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Polyp segmentation is an important task in early identification of colon polyps for prevention of colorectal cancer. Nu-
merous methods of machine learning have been utilized in an attempt to solve this task with varying levels of success.
A successful polyp segmentation method which is both accurate and fast could make a huge impact on colonoscopy
exams, aiding in real-time detection, as well as enabling faster and cheaper offline analysis. Thus, recent studies
have worked to produce networks that are more accurate and faster than the previous generation of networks (e.g.,
NanoNet). Here, we propose ResPVT architecture for polyp segmentation. This platform uses transformers as a back-
bone and far surpasses all previous networks not only in accuracy but also with a much higher frame rate which may
drastically reduce costs in both real time and offline analysis and enable thewidespread application of this technology.
Introduction

A colon polyp is a growth that forms on the lining of the colon and rec-
tum. Polyps are found in about 30% of the adult population over the age of
50. Most colon polyps are harmless. But over time, some colon polyps prog-
ress into colon cancer, which may be fatal when discovered at its later
stages. Colorectal cancer is the third most common cancer diagnosed in
the USA, with a rate of about 38 new cases per 100 000 people and the
death rate of about 13 per 100 000 people per year.1 Early detection of
polyps by colonoscopy exam is critical for the prevention of colon cancer.2

The colonoscopy exam has emerged as an effective, minimally invasive tool
for diagnosing polyps by examining the gastrointestinal tract and is per-
formed by highly trained endoscopists. Still, recent clinical investigations
have shown that the current colonoscopy process misses 22%–28% of
polyps. These false negatives can lead to late diagnosis of colon cancer, re-
sulting in a poor prognosis. During the exam, the doctor uses a colonoscope,
a long flexible tube about the width of a finger with a light and small video
camera on the end, inserted through the anus to view the inside of the colon
and rectum. Special instruments can be passed through the colonoscope to
take a biopsy or remove any suspicious-looking areas such as polyps, if
needed.3 The structure of a polyp varies depending on its stage of progres-
sion. Variations in structure, size, and color of the polyp, as shown in Fig. 1,
may make them difficult to identify. Tiny polyps are particularly
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challenging as they don’t have distinguishable contrast from the normal
surrounding lining, and thus even a well-trained physician and even
classical image processing methods cannot achieve acceptable detection
results.

Furthermore, real-time differentiation and classification of polyps (i.e.,
adenomatous or hyperplastic) may allow for strategic therapeutic decisions
during the colonoscopy procedure (such as “resect and discard” or “diag-
nose and leave"). A number of deep learning methods have been developed
in order to address these issues, and some have achieved impressive results.
The main shortcoming of the deep learning network solutions is their slow
run time, and as a result, they cannot be run in real time during a colonos-
copy exam. To overcome the above issues, our work presented in this paper
contributes the following:

• Construction of a new polyp segmentation architecture, named ResPVT,
that contains a pyramid vision transformer (PVT) as an encoder to extract
more powerful and robust features, a fusionmodule for the high-level fea-
tures (semantic cues and location), and ResBlock for the low-level fea-
tures (color, edges, etc.).

• Achievement of the highest frames-per-second (FPS) along with state-of-
the-art (SOTA) results in performance metrics on different datasets (such
as Kvasir-SEG dataset4), Compared to other SOTA such as NanoNet5

ResUNet++,7 ResUNet++ + CRF.8
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Fig. 1.Representative segmentationmasks by our model on the Kvasir-SEG dataset.
The first column represents the original images from Kvasir-SEG dataset, the second
column represents the pixel-level mask (ground truth), and the third column
represents the semantic mask prediction from our model.
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Related work

Classic methods

Early works proposed methods for solving the problem of polyp seg-
mentation using classical methods of image processing.9 These methods
did not perform well because of the similarity between the polyp and the
surrounding background.

Convolution networks

Deep learning methods10–12 improved the performance of polyp seg-
mentation tasks. Recently, encoder–decoder models such as U-Net,13

ResUNet,14 and ResUNet++,7 have achieved better performance com-
pared to previous methods. Jha et al.8 applied Conditional Random Field
(CRF) post-processing to improve the model’s ability to capture contextual
information of the polyps and thus improve overall results. Thambawita et
al. applied thefirst pyramid-based augmentation to the polyp segmentation
task15 while Jha et al. designed a real-time polyp segmentation method
called ColonSegNet.16 Although it achieved higher FPS, its overall perfor-
mance was inferior when compared to other methods. Jha et al.5 designed
a lightweight model for real-time polyp segmentation called NanoNet
which achieved better performance and includes 3 different architectures:
NanoNet-A, NanoNet-B, and NanoNet-C. Each architecture consists of dif-
ferent feature channels in its decoder block. We will focus on NanoNet-A,
feature with low FPS, high accuracy, and a large number of parameters,
and NanoNet-C (high FPS, low accuracy, small number of parameters).

Transformers networks

Transformers were first proposed in the area of natural language pro-
cess (NLP) and achieved notably good results.17 They are made up of
multi-head self-attention (MHSA) layers to model long-term dependencies.
Dosovitskiy et al.18 proposed the first shifted transformermethod fromNLP
to computer vision classification tasks, called vision transformer (ViT). The
ViT network divides an image into patches, converts these patches to em-
bedding, and then feeds them as sequences equivalent to the embedding
2

in language processing to find the attentions between each other. Although
ViT is applicable to image classification, it is challenging to directly adapt it
to pixel-level density predictions such as object detection and segmentation
because its output feature map has only a single scale with low resolution
and its computations and memory cost are relatively high even for a
common input image size. Pyramid Vision Transformer (PVT)-based
models19,20 overcome the difficulties of ViT by taking fine-grained image
patches (4×4 per patch) as input to learn high-resolution representation
which is essential for dense prediction tasks such as semantic segmentation.
Furthermore, the PVT architecture includes a progressively shrinking pyra-
mid with 4 stages to reduce the sequence length of the transformer while
the depth of the network is increased, significantly reducing the computa-
tional consumption. Two years ago, Dong et al. proposed a new image
polyp segmentation framework, named Polyp-PVT, which utilizes a pyra-
mid vision transformer backbone as the encoder to explicitly extract more
powerful and robust features.21 In addition, it includes 3 modules that ex-
tract high- and low-level cues separately and effectively fuse them for the
final output.

Network architectures

Overall architecture

The ResPVT architecture is depicted in Fig. 2. The model’s architecture
contains 3 main blocks: pyramid vision transformer (PVT) encoder, fusion
module (FM), and ResBlock. Specifically, the PVT encoder is used to extract
multi-scale features from the input image. As shown in the result section,
different versions of PVT encoder were compered (Table 1). The FM is
used to collect the semantic cues and locate polyps by aggregating high-
level features, and the ResBlock is used for extracting low-level features
such as color, edges, etc. Given an input image I ∈ RH×W×3, the image is
fed into the pre-trained encoder (PVT) to extract 4 pyramid features Xi ∈

R
H

2iþ1� W
2iþ1�Ci , where Ci ∈ {32,64,128,256} and i ∈ {1,2,3,4}. Then, the chan-

nel is reduced from the last 3 feature maps F2, F3, and F4 to 32 with convo-

lution units and inserted into the FM block that produces O1 ∈ R
H
4�W

4�32. At

the same time, F1 is fed into the ResBlock that produces O2 ∈ R
H
4�W

4�32. Fi-
nally, O1 and O2 are concatenated and 2 more convolution layers are
given as the final polyp segmentation mask.

PVT encoder

Recent works have shown that the vision transformer is stronger than
well-designed CNN backbones.22,23 Inspired by that, a pyramid vision
transformer (PVT) was used here as the backbone network to extract
more robust and powerful features for polyp segmentation. PVT is a pro-
gressive shrinking pyramid and a spatial-reduction attention (SRA) layer
to obtain multi-scale feature maps under limited computation or memory
resources.19 The entiremodel is divided into 4 stages, each of which is com-
prised of a patch embedding layer and a Linear-layer Transformer encoder.
Following a pyramid structure, the output resolution of the 4 stages pro-
gressively shrinks from high (4-stride) to low (32-stride). In the first
stage, given an input image of size H×W×3, the image is first divided
into HW/42 patches, each of size 4×4×3. Then, the flattened patches are
fed to a linear projection and embedded patches of sizeHW/42×C1 are ob-
tained. Next, the embedded patches along with a position embedding are
passed through a Transformer encoder with L1 layers, and the output is
reshaped to a feature map F1 of size H

4 � W
4 � C1. In the same way, using

the feature map from the previous stage as input, the following feature
maps are obtained: F2, F3, and F4, whose strides are 8, 16, and 32 pixels
with respect to the input image. Since PVT needs to process high-resolution
(4-stride) feature maps, a SRA layer is proposed to replace the traditional
multi-head attention (MHA) layer in the encoder. Similar to MHA, the pro-
posed SRA receives a query Q, key K, and value V as input, and outputs a
refined feature. The difference is that the proposed SRA reduces the spatial
scale of K and V before the attention operation, which largely reduces the



Fig. 2. Overview of the proposed ResPVT architecture, which contains PVT encoder (a), fusion module (FM) for fusing the high-level features (b), residual block (ResBlock)
for extracting low-level features (c), and ResPVT head for fusion between high- and low-level features to produce the final mask (d).
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computational andmemory overhead. We adopt the PVTv2 which is signif-
icantly improves PVTv1 on the 3 tasks, classification, detection, and
segmentation.20 We extract from the PVT encoder 4 multi-scale feature
maps (F1, F2, F3, and F4). Among these feature maps, F1 gives detailed
appearance information of polyps, and F2, F3, and F4 provide high-level
semantic cues.

Fusion module

Inspired by the work of Dong et al.,21 we implement the fusion module
(FM). As shown in Fig. 3, we define C as a convolution layer that contains
3 × 3 convolution layers with padding of 1, batch normalization and
ReLU activation. First, we reduce the channel to 32 for F2, F3, and F4.
Then, we fuse the feature maps of F3 and F4 as follows: we up-sample (de-
note as Up2) F4 by 2 and feed the result through 2 separate convolution
units. One of the results is multiplied (denoted by �) by F3 and then
concatenated (denoted by Concat) with the result from the second convolu-
tion. Then, we feed the result in 2 convolution units and obtain M2.
Mathematically,

M2 ¼ C C Concat F3 � C Up2 F4ðð Þð Þ, C Up2 F4ðð Þð Þð ÞÞÞ (1)

Subsequently, we fuse the feature maps of F2, F3, and F4 as follows: we
up-sample F4 by 4 and F3 by 2 to get the same feature map size of F2.
Then, we feed each of them in separated convolution units and multiply
by F2 to obtainM1,

M1 ¼ F2 � C Up2 F3ð Þð Þ � C Up4 F4ð Þð Þ (2)
Table 1
PVT Encoder versions.

PVT version Parameters

B0 3 695 809
B1 13 868 321
B2 25 222 177
B3 45 098 017
B4 62 415 393
B5 81 815 329

3

Finally, we concatenate betweenM1 andM2 and feed the result in 2 con-
volution units and obtain,

O1 ¼ C C Concat M1,M2ð Þð Þð Þ (3)

Residual block

We define 2 types of convolution layers. Thefirst isC1 that contains 1×
1 convolution layers without padding, and the second is C3 that contains 3
× 3 convolution layers with padding of 1 and stride of 2. Both contain a
batch normalization and ReLU activation. First, we feed the low-level fea-
ture map F1 into the main root that contains C1 to C3 and C1 convolution
layers. Additionally, F1 is feed into C1 convolution layer in the skip connec-
tion (left branch in Fig. 4). An element-wise addition is performed between
the skip connection and main root results. Finally, we up-sample by 2
followed by C3 convolution layer and obtain O2,

O2 ¼ C3 Up2 C3 F1ð Þ � C1 C3 C1 F1ð Þð Þð Þð Þð Þ (4)

ResPVT head

For fusion between high- and low-level features we implement aggrega-
tion onO1 andO2. Given the feature mapsO1, which contains high-level se-
mantic information, and O2, which contains low-level semantic
information, we concatenate them and follow by 2 convolution layers for
channel reduction. Finally, we up-sample by 4 and obtain the final output,

Output ¼ Up4 C1 C3 Concat O1, O2ð Þð Þðð (5)

Implementation details

We implement our Res-PVT with the PyTorch framework and use a
NVIDIA GeForce RTX 2080 Ti machine with 11GB VRAM. Considering
the differences in the sizes of each polyp image, we used a multi-scale strat-
egy in the training stage. We use the AdamW optimizer, which is widely
used in transformer networks.24 The learning rate and the weight decay
are set to 1e-4. Our loss function is a combination of binary cross-entropy
(BCE) and IoU. Further, we resize the input images to 352 × 352 with a
mini-batch size of 8 for 200 epochs. The total training time is nearly 7 h



Fig. 3. Details of the fusion module (FM) architecture for fusing the high-level features.
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to achieve the best performance (63 epochs). Additionally, we used an early
stopping mechanism to prevent over-fitting. This stopping was obtained by
measuring the dice score over the test set after each epoch; if improvement
in 15 stride epochswas not achieved, the trainingwas stopped. In our train-
ing, the stop occurred at epoch 63. For the training stage, we used simple
augmentation such as random rotation, horizontal flipping, and vertical
flipping. For testing, we only resize the images to 352×352 without any
post-processing optimization strategies.
Fig. 4. Details of the ResBlock architectu

4

Experiments

Datasets

We evaluated ourmethod on the Kvasir-SEG4 dataset collected from the
polyp class in the Kvasir dataset. The Kvasir-SEG includes 1000 polyp im-
ages. For training, we split the Kvasir-SEG to 900 as the training set, and
the remaining 100 images as the test set; The training was preformed
re for extracting low-level features.



Table 2
Performance evaluation of the SOTA methods on Kvasir-SEG.

Method Parameters DSC mIoU Recall Precision F2 Accuracy FPS

ResUNet 8 227 393 0.720 0.610 0.760 0.762 0.732 0.925 17.72
ResUNet++ 4 070 385 0.731 0.636 0.792 0.793 0.747 0.922 19.79
NanoNet-A 235 425 0.822 0.728 0.858 0.836 0.835 0.945 26.13
NanoNet-C 36 561 0.749 0.636 0.808 0.773 0.771 0.929 32.17
ResPVT-B0(Ours) 3 695 809 0.954 0.918 0.961 0.954 0.958 0.987 53.92

Table 4
Performance evaluation of the SOTAmethods on CVC-ClinicDB, CVC-ColonDB and
ETIS-Larib.

Test set Method DSC mIoU Recall Precision FPS

CVC-ClinicDB ResUNet++ 0.646 0.731 0.698 0.6510 17.72
ResUNet++ + CRF 0.645 0.732 0.695 0.642 16.42
ResPVT-B0(Ours) 0.833 0.757 0.866 0.857 54.60

ETIS-Larib ResUNet++ 0.401 0.641 0.441 0.392 17.72
ResUNet++ + CRF 0.401 0.642 0.437 0.375 16.42
ResPVT-B0(Ours) 0.755 0.671 0.873 0.722 52.58

CVC-ColonDB ResUNet++ 0.513 0.674 0.539 0.546 17.72
ResUNet++ + CRF 0.512 0.674 0.536 0.528 16.42
ResPVT-B0(Ours) 0.763 0.679 0.805 0.794 54.62
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once, and the test set was used as a cross-validation (only on the Kvasir
dataset). As mentioned in Table 2, we obtained an accuracy of 0.987 over
the test set. The reason for the high performance could be because we
trained the network only on data from Kvasir which may contain a sample
of images that is biased towards a certain physiological site in the body. For
testing, we used four unseen datasets, CVC-ClinicDB,25 ETIS,26 CVC-
ColonDB,27 and Endotect.6 There are 196 images in ETIS, 380 images in
CVC-ColonDB, 612 images in CVC-ClinicDB and 1000 images in Endotect.

Evaluation metrics

For the evaluation of our model, we chose the same metrics as used by
NanoNet for comparison between themethods. Thosemetrics include: Dice
Score Coefficient (DSC), mean Intersection over Union (mIoU), Precision,
Recall, F2, Accuracy, and Frame-per-second (FPS).

IoU ¼ TP
TPþ FPþ FN

(6)

Dice ¼ 2∙TP
2∙TPþ FPþ FN

(7)

Precision ¼ TP
TPþ FP

(8)

Recall ¼ TP
TPþ FN

(9)

Accuracy ¼ TPþ TN
TPþ TN þ FPþ FN

(10)

F2 ¼ TP
TPþ 0:2∙FPþ 0:8∙FN

(11)

Results

We evaluated our model and compared it to the recent SOTA computer
vision methods. For evaluation, we used performance metrics as described
above (Evaluation metrics section). On the Kvasir-SEG dataset,4 our
method achieves amean Dice of 0.954, which is 20.5% higher than existing
real-time SOTA method NanoNet5 and precision of 0.958 which is 18.5%
higher than it, as well. In addition, on the Endotect dataset,6 our model
achieves a mean Dice of 0.891, which is 19% higher than NanoNet and pre-
cision of 0.905 which is 19% higher than it, as well. In the FPS measure-
ment, our model achieves around 54 FPS, which is 22 FPS higher than
NanoNet and around 36 FPS from other method (ResUNet++,7
Table 3
Performance evaluation of the SOTA methods on Endotect.

Method Parameters DSC mIoU

ResUNet 8 227 393 0.664 0.540
ResUNet++ 4 070 385 0.664 0.583
NanoNet-A 235 425 0.750 0.646
NanoNet-C 36 561 0.701 0.579
ResPVT-B0(Ours) 3 695 809 0.891 0.830

5

ResUNet+++CRF,8 etc.). Table 4 shows the results of ResPVT compared
to other SOTA methods on CVC-ClinicDB,25 CVC-ColonDB,27 and ETIS-
Larib26 datasets. On CVC-ClinicDB dataset,25 our method achieves a mean
Dice of 0.833, which is 18.7% higher than ResUNet++7 and precision of
0.857 which is 20.6% higher than it, as well. On ETIS-Larib dataset,26 our
method achieves a mean Dice of 0.755, which is 35.4% higher than
ResUNet++,7 and precision of 0.722 which is 33% higher than
ResUNet++.7 In addition, on the CVC-ColonDB dataset,27 our model
achieves a mean Dice of 0.763, which is 15% higher than ResUNet++
and precision of 0.794 which is 24.8% higher than ResUNet++. In the
FPS measurement, our model achieves around 54 FPS, which is higher
than the other methods (ResUNet++ and ResUNet++ +) by ~36 FPS.

Discussion

The quantitative results show that ResPVT achieves the best results,
both in terms of speed (FPS) and in terms of segmentation results. The
quantitative results in Tables 2, 3, and 4 show that ResPVT achieves a
real-time segmentation network with the highest scores of all the metrics
without any post-processing methods. Specifically, we achieve the highest
FPS results, despite the high values of model parameters.We also compared
different versions of PVT encoder (see Table 1), as shown in Fig. 5, to ob-
serve the effect of the FPS and Dice score on several datasets. As seen, as
the number of PVT encoder parameters increases the FPS decreases signif-
icantly and without significant effect on the dice score. Moreover, between
version B0 and B1, there are almost no differences in the results despite a
difference of almost 10-fold in the number of parameters in the models.
In contrast, there is a significant difference in FPSmeasure between version
B1 and version B2 even though the difference between the parameters of
the models is only about 2-fold. This is probably due to the utilization of
the capacity of the GPU device.We assume that in version B0 themachine’s
Recall Precision F2 Accuracy FPS

0.751 0.684 0.694 0.907 17.72
0.879 0.659 0.759 0.884 18.58
0.823 0.774 0.777 0.925 27.19
0.801 0.715 0.738 0.909 32.98
0.916 0.905 0.899 0.966 54.07



Fig. 5. Evaluation of several versions of PVT encoder (B0–B5) to observe the variation between the FPS and Dice scores achieved by different PVT encoders used to analyze
several datasets.
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running ability is not fully utilized, compared to version B2 which has
passed themachine’s ability to run in parallel causing a decrease in the run-
ning time capacity. The qualitative results displayed in Fig. 6 indicate that
our method presents stable segmentation ability despite different imaging
environments such as lighting, contrast, etc. and has more accurately pre-
dicted edges. Furthermore, these results demonstrate high precision perfor-
mance with low false negative that is crucial inmedical diagnostics. Several
Fig. 6. Qualitative comparison of the results of ResPVT to UNet, ResUNet,ResUNet++
Kvasir-SEG dataset, the second column represents the pixel-level mask (ground truth), o

6

challenges are associated with segmenting polyps, such as bowel prepara-
tion quality at the time of colonoscopy, camera angle, etc., which can affect
the overall performance of a deep-learning model. For some images, there
may even be disagreement in the interpretation among endoscopists. The
quality of a colonoscopy examination is largely determined by the experi-
ence and skill of the endoscopist. Our proposed model can be used to assist
in segmenting a detected polyp, providing an ‘extra pair of eyes’ to the
, and ResUNet++ +CRF. The first column represents the original images from
ther columns represent the semantic mask predictions by the SOTAmodel and ours.
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endoscopist for additional objective diagnostic information in real-time
during the colonoscopy examination.

Conclusion

In this paper, we propose a novel image polyp segmentation method for
real-time application, named ResPVT, which contains a pyramid vision
transformer backbone for rapid feature extraction. The experimental results
on a variety of endoscopy datasets show that our model has the highest re-
sult metrics of DSC, IoU, precision, recall, F2-score and, most importantly,
FPS. This fast run time implies that our model has potential to be imple-
mented in medical devices to aid colonoscopy examination. We believe
that ResPVT has potential to be used in the detection of pathological and
abnormal tissues in the lining of the colon. A significant advantage is the
ability of the proposed method to identify flat polyps in difficult areas in
the colon and tiny lesions that can be easily missed during normal endos-
copy. The surrounding remaining tissue after polyp resection by colonos-
copy can also be differentiated by the polyp segmentation ResPVT to
assure completeness of the resection. We hope that our work will inspire
other teams to trying to solve the real-time polyp segmentation task with
transformer networks. We also envision implementation of our work in
other fields of specialization such as in the care of diabetic feet. There is
an interest in early detection of diabetic neuropathy and in particular sus-
ceptibility to ulcer development.28,29 Our technique could be used to im-
prove the outcomes of cases given to subjective surgeon decision-making
and optimize the care of those patients. We heuristically believe that our
method could also be applied to the assessment of cartilage quality during
arthroscopy and arthrotomy.30 To date, the accepted cartilage classification
is based on gross morphology, however as new and advanced methods of
cartilage repair are entering the clinical arena, it is important to be able
to define the quality of both original cartilage and newly formed
cartilage.31 Finally, the described method could prove useful in assessing
chondral quality and deciding on clinical interventions such as patellar
resurfacing during knee arthroplasty.32,33
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