that 22% had
a history of diabetes, 21% had newly diagnosed diabetes, and 28% were diagnosed with
dysglycemia [25]. A number of studies have reported that new-onset diabetes associated
with the presence of COVID-19 was classified as either T1DM or T2DM [23].

Patients with new-onset diabetes have higher levels of inflammatory markers such
as C-reactive protein, white blood cell count, and erythrocyte sedimentation rate [25].
A cytokine storm can worsen insulin resistance [26], and neutrophils, d-dimers, and in-
flammatory biomarkers are higher in individuals with hyperglycemia than in those with
normal blood glucose [27]. The proinflammatory cytokines and acute-phase reactants due
to COVID-19 may cause inflammation and damage of pancreatic beta cells [28]. A recent
study showed that SARS-CoV-2 could infect pancreatic cells, and that the virus entered
endocrine islets and exocrine acinar and ductal cells in human pancreatic cultures and
postmortem pancreatic tissues from COVID-19 patients [29]. Further studies are needed to
investigate the direct effects of SARS-CoV-2 on pancreatic β-cells and other islet cells by
experimentation and to assess inflammatory biomarkers in order to understand new-onset
COVID-19-related diabetes.

2.2. Hepatitis C Virus

Extrahepatic manifestations are frequently seen in chronic HCV infection. About 70%
of patients have one or more extrahepatic manifestations over the course of chronic HCV
infection, which are often the first and only clinical signs and symptoms of infection. A
causal association between extrahepatic manifestations such as cardiovascular disease,
insulin resistance, T2DM, mixed cryoglobulinemia, non-Hodgkin lymphoma, neurological
and psychiatric diseases, and rheumatic disease and HCV infection has been supported by
experimental and clinical evidence [21,30].

Meta-analyses have shown an approximately 3.5- to 3.6-fold increase in HCV infection
risk in individuals with T2D [22,31], and HCV infection seems to be strongly associated
with non-autoimmune diabetes. An analysis reported an approximately 1.7-fold increase
in T2DM risk in HCV infected individuals compared with non-infected individuals [32,33],
and HCV infection is associated with an increased risk of T2DM independent of the severity
of the associated liver disease. Patients with chronic HCV have higher insulin resistance
compared with body mass index–matched controls, and viral eradication improves global,
hepatic, and adipose tissue insulin sensitivity [34], suggesting that HCV infection precedes
non-autoimmune diabetes.

HCV replicates in pancreatic cells and affects insulin signaling pathways through
its structural and non-structural proteins [35]. The indirect mechanisms of insulin resis-
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tance involve HCV-induced oxidative stress, the release of inflammatory cytokines, and
the upregulation of gluconeogenic genes such as glucose 6 phosphatase and phospho-
enolpyruvate carboxy kinase 2 [36]. Recent studies have shown that clearance of HCV
by direct-acting antiviral agents (DAAs) leads to improvement or regression of insulin
resistance, improves control of glucose homeostasis in patients both with and without
T2DM, and reduces the incidence of T2DM [37,38]. A prospective study of over 2400 HCV
patients demonstrated an 81% reduction in the risk of developing T2DM in those who were
treated with DAAs compared to those who were untreated [37]. These studies suggest that
HCV plays a central role in the increased risk of developing insulin resistance and T2DM,
and that eliminating the HCV can reverse insulin resistance and prevent the development
of T2DM [39].

2.3. A New Concept of Pathogenesis of HCV-Induced Diseases

HCV infection is frequently associated with heart diseases such as myocarditis, di-
lated cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy and hypertrophic
cardiomyopathy. Various arrhythmias, conduction disturbances and QT prolongation
were also associated with HCV infection [21,40–43]. We found that CD68-positive mono-
cytes/macrophages were a primary target of HCV infection [44]. HCV-core antibodies
stained mostly mononuclear cells in various body organs such as the liver, heart, kidney
and bone marrow, but not hepatocytes or myocytes. Antibodies against the NS4 protein
stained the mononuclear cells of peripheral blood and various tissues, confirming that
HCV replicates in the mononuclear cells [44].

The presence of multiple extrahepatic organ involvement could be explained by the
effect of HCV-infected monocytes/macrophages by immune escape and viral modulation
of host immune responses. The virus may also spread through the lymphatic system, where
it reaches the peripheral lymph nodes, which may cause immune cell infection prior to
recirculation. Thus, HCV may cause diabetes by inflammation in the pancreas induced by
monocytes/macrophages infected with HCV.

The major human histocompatibility complex (MHC) is located on the short arm of
chromosome 6 and codes for several cell surface proteins involved in immune function,
such as complement system components. There are marked differences in the MHC-related
disease susceptibility for HCV-associated cardiomyopathies, which suggests that HCV-
associated cardiomyopathies are controlled by different pathogenic mechanisms [45,46].
Therefore, HCV-induced diabetes might associate with different MHCs [3].

3. Role of Inflammation in the Pathogenesis of Diabetes Mellitus

Diet influences inflammation. Orally absorbed advanced glycation and lipoxidation
end-products that are formed during the processing of foods are linked to overnutrition and
hence obesity and inflammation. Furthermore, high-glycemic-load foods, such as isolated
sugars and refined grains can cause increased oxidative stress that activates inflammatory
genes [47]. Physical inactivity can increase the risk for diabetes because it is linked to
obesity, and excessive visceral adipose tissue is a significant trigger of inflammation [47].

3.1. Inflammatory Cytokines

Circulating levels of acute-phase proteins are elevated in diabetes, such as serum amy-
loid A, C-reactive protein (CRP), fibrinogen, haptoglobin, plasminogen activator inhibitor,
sialic acid, interleukin (IL)-1β, IL-1 receptor antagonist (IL-1Ra), IL-6 and tumor necrosis
factor (TNF)-α [48–51]. Elevated circulating CRP, IL-1β, IL-1Ra and IL-6 are predictive
markers for the development of T2DM [49,52–55]. The production of TNF-α is increased
by adipose tissues during obesity, and insulin sensitivity is improved by a TNF-α antago-
nist [56]. Macrophages and other immune cells exist in adipose tissues and may release
TNF-α, IL-1β, IL-6 and IL-33 [57–59]. It is now well-established that tissue inflammation
plays a critical role in insulin resistance [6,7].
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Inflammation may play an important role in defective insulin action and insulin
secretion. Increased cytokine expressions and immune cell infiltration of pro-inflammatory
macrophages are seen in pancreatic islets of patients with T2DM [60,61]. This chronic
inflammatory process is associated with fibrosis and amyloid deposits, which are observed
in the islets of most patients with T2DM [7].

3.2. Nuclear Factor-Kappa B (NF-κB)

Nuclear factor-kappa B (NF-κB) is a key molecule in the pathogenesis of diabetes. The
NF-κB pathway is activated by genotoxic, oxidative and inflammatory stress, and regulates
the expression of cytokines, growth factors and genes that regulate apoptosis, cell-cycle
progression and inflammation [8]. Pharmacologic and genetic suppression implicated that
NF-κB activation causes insulin resistance and glucose metabolism [9]. Upregulation of
NF-κB signaling in hepatocytes results in a T2DM [10], and innate immune activation and
inflammatory response that may underlie T2DM [62]. Therefore, NF-κB activation in nu-
merous tissues, including adipose tissue, pancreas and liver, contributes to the pathogenesis
of T2DM.

4. Novel Biomarkers of Inflammation: Immunoglobulin-Free Light Chains (FLCs)
4.1. FLCs as Novel Biomarkers of Chronic Inflammation

NF-κB was originally identified as a family of transcription factors that binds the
immunoglobulin κ light chain gene enhancer. FLCs are synthesized de novo and secreted
into circulation by B cells. FLCs emerge as an excess byproduct of antibody synthesis by
B cells; elevated FLCs have been proposed to be a biomarker of B cell activity in many
inflammatory and autoimmune conditions [63]. Polyclonal FLCs are a predictor of mortality
in the general population, measured by the sum of κ and λ concentrations [64]. Increased
FLCκ, and the higher κ/λ ratio, occurred more in rheumatic disease than in healthy blood
donors [65]. FLCs in inflammatory and autoimmune diseases correlate with disease activity,
suggesting their role as potential therapeutic targets in such conditions.

As discussed above, HCV infection can induce insulin resistance and cause dia-
betes [20–38]. High concentrations of FLC κ have been observed in HCV-positive patients,
and an alteration in the κ/λ ratio is positively correlated with an increasing HCV-related
lymphoproliferative disorder severity [66]. Furthermore, it has been suggested that the κ/λ
ratio may be useful in the evaluation of therapeutic efficacy [67].

4.2. FLCs as Markers of Heart Failure and Myocarditis

We found that FLCs were increased in a mouse model of heart failure due to viral
myocarditis [68]. Recently, we conducted additional research with patients in heart failure,
and we observed that circulating FLC λ were increased while the κ/λ ratio was decreased
in sera from patients with heart failure resulting from myocarditis, as compared to a group
of healthy controls. These findings demonstrated that the FLC λ and κ/λ ratio together
showed good diagnostic potential for the identification of myocarditis. In addition, the
FLC κ/λ ratio could also be used as an independent prognostic factor for overall patient
survival [11].

As shown in our previous studies, HCV infection has often been associated with my-
ocarditis [21,40–45]. In our study on FLCs using sera from the U.S. Multicenter Myocarditis
Treatment Trial, myocardial injury was more severe in patients with HCV infection than
in non-infected patients. The level of FLC κ was lower, FLC λ was higher, and the κ/λ
ratio decreased in patients with myocarditis, both with and without biopsy-confirmation
according to the Dallas criteria, as compared to normal volunteers. These changes were
more prominent in patients with HCV infection, as compared to those without infection.
HCV infection may enhance the production of FLC λ while decreasing FLC κ [69,70]. Al-
though the mechanisms of these changes require clarification, the detection of FLCs might
be helpful for the diagnosis of myocarditis with heart failure and also be useful in differen-
tiating patients with HCV infection from those without infection [69,70]. In heart failure
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patients, LV end-diastolic and end-systolic diameters, pulmonary arterial pressure, and
N-terminal pro-brain natriuretic peptide correlated positively with FLC λ and negatively
with the κ/λ ratio. Left ventricular ejection fraction was also negatively correlated with the
κ/λ ratio [70].

4.3. FLCs and COVID-19 and Heart Diseases

The recent review of 316 cases of postmortem examination of COVID-19 patients
demonstrated that cardiac abnormalities, either on gross pathology or histology, were
identified in almost all cases. Most autopsies demonstrated chronic cardiac pathologies
such as hypertrophy (27%), fibrosis (23%), amyloidosis (4%), cardiac dilatation (20%), acute
ischemia (8%), intracardiac thrombi (2.5%), pericardial effusion (2.5%), and myocarditis
(1.5%). SARS-CoV-2 was detected within the myocardium of 47% of studied hearts [71].
However, the Dallas criteria was satisfied in only five of these cases. In an additional
35 cases, minimal lymphocytic or mononuclear infiltration was reported, and they did not
satisfy the Dallas criteria for myocarditis. Lymphocytic infiltration was scarce but could be
detected in the pericardium, myocardium, epicardium, or endothelium. Therefore, cellular
infiltration may be rare in COVID-19 myocarditis and, therefore, the Dallas criteria may
not be accurate in the diagnosis of COVID-19 myocarditis, as it is the same in the case of
HCV myocarditis [21,69].

An increase in blood troponin levels in COVID-19 is an indicator of myocardial dam-
age. Several studies have documented a strong association between COVID-19 progression
and elevated blood troponin. Reports from China found that elevated circulating cardiac
troponin was present in 7–28% of COVID-19 patients, suggesting the existence of myocar-
dial injury or myocarditis [72,73]. In hospitalized patients with COVID-19, mortality in
the elevated-blood-troponin group was 51.2–59.6%, a range markedly higher than in the
4.5–8.9% in the normal-blood-troponin group [74].

We have studied how frequently myocardial injury or myocarditis occurs in COVID-19
patients [75]. Troponin T was positive in 63% of patients, NT-proBNP was elevated in
68% of patients, and elevated creatine kinase was noted in 43% of patients at admission.
NT-proBNP showed a significant correlation with the length of hospital management and
the severity of pulmonary CT findings. In addition, the existence of enhanced inflammatory
biomarkers such as CRP and ferritin suggested that myocardial injury may be caused by
inflammatory myocardial processes. D-dimer was also elevated frequently, suggesting
that coagulation abnormality occurs frequently in COVID-19 patients [75]. Thus, COVID-
19 has been frequently associated with myocardial injury, suggesting that SARS-CoV-2
causes myocarditis.

We also measured FLCs and IL-6 in COVID-19 patients. FLC κ and λ was elevated in
73% and 80% of patients, respectively, and the frequency of the elevated levels was higher
than those of troponin T, NT-proBNP, creatine kinase, and IL-6. IL-6 has been frequently
measured in COVID-19 patients, but elevated levels of IL-6 were less frequent, as compared
to other parameters [69,75].

4.4. FLCs as Markers of Atrial Fibrillation

Atrial fibrillation is the most common arrhythmia, which is an important cause of
stroke. Diabetes is a risk factor for the development of atrial fibrillation. Diabetes in patients
with atrial fibrillation is associated with increased cardiovascular and cerebrovascular
mortality [76]. The pathogenesis of diabetes-related atrial fibrillation remains to be clarified,
but may be related to structural, electrical, electromechanical, and autonomic remodeling.

Abnormal atrial histology compatible with a diagnosis of myocarditis was uniformly
found in patients with lone atrial fibrillation. Patients with atrial fibrillation exhibited a
higher concentration of cytokines, higher NF-κB activity and more severe lymphocyte infil-
tration than those in sinus rhythm. These observations imply local inflammatory responses
in the atria in atrial fibrillation [12]. The concentrations of circulating FLC κ and λ in
patients with lone atrial fibrillation were significantly different from the healthy group. The
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mechanism by which FLCs cause atrial fibrillation remains to be clarified. However, the in-
flammation associated with FLCs directly induces atrial fibrillation. Moreover, FLCs might
cause a change in membrane fluidity, which, in turn, could alter ion channel function [12].

4.5. FLCs as Biomarkers of Diabetes

Since we found that FLCs could be biomarkers of NF-κB, immune responses and
inflammation, FLCs were measured in the patients with T2DM. Circulating levels of
FLC λ were higher, and the κ/λ ratio was lower in patients with T2DM than in controls
(Figure 1) [13].
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Figure 1. Immunoglobulin-free light chains (FLCs) in patients with type 2 diabetes and healthy
controls (Adapted from [13]).

A statistical analysis showed that the area under the receiver operating curve (ROC-
AUC) of the FLC λ and κ/λ ratio was significantly larger than glycated hemoglobin
(HbA1c) [13]. The diagnostic ability for distinguishing between T2DM and controls had a
sensitivity of 0.96, a specificity of 1, a positive predictive value of 1 and a negative predictive
value of 0.96, with an optimal cutoff value of 1.3 for the FLC κ/λ ratio,. The odds ratio was
0.000018. The ROC-AUC, sensitivity, and specificity for HbA1c were 0.95, 0.86 and 0.94,
respectively, on the cutoff value of 6.2% (Figures 2 and 3).
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Figure 2. The area under the receiver operating curve (ROC-AUC) of the FLC κ, λ and κ/λ ratio and
glycated hemoglobin (HbA1c). ROC-AUC of the FLC κ/λ ratio showed the largest compared with
other FLC variables (Adapted from [13]).
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Figure 3. Comparisons of ROC-AUC between FLC variables and HbA1c. The ROC-AUC of the FLC
κ/λ ratio was larger than that of HbA1c (Adapted from [13]).

In our preliminary study, urine FLC λ and the κ/λ ratio were well correlated with sera,
suggesting that urine FLCs could be a suitable and non-invasive biomarker of diabetes
(unpublished observation). Since HbA1c cannot be measured in urine, FLCs would be
more beneficial biomarkers of diabetes than HbA1c. Since FLCs are a marker of inflamma-
tion/immune activation, their presence in diabetes confirms the inflammatory /immune
character of the disease.

Since NF-κB activation is a critical mechanism of the inflammatory cascade in devel-
oping T2DM as discussed above [8–10], it is interesting that FLC λ and κ/λ ratio are more
specific and sensitive markers for the diagnosis for T2DM than HbA1c. Therefore, FLCs
represent promising potential biomarkers of inflammation that may reflect the activation
of NF-κB.

Recently, we also found that FLC λ was higher, and the κ/λ ratio was lower in patients
with T1DM, as seen in those with T2DM (unpublished observation). The reason why
the specific activation of FLC λ occurred is unknown. B lymphocytes and plasma cells,
which produce FLC λ, may be specifically activated in diabetes [13]. Another possibility
is that FLC κ and λ are differently regulated because NF-κB may not exercise control of
the production of FLC κ and λ in the same manner [13]. NF-κB could be a target for new
types of anti-inflammatory therapy for diabetes when FLCs are changed and could be a
surrogate endpoint in the management of diabetes.

5. Targeting Inflammation for the Management of Diabetes

Several therapeutic approaches or pharmacologic agents used for diabetes are re-
ported to have anti-inflammatory properties in addition to their major mechanisms of
action. Conversely, some anti-inflammatory approaches may affect glucose metabolism
and cardiovascular health. It is suggested that targeting the inflammation may differen-
tially affect hyperglycemia and atherothrombosis. Clarifying the underlying pathogenetic
mechanisms may contribute to the development of effective new therapies for the optimal
management of both metabolic and atherothrombotic disease states [6,7].

5.1. Metformin

Cytokines and chemokines play important roles in inflammation, and some of them are
therapeutic targets for attenuating chronic inflammatory diseases [77,78]. In a large-scale
treatment trial of newly diagnosed diabetic patients, metformin decreased the neutrophil-to-
lymphocyte ratio, a marker of systemic inflammation. Metformin also inhibited circulating
cytokines and chemokines in a non-diabetic heart failure trial. These findings show that
metformin has anti-inflammatory effects in both diabetic and non-diabetic patients [79].
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Metformin attenuates the production of IL-6 and TNF-α induced by lipopolysaccharide
(LPS) and reduces the activation of NF-κB induced by TNF-α. NF-κB inhibition by met-
formin also reduces IL-1β production [80]. Metformin was shown to inhibit LPS-stimulated
chemokine expression by activating AMP-activated protein kinase (AMPK), and to inhibit
the phosphorylation of I-κBα and p65 in a macrophage cell line [78]. Metformin also
attenuated LPS-stimulated acute lung injury by activating AMPK; reducing inflammatory
cytokine, neutrophil, and macrophage infiltration; and reducing myeloperoxidase activ-
ity [81]. Metformin therapy reduced acute phase serum amyloid A, a pro-inflammatory
adipokine that is upregulated in patients with obesity and insulin resistance [82]. The
anti-inflammatory actions of metformin seem to be independent of glycemia and are most
prominent in immune cells and vascular tissues [6].

5.2. Dipeptidyl Peptidase-4 Inhibitors

Dipeptidyl peptidase-4 (DPP-4) is a transmembrane glycoprotein known as CD26,
expressed on T lymphocytes, macrophages and endothelial cells, and regulates the actions
of chemokines and cytokines involved in T cell activation. DPP-4 inhibitors suppress the
actions of NLRP3 inflammasomes, TLR4 and IL-1β in macrophages [83]. Sitagliptin and
other DPP-4 inhibitors reduce the expression or activity of TNF-α, jun amino terminal
kinase (JNK)1, Toll-like receptor (TLR) 2, TLR4, β subunit of IκB kinase and the chemokine
receptor CCR2 [84].

5.3. The Glucagon-Like Peptide 1 Receptor Agonists

The glucagon-like peptide 1 (GLP-1) receptor agonists reduce circulating inflammatory
biomarkers even in the absence of substantial weight loss. Markers of inflammation, are
reduced including reactive oxygen species, NF-κB activity, the expression of mRNAs
of IL-1β, TNF-α, JNK1, TLR2, TLR4 and SOCS-3 in mononuclear cells, and circulating
concentrations of IL-6, monocyte chemoattractant protein-1, matrix metalloproteinase-9,
and serum amyloid A [85,86].

5.4. SGLT2 Inhibitors

SGLT2 inhibitors improve cardiovascular and renal outcomes in large cardiovascular
outcome trials in patients with diabetes. SGLT2 inhibitors reduce adipose tissue-mediated
inflammation and pro-inflammatory cytokine production [87,88]. An SGLT2 inhibitor,
canagliflozin, was reported to decrease circulating levels of IL-6, TNF receptor 1, fibronectin
1 and matrix metalloproteinase 7, and contributes to improving molecular processes re-
lated to inflammation, extracellular matrix turnover and fibrosis [89]. Empagliflozin may
contribute to cardiovascular benefits in heart failure by repleting AMP kinase activation-
mediated energy and reducing inflammation [90].

5.5. Anti-IL-1 Agents

Anakinra (recombinant human IL-1 receptor antagonist) improved glycemia, reduced
CRP levels and improved β-cell secretory function [91]. The CANTOS study demonstrated
that anti–IL-1β antibody (canakinumab) treatment lowered cardiovascular events over
placebo [92]. IL-1β antagonism significantly decreased HBA1c in a subanalysis on metabolic
endpoints [93]. A T2DM meta-analysis, following the CANTOS study, demonstrated a
substantial reduction in HbA1c [94].

Therapeutic approaches to reduce inflammation may include weight-reducing diets
and lifestyles, pharmacologic or surgical approaches to weight management, statin therapy
and antidiabetic drugs. Serial measurements of FLCs in these interventions may be helpful
in the evaluation of their therapeutic efficacy as anti-inflammatory interventions. The
determination of FLCs seems suitable as an initial health screening in the general population.
When the abnormalities of FLCs are found, secondary tests such as HbA1c would be
performed and followed up for diabetes.



Biomedicines 2022, 10, 666 9 of 13

Figure 4 summarizes the risk factors, inflammation, FLCs and anti-inflammatory
therapy for diabetes.
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Figure 4. FLCs as inflammatory biomarkers of diabetes. Risk factors of diabetes such as viral infection,
hyperglycemia and obesity activate nuclear factor kappa B (NF-κB), which regulates transcription of
immunoglobulin-free light chains in the immunoglobulin-producing B cells and plasma cells and
production of many inflammatory molecules, leading to inflammation. Thus, FLCs were proposed
to be biomarkers of NF-κB activation and inflammation. Metformin, DPP-4 inhibitors and GLP-1
receptor agonists inhibit NF-κB activation and inflammation, and SGLT2 inhibitors and anti-IL-1
therapy inhibit inflammation.

6. Conclusions

Virus infection and inflammation are important factors in the pathogenesis of diabetes
mellitus. Enteroviruses are studied most frequently; however, a growing body of research
shows the potential influence of HCV and SARS-CoV-2 infections in the pathogenesis
of T1DM and T2DM. Circulating FLCs are specific and sensitive diagnostic markers for
diabetes mellitus. They may represent promising potential biomarkers of inflammation,
which may reflect activation of NF-κB. NF-κB could be a target for new types of anti-
inflammatory prevention and treatment for diabetes when FLCs are changed. FLCs could
be a surrogate endpoint in the management of diabetes. Anti-inflammatory approaches
may be promising for the prevention and treatment of diabetes mellitus. Clarifying the
underlying pathogenetic mechanisms may contribute to the development of effective new
therapies for optimal management of both metabolic and cardiovascular diseases.
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