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Abstract
In recent years, the adoption of machine learning has grown steadily in different fields affecting the day-to-day decisions 
of individuals. This paper presents an intelligent system for recognizing human’s daily activities in a complex IoT environ-
ment. An enhanced model of capsule neural network called 1D-HARCapsNe is proposed. This proposed model consists of 
convolution layer, primary capsule layer, activity capsules flat layer and output layer. It is validated using WISDM dataset 
collected via smart devices and normalized using the random-SMOTE algorithm to handle the imbalanced behavior of 
the dataset. The experimental results indicate the potential and strengths of the proposed 1D-HARCapsNet that achieved 
enhanced performance with an accuracy of 98.67%, precision of 98.66%, recall of 98.67%, and F1-measure of 0.987 which 
shows major performance enhancement compared to the Conventional CapsNet (accuracy 90.11%, precision 91.88%, recall 
89.94%, and F1-measure 0.93).
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Introduction

An Intelligent Decision Support System (IDSS) is an ideal 
approach for solving many challenges that can currently face 
the world. With the popularity and widespread of Machine 
Learning (ML) algorithms, the creation process of IDSS is 
easier and faster combined with the easy access to big data-
sets covering all aspects of our life which helped to fight 
COVID-19 virus [1]. IDSS helps physicians in detecting the 
virus in an early stage which increases the probability of 
survival of the patients. Moreover, recognizing the patients’ 
hand gestures is a popular application of IDSS in the field of 
smart healthcare systems. It alerts the staff for the patients’ 
requests in time without delays in remote monitoring envi-
ronments [2]. The importance of IDSS in the medical fields 

is especially appreciated in poor countries as the healthcare 
service is very weak and, in some places, it does not exist. 
IDSS can fill the gaps in the services by providing on-time 
and cheap service without the need for expensive equipment 
and trained personnel.

Nowadays, there is tremendous growth in IoT-enabled 
devices for empowering decision-making processes in com-
plex systems. The fast development and miniaturization of 
sensors and reduced need for power requirement leads to 
a revolution in the field of Human Activity Recognition 
(HAR). Detection of early signs of critical disease like dia-
betes [3] and heart disease [4], even detection of early signs 
of COVD-19 using smart watches’ [5] sensors data, became 
a reality.

One trend that has gained importance recently is moving 
from one size fits all in the field of medicine to Personalized 
Health Care (PHC) and medicine [6, 7]. This happened due 
to the growth in aging population and the rise of the costs of 
chronic diseases. Therefore, a new solution is needed for this 
problem. This solution should include new ways to monitor 
and measure the vital signs of every patient to tailor and cus-
tomize the medication plan for specific needs. This can be 
achieved through using ML and the Internet of Things (IoT) 
through using suitable sensors around the patient which send 
the data continuously to the doctors and hospitals to make 
informed decisions. Such information is used to help the 
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beneficiaries regarding controlling the daily-life activities 
[8].

The idea behind this paper is to develop an IDDS for 
automatically collecting and classifying the daily-life activi-
ties through integrating the power of IoT with ML algo-
rithms. This provides the things in this system with such 
intelligence that can sense, understand, and act according 
to the information collected through the sensors installed on 
personal smart phones. The rest of this paper is organized as 
follows. "Related work" provides some related works. "The 
proposed model" discusses the proposed work. "Evaluation 
and results" presents an evaluation of the proposed model 
and discusses the results. "Conclusion and future work" pro-
vides conclusions and future suggested work.

Related work

Dorgham et al. [9] proposed a modern hybrid evolutionary 
approach that incorporates Genetic Algorithm (GA) with 
efficient evolutionary techniques. A Decision Support Sys-
tem (DSS) was implemented to assist hospital personnel 
in the assignment operation. The authors demonstrated the 
efficacy of the proposed approach to solve many benchmark 
instances recorded in the literature relevant to the smart 
health-care system using a true deep experimental analysis. 
In addition, their hybrid algorithm outperforms powerful 
approaches from the literature that have the best-known 
outcomes.

Zhou et al. [10] proposed HAR model based on Long-
Short Term Memory (LSTM) Deep Learning (DL) algo-
rithm for empowering the Internet of Healthcare Things 
(IoHT). It used deep Q-network for automatic labeling of 
data with reward-based on the distance to handle the issue 
of lack of labeled data. Then, the fusion of user’s body sen-
sors data and environmental data were applied for feeding 
the model. The results showed that this work outperformed 
other approaches like SVM, DNN, and Random Forest (RF) 
with a ROC curve up to 0.95.

Anguita et al. [11] proposed a system based on Sup-
port Vector Machines (SVM). The data is collected using a 
smartphone (Samsung Galaxy S2). Each person of the par-
ticipants is doing a different activity: laying, walking, sitting, 
standing, walking up-stairs, and walking down-stairs. The 
results of the experiments are conducted through comparing 
two versions of SVM. The performance of the first version, 
Multi-Class SVM, achieves 89.3% accurate regarding pre-
dicting six different classes. However, the second version, 
Multi-Class Hybrid Fusion SVM, achieves 89% accuracy.

Murad et al. [12] suggested using deep recurrent neural 
network (DRNN) model. This model helps capturing the 
entire long-range of relations in the input data rather than 
being restricted to the size of the kernel window. Also, the 

model uses three different architectures: unidirectional, 
bidirectional, and cascading. Performance using DRNN 
with other algorithms on UCI-HAR dataset is concluded as 
follows: DRNN has reached the highest accuracy of 96.7% 
compared to 96% from SVM, and 95.2% from convolution 
neural network (CNN) and outperformed the others (SVM, 
K-nearest neighbor, and CNN).

Another proposed an approach for HAR using Deep 
Belief Neural Network (DBNs) which is built by sequentially 
stacking multiple Restricted Boltzmann Machines (RBM) 
[13]. They used a deep activity recognition model with three 
layers of one thousand neurons each. The results showed that 
their approach is better than the traditional methods. Also, 
their results showed that a hybrid DL and Hidden Markov 
Model (HMM) achieved recognition accuracy of 99.13%.

Chen and Xue [14] presented a CNN model for HAR 
through modifying the convolution kernel for the purpose of 
adapting the characteristics of tri-axial acceleration signals. 
The results showed that their model achieved an accuracy of 
93.8% with no using of feature extraction based on a dataset 
of 31,688 samples gathered from nine activities.

Qin et al. [15] proposed a unique architecture for HAR 
that utilized data from multiple sensors. This system con-
verts time series data collected from sensors into images. 
These transformed images were used to keep required fea-
tures and patterns for the task of HAR. For enabling the 
model to be trained and evaluated on the collected data from 
different sensors, the authors used a fusion residual network 
by merging two networks and training different data pixel-
wise correlations. This model provided state-of-the-art per-
formance with an accuracy of 93.41% on HHAR dataset and 
98.5% on MHEALTH dataset.

Xia et al. [16] proposed a deep learning model that fuses 
LSTM layers with convolution layers to draw out the activity 
attributes without human interference in the feature selection 
process and classify them correctly. This model collected 
smartphone sensor data and fed it to two-layer LSTM fol-
lowed by the convolution layers. The evaluation of the model 
was carried out on three public datasets. It achieved an accu-
racy of 95.85%, 95.78%, and 92.63% on WISDM UCI-Har, 
and OPPORTUNITY datasets, respectively.

Irvine et al. [17] proposed data driven HAR classifier as 
an ensemble of neural networks (NNs) for improving the 
quality of the public datasets. They used an ensemble of four 
NNs which generated and integrated using support function 
fusion. They introduced different approaches for handling 
the disputes between the different models. The final ensem-
ble model achieved the best performance that reached an 
accuracy of 80.39%.

Mliki et al. [18] proposed an approach to HAR using non-
invasive means depending on UAV-taken video sequence of 
human movement. This approach consists of two stages. The 
first is an offline stage that generates two CNN models (i.e., 
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human/ non-human and the human activity model). The sec-
ond is the inference stage that is concerned with indicating 
humans and their activities by adapting CNN. This system 
outperformed other methods on UCF-ARG dataset with an 
accuracy of 56% using instance classification and 68% on 
the entire sequence of frame classification.

Soleimani et al. [19] proposed a new method called Sub-
ject Adaptor Generative Adversial Network (SA-GAN). This 
method helps in handling the issue of the lack of big enough 
labeled data. The proposed model used GAN framework 
to execute cross-subject transfer learning in the domain 
of HAR depending on the data collected from wearable 
devices. In more than 66% of experiments, the model outper-
formed other compared approaches, while in the remaining 
25% of experiments, it came in second. This work reached 
of 90% of the accuracy by supervised training over the same 
domain data in some cases.

Mazzia et al. [20] presented a modified version of capsule 
networks by substituting the dynamic routing with a novel 
non-iterative, highly parallelizable routing algorithm that 
can handle a smaller number of capsules with ease. Exten-
sive testing with other capsule implementations has shown 
the efficacy of their approach and the potential of capsule 
networks to effectively embed more generalizable visual 
representations.

Jiang et al. [21] used artificial neural network (ANN) 
to approximate the time-dependent distributions of non-
Markovian models using solutions of much simpler time-
inhomogeneous Markovian models; the approximation does 
not increase the model's dimensionality while also allow-
ing the kinetic parameters to be inferred. This network is 
trained using a small number of noisy measurements derived 
from experimental data or stochastic simulations of the non-
Markovian model. They showed that the Markovian mod-
els learned by the NN is accurately reflecting the stochastic 
dynamics across parameter space using a range of models 
where the delays are caused by transcriptional processes and 
feedback control.

Attal et  al. [22] applied and compared some ML 
approaches: k-Nearest Neighbor (kNN), SVM, Gaussian 
Mixture Models (GMM), RF, k-Means, Gaussian mix-
ture models (GMM), k-Means, Gaussian mixture models 
(GMM), and HMM for HAR. The dataset contains some 
main daily living human activities. Some of these activities 
are walking, lying, and standing. They used three inertial 
wearable accelerometers placement on the human body data-
set. Raw data and extracted/selected features were input for 
the classifiers. The results showed that that KNN has the 
high performance among all compared approaches. Also, 
they showed that MM has better performance among the 
compared unsupervised classifiers.

Shoaib et  al. [23] collected data from 13 human 
activities performed indoors. In these experiments, each 

participant had a mobile phone in his right pocket and 
another at his right wrist. Three motion sensors at the 
wrist and pocket positions based on different scenarios 
were evaluated. The authors extracted different features for 
these sensors over different window sizes without overlap. 
They used Scikit-learn toolkit for analyzing the perfor-
mance. Naive Bayes (NB), KNN, and decision tree were 
applied for practical simple and complex activity recogni-
tion. Also, they used ten-fold stratified cross-validation. 
Results proved that there is relatively smaller enhanced 
recognition because of data combination taken through 
different sensors at pocket and wrist positions. Also, 
they showed that increasing size of the window leads to 
improve the recognition results of various complex activi-
ties. However, this factor has a limited effect on the simple 
activities.

Garcia et al. [24] presented an ensemble called EkVN 
for HAR. It combines kNN, Decision Tree, and NB. It is 
based on heuristic hand-crafted feature extraction. The fea-
tures were extracted from accelerometer, magnetometer, 
and gyroscope sensors. The results showed the accuracy 
of EkVN is more sensitive to data from different users to 
the window size and to the overlapping factor. Also, they 
[25] presented a multi-classification approach called EAE 
for HAR using an ensemble of Auto-Encoders (AEs). In 
EAE, each AE is trained with data for unique class for 
reconstructing the sensor measurements; each AE is asso-
ciated with a label/activity. EAE can be updated with the 
user’s data when loss drops are occurred below a known 
value. The results of experimentations based on WISDM, 
MHealth, and PAMAP2 HAR datasets showed that EAE 
is efficient and competitive among all compared works. 
Also, they showed that structure of this modular classifier 
can permit for more flexible models.

Dua et  al. [26] developed a DNN-based model that 
uses CNN, as well as a Gated Recurrent Unit as an end-
to-end model that performs automatic feature extraction 
and activities classification. The raw data is utilized from 
wearable sensors without using neither pre-processing 
nor customized features extraction. This work achieved 
96.20%, 97.21%, and 95.27%, respectively, on UCI-HAR, 
WISDM, and PAMAP2 datasets. Overall, the results 
showed that the performance of the suggested model out-
performed other compared works.

Rashid et al. [27] proposed a low-power edge device-
friendly Adaptive CNN for energy-efficient HAR called 
AHAR. During the inference phase, AHAR employs an 
adaptive design that choices a component of the baseline 
design to use. Two datasets, Opportunity and w-HAR, were 
used to validate the work for categorizing locomotor activi-
ties. This work achieved a weighted F1 score of 91.79% and 
91.57%, respectively, when compared to fog/cloud comput-
ing techniques for the first dataset. Also, it achieves F1 score 
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of 97.55% and 97.64%, respectively, on the w-HAR dataset. 
When compared to the works on the both datasets, this work 
is much more energy-efficient (422.38 × less) and memory-
efficient (14.29 × less).

Mekruksavanich et al. [28] proposed a revolutionary 
hybrid model called CNN-LSTM to handle HAR problem. 
It is a deep learning multichannel architecture. Using DHA 
public dataset of smart-watch accelerometer, the results 
proved that this model exceeds other compared deep learn-
ing approaches in terms of different performance measures. 
It achieved 96.87% accuracy.

For the HAR challenge, Athavale et al. [29] presented a 
pre-trained VGG16 model. This CNN model is used to learn 
the deep features. The signal classification of human activity, 
which is recorded by the accelerometer sensor of the mobile 
phone, was done using VGG16. The accelerometer sensor on 
a smartphone records these data. The features were trained 
using VGG16 CNN model is fifth max-pooling layer and 
fed to SVM. The fully connected layer of this model was 
replaced by the SVM classifier. This work achieved 79.55% 
accuracy and 71.63% F-Score based on UniMiB dataset that 
includes samples of human everyday life activity.

Shang et al. [30] proposed a WiFi-based HAR system. 
This system can determine different activities via the Chan-
nel State Information (CSI) from WiFi devices. They pre-
sented a special deep learning framework, LSTM-CNN. It 
can automatically extract features from temporal and spatial 
domains. The authors proved the effectively of their work in 
classifying different activities. Also, the experimentations 
results proved that this work is better than the compared 
models on HAR of CSI data; it achieves an average accuracy 
of 94.14% in multi-activity classification.

Poma et al. [31] presents a way to search for the best 
number of filters for each convolution layer of a CNN. They 
advocated searching for the best number of filters in the con-
volution layer of CNN. In addition, to identify the param-
eters of the fuzzy system memberships, they applied Fuzzy 
Gravitational Search Algorithm approach. ORL dataset is 
used that contains 40 images of different human faces with 

ten images for each face. The results proved that this work 
achieves a high%age of recognition.

The proposed model

This paper proposes an intelligent decision support system 
for recognizing the human’ daily activities that feed the 
sensing data to the recognition model after handling their 
imbalanced issues. Figure 1 show our overall proposed 
framework. It has three steps:

• Data collection Tri-axial accelerometers which are inte-
grated in the smartphone have been used for gathering 
3D time-series data that represent the linear accelera-
tion based on vibration in three directions X, Y and Z. 
Our model uses the raw Wireless Sensor Data Mining 
(WISDM) dataset [32].

• Balancing dataset This is done by applying the random 
oversampling technique to handle the issues of biased 
dataset.

• Activity recognition A modified version of 1-D capsule 
neural network was used to recognize the activities which 
were exercised and notify the user with the activity class 
in accordance with the sensor’s readings.

Using over‑sampling for balancing the dataset

In WISDM dataset [32], the samples that represent walk-
ing and jogging activity classes out-number the samples of 
the other classes by large margin. Due to the imbalanced 
behavior of WISDM dataset that adversely affect the per-
formance of the classifier, the Random-SMOTE algorithm 
[33] is used to increase the number of the minority class 
to reach the optimal balanced ratio of 1:1. This is done by 
randomly selecting examples from the minority class and 
adding them to the training dataset. For a dataset that has 
N attributes, taking an attribute n as a sample, the new 

Fig. 1  The overall proposed 
framework
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value is randomly generated using the Random-SMOTE 
algorithm [33].

Proposed 1D capsule neural network for HAR

A capsule neural network (CapsNet) is a newly developed 
machine learning that was introduced in [34] as a develop-
ment of CNN. The idea behind its architecture came from 
adding structures known as “capsules” to a CNN. Capsules 
are structures of neurons that are activated when a set of 
attributes are related to a class activity. Usually, an artifi-
cial neuron produces a single value and formally a scalar 
value is related to the probability of the existence of the 
class in the feature vector. In CapsNet, the scalar output is 
replaced with the vector-based capsules. The output of the 
higher capsule (parent) is computed by the scalar product 
of the coefficient representation of the probabilities of its 
related lower capsules (children). The closer the child to 
the parent is, the higher the coefficient between the parent 
and the child is. In this paper, we propose 1D-HARCapsNet 
model as a modified version of 1D capsule neural network 
presented by Suri and Gupta [35]. The proposed model is 
applied for recognizing the human activities based on the 
immediate observations of the human actions. Instead of 
using a single level of convolutional layer, 1D-HARCap-
sNet architecture implements three levels 1- D convolutional 
layer (3-Conv1D). The rest of the architecture comprises 
the primary capsule layer, the activity capsule layer, and the 
output layer. Figure 2 shows the structure of the proposed 
1D-HARCapsNet from the input to the output.

The input data has 80 3D vectors (80 × 3). The model 
feeds the data to three consequent levels of convolution 
layer (3-Conv1D) of sizes (80 × 3, 51 × 256 and 42 × 512) 

respectively. Next, it uses the primary capsule convolution 
layer of size 40 × 1024 where its generative output is sent 
to the fully connected activity layer that produces a scalar 
vector. Finally, this value is passed to the output layer which 
generates the most likely target class. Table 1 illustrates the 
structure of the proposed 1D-HARCapsNet model.

The 3‑Conv1D layer

Input data samples with (80 × 3) size represent 80 data 
point wide with the height of three data points are fed into 
a sequence of three Conv1D with different activation func-
tions to construct the feature maps. The first level of the 
3-Conv1D implements 256 filters with a kernel size of 
(30 × 30) and uses the tanh activation function to calculate 
the hyperbolic tangent value of the given input. The output is 
51 data points wide and the height is 256 data points which 
is sent to the next level. The Second level implements 512 
filters with a kernel size (10 × 10) and uses the ReLu acti-
vation function that generates the input directly if it is not 
negative, otherwise it will output zero. The output of this 
level is 42 data points wide and 512 data point height which 
is sent to the last level of the 3-Conv1D layer. The third level 
implements 1024 filters with a kernel size (3 × 3) and uses 

Fig. 2  Structure of proposed 1D-HARCapsNet

Table 1  Structure of proposed 1D-HARCapsNet

Three level convolution 
(3-Conv1D)

Capsule layer Activity 
layer

Output 
layer

1st level 2nd level 3rd level (1-Conv1D) 
layer

80 × 3 51 × 256 42 × 512 40 × 1024 6 × 10 1 × 1



 Complex & Intelligent Systems

1 3

the tanh activation function. Totally, the output of this layer 
is 40 data points wide and 1024 height data points which is 
sent to the next layer as an array of feature maps for further 
processing.

The primary capsule layer

The primary capsule layer is a 1-D convolution (Conv1D) 
layer with a kernel size (30 × 30). It implements the reshape 
function to convert the array of the feature maps into the 
corresponding vectors. Finally, it is passed to the squashing 
function to convert the vector output to a value between 0 
and 1.

The activity capsule layer

It replaces each capsule in the network with its actual class 
activity by implementing the dynamic routing algorithm. 
Routing by agreement is based on the ability of the lower 
capsule (i) in the primary capsule layer to predict the output 
of the higher capsule (j) in the activity capsule layer.

For each capsule i and capsule j, the prediction of the 
output of capsule j is denoted by Uj|i and calculated by Eq. 1:

where ui represents the output of the capsule i  and Wij is 
the weight matrix. Next, the total input Si to capsule j in the 
activity capsule layer is calculated using a weighted sum 
overall the prediction vectors as given in Eq. 2.

(1)Uj|i = Wijui,

(2)Si =
∑

i

CijUj|i,

where Cij are the coupling coefficients between the capsule i 
and all the capsules in the higher layer. It is calculated using 
a routing softmax function as given in Eq. 3.

where bij indicates log prior probability of the capsule j in 
coupled to capsule i, k. Finally, the scalar output vector of 
capsule j is obtained by applying a non-linear squashing 
function to its total input according to Eq. 4.

The output layer

The output layer is a fully connected layer that consists of 
240 sigmoid units that predicts the most likely target class 
activity y based on the scalar vector x as illustrated in Eq. 5.

Evaluation and results

In the evaluation process, the widely used criteria such as: 
accuracy, precision, recall, and F-measure will be used. All the 
four criteria depend on the confusion matrix [36].

Evaluation criteria

Multiple performance evaluation criteria are used for ensuring 
the improvement of the proposed model compared to other 
existing models. The confusion matrix [36] is one of the most 
used evaluation metrics in the field of machine learning. Cor-
rect predication is considered as True Positive (TP), but if it is 
negative and is predicted as such, it is considered True Nega-
tive (TN). If it is negative and classified as positive, this is con-
sidered False Positive (FP). In case it is positive and classified 
as negative, this is considered False-Negative (FN). The con-
fusion matrix values are used for measuring other important 
metrics such as: geometric mean, accuracy, error rate, recall, 
and F1-measures). Accuracy [37] is the correctly predicted 

(3)cij =
exp

�
bij
�

∑
k exp

�
bik

� ,

(4)vj =

|||
|||Sj

|||
|||
2

1 +
|||
|||Sj

|||
|||
2

Sj

|||
|||Sj

|||
|||
.

(5)y =
1

1 + e−x
.

Table 2  Raw examples distribution

Walking Jogging Upstairs Downstairs Sitting Standing

38.6% 31.2% 11.2% 9.1% 5.5% 4.4%

Table 3  The hyper parameters of the proposed 1D-HARCapsNet

Epochs Learning rate Routing Weights

25, 50 0.001, 0.002 5, 10 0.002, 0.003, 0.004, 0.005

Table 4  Experiments hardware specifications

Graphical processing unit (GPU) Central processing unit (CPU) Hard disk Operating system

NVIDIA Tesla P100—16 GB Ram Single core Intel Xeon CPU -2.3 GHz 73 GB Linux-SMP Debian
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Table 5  Recognition results of 
conventional CapsNet model 
[35]

Hyper parameters Recognition results

#Epoch Learning rate #Routing Weights Accuracy (%) Precision (%) Recall (%) F-measure

25 0.001 5 0.004 87.91 90.52 87.92 0.882
5 0.005 88.70 91.46 88.88 0.891
10 0.004 67.43 86.53 67.71 0.709
10 0.005 67.97 86.79 68.29 0.715

0.002 5 0.004 69.70 84.75 69.87 0.724
5 0.005 78.41 82.16 78.41 0.786
10 0.004 66.95 81.69 67.07 0.693
10 0.005 69.15 82.1 69.24 0.716

50 0.001 5 0.004 90.11 91.81 89.94 0.903
5 0.005 70.41 86.97 70.65 0.735
10 0.004 65.31 82.05 65.45 0.679
10 0.005 67.43 82.73 67.52 0.702

0.002 5 0.004 74.73 80.69 74.94 0.747
5 0.005 70.72 80.69 71.05 0.716
10 0.004 16.33 2.72 16.67 0.047
10 0.005 74.1 84.89 74.78 0.728

25 0.001 5 0.002 75.12 88.26 75.44 0.778
5 0.003 76.37 87.98 76.39 0.780
10 0.002 69.31 87.28 69.56 0.727
10 0.003 67.03 86.02 67.21 0.705

0.002 5 0.002 83.59 89.54 83.26 0.838
5 0.003 70.8 87.1 71.04 0.739
10 0.002 73.39 82.39 73.35 0.745
10 0.003 64.13 80.97 64.3 0.668

50 0.001 5 0.002 71.51 86.47 71.86 0.744
5 0.003 86.73 90.29 86.78 0.873
10 0.002 67.43 83.3 67.48 0.7
10 0.003 72.68 86.46 72.86 0.753

0.002 5 0.002 76.06 87.71 76.67 0.757
5 0.003 70.96 84.64 71.55 0.698
10 0.002 17.82 2.97 16.67 0.05
10 0.003 75.98 81.88 76.18 0.765

50
55
60
65
70
75
80
85
90
95

100

Accuracy Percision Recall F-measure

Test Case 1

Test Case 2

Test Case 3

Test Case 4

Test Case 5

Test Case 6

Test Case 7

Test Case 8

Fig. 3  Evaluation results of the suggested test cases (1–8) for 
1D-HARCapsNet

50
55
60
65
70
75
80
85
90
95

100

Accuracy Percision Recall F-measure

Test Case 9

Test Case 10

Test Case 11

Test Case 12

Test Case 13

Test Case 14

Test Case 15

Test Case 16

Fig. 4  Evaluation results of the suggested test cases (9–16) for 
1D-HARCapsNet
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F1-measure [37] is also called F-measure. It presents the 
harmonic means between precision and recall as illustrated 
in Eq. 9:

Wireless sensor data mining (WISDM) dataset

WISDM time-series dataset is used for the task of (HAR) 
using the tri-axial accelerometer sensor on most android smart-
phones [32]. It consists of 1,098,207 different examples and 
each one consists of six different attributes with class distri-
bution [walking: 424,400 (38.6%), jogging: 342,177 (31.2%), 
upstairs: 122,869 (11.2%), downstairs: 100,427 (9.1%), sit-
ting: 59,939 (5.5%), standing: 48,395 (4.4%)] as illustrated 
in Table 2.

The hyper parameters of the proposed 
1D‑HARCapsNet

This paper introduces 1DHARCapsNet model with the follow-
ing hyper parameters. The number of epochs is 25 and 50, the 
learning rate values are 0.001 and 0.002, the number of routing 
are5 and 10, and the initial weights are 0.002, 0.003, 0.004 and 
0.005 as illustrated in Table 3.

Recognition experiments of the proposed 
1D‑HARCapsNet

We have conducted our experiments on Kaggle cloud in which 
the dataset was split into 80% for training and 20% for testing. 
Table 4 shows the used hardware specifications.

The performance of the proposed 1D-HARCapsNet model 
is compared with the conventional one-dimensional deep cap-
sule network architecture [35] having the same hyper param-
eters indicated in Table 3. A series of experiments were con-
ducted to evaluate the results by constructing different 32 test 
cases generated using the suggested hyper parameters. Table 5 
illustrates the variation of the conventional CapsNet recogni-
tion results. The best achieved results are 90.11% accuracy, 
91.81% precision, 89.94% recall and 0.903F-measure. Table 5 
results on the WISDM dataset using the modified architecture 
without applying Random SMOTE. Table 7 illustrates the var-
iation of the proposed system recognition results. In this model 
the data is balanced using random SMOTE algorithm and then 
it is being fed to the proposed structure of 1D-HARCapsNet 
with the above-mentioned hyper parameters. Figures 3, 4, 
5 and 6 show the evaluation results of the constructed test 
cases. The accuracy values varied from 73.39 to 98.67%, the 

(8)Recall (TPR) =
TP

TP + FN
.

(9)F1-measure =
2 × Precision (PPV) × Recall (TPR)

Precision (PPV) + Recall (TPR)
.
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Fig. 5  Evaluation results of the suggested test cases (17–24) for 
1D-HARCapsNet
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Fig. 6  Evaluation results of the suggested test cases (25–32) for 
1D-HARCapsNet

samples rate. It is the ratio between correctly predicted sam-
ples to the total number of samples due to its straightforward 
meaning. It is one of the most used metrics in the field of the 
machine learning evaluation as illustrated in Eq. 6:

Precision (positive predictive) [37] is the ratio of correctly 
predicted positive class to the total number of the positive pre-
dicted samples in the dataset as illustrated in Eq. 7:

Recall or hit rate or true positive rate (TPR) is also known 
as sensitivity such as in [37]. It is the rate of corrected pre-
dicted samples to the total number of positive samples in the 
dataset as illustrated in Eq. 8:

(6)Acc =
TP + TN

TP + Tn + FP + FN
.

(7)PPV (Precision) =
TP

FP + TP
.
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precision values varied from 76.97 to 98.66%, the recall values 
varied from 73.77 to 98.67% and the F-measure values varied 
from 0.724 to 0.987. The best recognition results achieved are 
based on using the values of 25, 0.002, 10 and 0.002 for the 
number of epochs, learning rate, routing, and weights, respec-
tively (Tables 6, 7).

Comparing the proposed model against other 
models

Table 8 illustrates the obtained accuracy, precision, recall and 
F-measure of our proposed model compared with the state-
of-the-art models [38–45] on raw version of WISDM dataset. 
The Accuracy of the proposed model has the highest accu-
racy of 98.67%. In the second place, Spatio-Temporal Deep 

Learning [46] has accuracy of 98.53%, in third-place Deep 
learning low power device [41] has accuracy of 98.2% while 
in the third-place, CNN + BLSTM [44] has accuracy of 97.8%. 
Based on Precision, the proposed model has achieved the high-
est precision of 98.66%. In the second place, Random Forest 
Classifier [43] has precision of 98.1% while in the third-place 
CNN + BLSTM [44] has precision of 97.8%. Based on recall, 
the proposed model has achieved the highest recall of 98.67%. 
In the second place, Random Forest Classifier [43] has recall 
of 98.1% while in the third-place, CNN + BLSTM) [44] has 
recall of 97.8%. On basis F-measure, the proposed model has 
achieved the highest F-measure with 0.987. In the second the 
place, the Random Forest Classifier [43] has 0.981of F-meas-
ure while in the third place, CNN + BLSTM [44] has 0.978 of 
F-measure. Generally, the proposed model has performed the 
best across the four performance evaluation criteria.

Table 6  Results of a modified 
architecture without applying 
random-SMOTE algorithm on 
the WISDM dataset

Hyper parameters Recognition results

#Epoch Learning rate #Routing Weights Accuracy (%) Precision (%) Recall (%) F-measure

25 0.001 5 0.004 95.09 94.5 91.75 0.930
5 0.005 96.0 95.0 93.33 0.941
10 0.004 96.55 95.62 93.91 0.947
10 0.005 96.73 96.45 94.85 0.956

0.002 5 0.004 78.91 82.31 70.26 0.736
5 0.005 81.82 88.59 70.91 0.76
10 0.004 79.82 73.7 74.46 0.682
10 0.005 81.45 74.71 75.75 0.706

50 0.001 5 0.004 90.18 91.82 85.47 0.875
5 0.005 89.09 93.56 93.56 0.896
10 0.004 94.18 94.7 91.5 0.929
10 0.005 94.18 95.15 91.38 0.93

0.002 5 0.004 86.0 78.07 77.92 0.732
5 0.005 82.91 77.02 75.8 0.716
10 0.004 81.64 78.59 72.93 0.69
10 0.005 71.09 64.83 60.11 0.532

25 0.001 5 0.002 95.82 94.03 93.85 0.939
5 0.003 95.82 94.19 93.82 0.94
10 0.002 96.0 95.07 94.38 0.947
10 0.003 96.0 94.19 93.56 0.939

0.002 5 0.002 75.27 78.76 61.21 0.646
5 0.003 80.18 81.53 73.31 0.753
10 0.002 77.45 76.2 69.37 0.646
10 0.003 77.45 75.29 69.7 0.641

50 0.001 5 0.002 86.18 91.22 77.17 0.823
5 0.003 87.09 91.82 82.84 0.862
10 0.002 91.64 89.98 86.43 0.875
10 0.003 93.82 94.78 90.93 0.926

0.002 5 0.002 88.55 81.83 83.44 0.815
5 0.003 83.64 88.44 73.15 0.762
10 0.002 84.73 83.78 78.31 0.796
10 0.003 89.64 88.27 84.65 0.862
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Conclusion and future work

In this paper, a modified version of the 1-D capsule neural 
network called 1DHARCapsNet was proposed to provide 
an efficient intelligent decision support approach for rec-
ognizing the human activity. We implemented the Ran-
dom SMOTE algorithm to handle the issue of imbalanced 
behavior of WISD dataset. The proposed model comprises 
four layers: 3-Conv1D layer, the primary capsule layer, the 
activity capsule layer, and the output layer. The experi-
mental results were evaluated on a raw version of WISDM 
dataset. The performance was assessed based on the four 
criteria: accuracy, precision, recall, and F-measure. Com-
pared to the state-of-the-art algorithms, the proposed 

model proved its ability to recognize the human activity 
and outperform the others.

In the future studies, we suggest using Gray Wolf Opti-
mizer (GWO) [50] for feature selection to improve the 
performance to surpass the-state-of-the-art algorithms 
and to provide optimal performance. GWO helps reducing 
the effects of noise and redundancy of data on the overall 
performance of the system, especially accuracy. Also, in 
the future work, optimization of the proposed model for 
different embedded devices will be performed to embed 
the classifier within power constrained microcontrollers, 
and to ensure the security of user’s data and preserve its 
privacy.

Table 7  Results of 1D-HARCapsNet based on the hyper parameters

Hyper parameters Test cases Recognition results

#Epoch Learning rate #Routing Weights T1 Accuracy (%) Precision (%) Recall (%) F-measure

25 0.001 5 0.004 T2 96.39 96.52 96.39 0.964
5 0.005 T3 96.31 96.54 96.26 0.963
10 0.004 T4 95.37 95.77 95.34 0.955
10 0.005 T5 96.47 96.55 96.5 0.965

0.002 5 0.004 T6 80.77 84.0 80.9 0.808
5 0.005 T7 84.69 85.9 84.75 0.848
10 0.004 T8 81.24 83.5 81.38 0.815
10 0.005 T9 73.39 76.97 73.77 0.724

50 0.001 5 0.004 T10 96.55 96.63 96.57 0.966
5 0.005 T11 96.86 97.06 96.83 0.969
10 0.004 T12 94.74 95.49 94.68 0.949
10 0.005 T13 93.33 93.66 93.37 0.934

0.002 5 0.004 T14 89.48 89.72 89.59 0.894
5 0.005 T15 89.09 89.66 89.13 0.893
10 0.004 T16 89.32 89.83 89.65 0.893
10 0.005 T17 81.79 83.38 82.29 0.812

25 0.001 5 0.002 T18 98.19 98.21 98.18 0.982
5 0.003 T19 98.12 98.12 98.15 0.981
10 0.002 T20 98.50 98.49 98.52 0.985
10 0.003 T21 98.51 98.51 98.52 0.985

0.002 5 0.002 T22 98.27 98.27 98.28 0.983
5 0.003 T23 98.51 98.52 98.53 0.985
10 0.002 T24 98.67 98.66 98.67 0.987
10 0.003 T25 98.43 98.43 98.44 0.984

50 0.001 5 0.002 T26 97.49 97.59 97.45 0.975
5 0.003 T27 94.82 95.54 94.74 0.949
10 0.002 T28 96.39 96.77 96.33 0.965
10 0.003 T29 96.23 96.51 96.21 0.963

0.002 5 0.002 T30 96.31 96.66 96.27 0.964
5 0.003 T31 96.39 96.7 96.35 0.965
10 0.002 T32 55.42 84.27 54.92 0.589
10 0.003 T33 94.98 95.6 94.9 0.951
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were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
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need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
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