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Cells adapt to environmental stresses mainly via transcription reprogramming. Correct transcription con-
trol is mediated by the interactions between transcription factors (TF) and their target genes. These TF-
gene associations can be probed by chromatin immunoprecipitation techniques and knockout experi-
ments, revealing TF binding (TFB) and regulatory (TFR) evidence, respectively. Nevertheless, most evi-
dence is still fragmentary in the literature and requires tremendous human resources to curate. We
developed the first pipeline called YTLR (Yeast Transcription-regulation Literature Reader) to automate
TF-gene relation extraction from the literature. YTLR first identifies articles with TFB and TFR information.
Then TF-gene binding pairs are extracted from the TFB articles, and TF-gene regulatory associations are
recognized from the TFR papers. On gathered test sets, YTLR achieves an AUC value of 98.8% in identifying
articles with TFB evidence and AUC = 83.4% in extracting the detailed TF-gene binding pairs. And simi-
larly, YTLR also obtains an AUC value of 98.2% in identifying TFR articles and AUC = 80.4% in extracting
the detailed TF-gene regulatory associations. Furthermore, YTLR outperforms previous methods in both
tasks. To facilitate researchers in extracting TF-gene transcriptional relations from large-scale queried
articles, an automated and easy-to-use software tool based on the YTLR pipeline is constructed. In sum-
mary, YTLR aims to provide easier literature pre-screening for curators and help researchers gather yeast
TF-gene transcriptional relation conclusions from articles in a high-throughput fashion. The YTLR pipe-
line software tool can be downloaded at https://github.com/cobisLab/YTLR/.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Transcription reprogramming controls cellular fitness when
environmental changes happen [[1,2,3]. Under stress conditions,
the expression of different sets of genes helps cells respond to
external stimuli [4,5]. The precise regulation of gene transcription
is usually mediated by the binding of transcription factors (TFs) to
the promoter regions of their target genes [6,7]. Malfunction of TFs
can lead to abnormal cellular traits or even cell death. Hence,
understanding the correct TF-gene relations is a fundamental goal
in molecular biology.

There are two experimental approaches to understanding the
target genes of TFs [8,9]. First, researchers can probe the binding
target sequences of specific TFs using chromatin immunoprecipita-
tion (ChIP). These TF-bound sequences are then mapped to the pro-
moter regions, the proximal genic regions, or the distal regulatory
sites of their target genes [6,10]. Articles containing these TF bind-
ing evidence are called TF binding (TFB) evidence literature. Sec-
ond, the affected target genes of a given TF can be identified
from the expression changes between the controlled wild-type
samples and the knocked-out/depleted/altered/enhanced samples
of this particular TF [2,11–13]. In this case, the identified genes
are indirectly regulated by the given TF through certain mecha-
nisms [8]. Works describing the TF indirect regulatory gene target
information are called TF regulation (TFR) evidence literature. And
it has been shown that regulation mechanism hypotheses can be
inferred via integrating the TF-gene binding pairs from TFB articles
and the TF-gene regulatory associations from TFR papers [7,8,14].

However, most of these experimentally verified TF-gene bind-
ing or regulatory association knowledge is fragmentary in the liter-
ature. The lack of an automated way to collect these TF-gene
relations hinders a comprehensive understanding of transcription
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regulation [15]. YEASTRACT (Yeast Search for Transcriptional Reg-
ulators And Consensus Tracking) is the first database that deposits
more than 175,000 manually curated yeast TF-gene associations
[9]. They have united the efforts of many researchers in reading
the yeast-related articles and sorted out valuable TF-gene binding
or regulatory evidence. While manual literature curation can col-
lect some TFB and TFR evidence, rapid progress in the community
overwhelms the available human resources. For example, over
2,400 yeast-related research articles are deposited in the PubMed
database annually. This rapid research progression makes auto-
mated literature machine readers suitable for lowering the burden
on human curators [16]. Therefore, there is a need to build auto-
literature machine readers for organizing and gathering the most
recent experimental results related to transcriptional regulation
from the literature.

Researchers have developed event extraction and name entity
recognition algorithms to help understand human written lan-
guages. These tools identify the possible noun and verb phrases
in articles and link the potentially related entities together [17–
21]. Unfortunately, general sentence event extraction methods
cannot specifically identify TF-gene transcriptional associations,
leading to unacceptable accuracy in grasping TF-gene transcrip-
tional regulation research articles. On the other hand, literature
name-entity machine annotators can only mark the existence of
TFs and genes. They provide no TF-gene association information
at all. Currently, there is no appropriate auto-literature reader
pipeline for extracting TF-gene binding or regulatory association
conclusions from the literature.

In this research, we developed a deep learning pipeline called
YTLR (Yeast Transcription-regulation Literature Reader) to auto-
mate TF-gene association conclusion extraction from the literature.
YTLR comprises in–house software tools and two-phased deep
learning literature readers to recognize TF-gene binding and regu-
latory associations. Articles describing TFB and/or TFR evidence are
first identified by the deep literature identification networks in
YTLR Phase I. For the articles identified to have TFB evidence, TF-
gene binding pairs in these articles are recognized in YTLR Phase
II. And TF-gene regulatory associations in papers classified to
describe TFR results are also summarized in this phase. On the
set-aside test sets, we demonstrated that the auto-literature read-
ers achieve high performance in identifying articles with TFB/TFR
evidence (YTLR Phase I AUC = 98.8%/98.2%) and in recognizing
TF-gene binding/regulatory associations (YTLR Phase II
AUC = 83.4%/80.4%). Compared with related works, YTLR Phase I
auto-literature readers outperform previously proposed models
by at least 4.3%/2.4% AUC values in identifying TFB/TFR articles.
And YTLR Phase II deep networks obtain at least 26%/30% better
AUC values than existing baseline methods in recognizing TF-
gene binding/regulatory associations. To facilitate researchers in
extracting TF-gene transcriptional relations from large-scale quer-
ied articles, an automated and easy-to-use software tool is con-
structed based on the YTLR pipeline. Lastly, we reported that the
miss rate of YTLR for identifying TFB and TFR articles is estimated
to be only at most around 9% larger than human curators while
saving a tremendous number of human resources. In summary,
YTLR is a tool that facilitates easier literature pre-screening for
curators and helps researchers collect yeast TF-gene transcrip-
tional relation conclusions from articles in a high-throughput fash-
ion. The YTLR software tool can be freely downloaded at https://
github.com/cobisLab/YTLR/.
2. Methods and Datasets

We constructed the automated literature-reader pipeline
named YTLR (Yeast Transcription-regulation Literature Reader)
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based on the BioBERT (Bidirectional Encoder Representations from
Transformers) pre-trained model and the transfer learning tech-
nique using the ground truth datasets collected from YEASTRACT.
The workflow of YTLR can be divided into three steps (See
Fig. 1): (I) Pre-process the given files. (II) YTLR Phase I: Identify
articles with TFB and/or TFR evidence. Based on the abstract of
the given article, it is first tagged as a TFB article if it contains
TFB evidence and classified as a TFR paper if it describes TFR
results. (III) YTLR Phase II: Recognize TF-gene binding pairs and
regulatory associations. We first extract the sentence descriptions
for all TF-gene pairs found in the full text of a TFB article. These
sentence descriptions are then classified if they contain TF-gene
binding information. Finally, based on the classification summaries
of these sentence descriptions, the extracted TF-gene pairs from
TFB articles are summarized as binding relations or random pairs.
A similar process is applied to TFR articles to obtain TF-gene regu-
latory associations. Details of data preparation and YTLR steps are
elucidated in the following sections.
2.1. Collection of the ground-truth datasets

YEASTRACT has manually curated the TFB and TFR literature
evidence for TF-gene transcriptional associations in Saccharomyces
cerevisiae. We downloaded the TF-gene binding pairs with their
corresponding TFB articles and the TF-gene regulatory associations
with the corresponding TFR articles from YEASTRACT (2021 Feb
repository). Three datasets were prepared from the YEASTRACT
data: (1) the articles curated to have TFB evidence and papers
describing TFR results; (2) the TF-gene sentence descriptions;
and (3) the exact TF-gene binding pairs from TFB articles and TF-
gene regulatory associations from TFR articles.
2.1.1. The TFB article and TFR paper datasets
The TFB article and TFR paper datasets were generated based on

the downloaded transcription regulation-related literature curated
by YEASTRACT. When a TF-gene binding pair is curated from an
article, this article is tagged to contain TFB evidence. And when a
TF-gene regulatory pair is curated from an article, we tagged this
article as a TFR article. In total, we gathered 463 articles curated
to have TFB evidence and 1,196 papers curated to convey TFR evi-
dence in this research. The abstracts of these TFB articles and TFR
papers form the positive sets of the TFB and TFR article datasets.
To obtain the negative set, we first collected articles published
before 2018 with titles containing the word ”yeast” or ”Saccha-
romyces cerevisiae” from PubMed. The articles tagged with TFB or
TFR evidence were then eliminated from this negative set. 72,502
yeast-related articles that were not curated to have TFB or TFR evi-
dence were organized as the negative set. We partitioned these
articles into TFB and TFR training-validation sets and test sets
based on their publication years. The collected articles published
before 2014 were used to form the model training-validation
ground-truth dataset. The TFB article training-validation set
includes 379 articles with TFB evidence as the TFB positive sam-
ples, and the TFR article training-validation set encompasses 970
papers with TFR evidence as the TFR positive samples. 58,135
papers published before 2014 with no curated TFB or TFR evidence
were gathered as the overall negative samples. And papers pub-
lished between 2014 and 2018 were cut out as the test sets for per-
formance generalization evaluation. The TFB test set includes 84
articles with TFB evidence as TFB positive test samples, and the
TFR test set has 226 papers with TFR evidence as TFR positive test
samples. To prepare the negative samples for the TFB and TFR test
sets, we sampled 84 and 226 articles from the 14,453 yeast-related
papers published during 2014–2018 that have no curated TFB or
TFR evidence as the TFB and TFR negative test samples, respec-



Fig. 1. The overview of the YTLR pipeline in identifying TF-gene binding pairs and TF-gene regulatory associations. Similar architectures were built and performed separately
in YTLR for these two types of transcriptional TF-gene relations (TF-gene binding relations from the TFB literature and TF-gene regulatory associations from the TFR
literature). These two independent pipelines were denoted by brackets (i.e., pipelines for extracting TF-gene binding[regulatory] pairs from the TFB[TFR] articles).
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tively. In YTLR Phase I, only the abstracts of the articles are utilized
for identifying literature with TFB and TFR evidence.

2.1.2. The TF-gene sentence description datasets
TF-gene sentence description datasets were prepared based on

the YEASTRACT-curated TF-gene binding pairs and TF-gene regula-
tory associations. A TF-gene sentence description in the PMC-
retrieved full text of a TFB article or a TFR paper consists of one
or two consecutive sentences that contain the given TF and gene.
The lists of yeast genes and TFs were collected from the SGD data-
base [22], the work of Harbison et al. [6], and YEASTRACT [9]. Sen-
tences in the ”Materials and Methods” section, the ”Supplementary
File” section, and the ”Reference” section are excluded to avoid
external information inclusion. A TF-gene sentence description
from a TFB article is denoted to contain binding information if this
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TF-gene pair was curated by YEATRACT to be a binding pair in the
article. Otherwise, the TF-gene sentence description is annotated
not to contain binding information. Similar procedures were
applied to obtain the TF-gene regulatory sentence descriptions
from TFR papers. We picked the TF-gene sentence descriptions
from articles published before 2014 as the training-validation
ground-truth datasets. In summary, 11,872 and 24,571 sentence
descriptions for TF-gene binding pairs and TF-gene regulatory
associations were included in the training-validation ground-
truth datasets, respectively. And we sampled 15,113 sentence
descriptions of TF-gene non-binding pairs and 27,411 sentence
descriptions of TF-gene non-regulatory pairs from the same arti-
cles. These sentence description datasets were used to train the
two sentence-description understanding networks that recognize
TF-gene binding pairs and regulatory associations.
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2.1.3. The TF-gene binding pair and regulatory association test sets
The overall YTLR Stage II recognizes the TF-gene binding pairs

and regulatory associations from the TFB articles and TFR papers,
respectively. To help evaluate the recognition performance of YTLR
Stage II, TF-gene pairs found in the papers published during 2014–
2018 were separated to serve as the TF-gene association test set.
TF-gene transcriptional associations were adopted from the YEAS-
TRACT manual curation results. In total, 472 TF-gene binding pairs
along with 472 sampled non-binding pairs found in the same TFB
articles were separated to form the TF-gene binding pair test set.
And 735 regulatory associations along with 731 sampled non-
regulatory TF-gene pairings found in the same TFR articles were
separated to form the TF-gene regulatory association test set.

2.2. The YTLR TF-gene association extraction pipeline

YTLR can identify TF-gene binding pairs and regulatory associa-
tions based on two networks built on similar architectures (See
Fig. 1). The TF-gene binding and regulatory relations are extracted
from the TFB articles and TFR papers, respectively. There are two
phases of auto literature readers in YTLR. Take the TF-gene binding
pair extraction workflow as an example. For a given article, YTLR
first checks if it provides TFB evidence based on its abstract (YTLR
Stage I). Then TF-gene pairs and the related sentence descriptions
are extracted from the articles identified to have TFB evidence
using a python script. The extracted TF-gene sentence descriptions
from TFB articles are checked to see whether they portray TF-gene
binding information. At the end of YTLR Stage II, the TF-gene bind-
ing pairs or random pairings for the given TFB articles are summa-
rized based on the classified sentence descriptions. Similar
procedures are also performed on TFR articles to obtain the TF-
gene regulatory pairs in YTLR.

2.2.1. Phase I: identification of literature with TFB/TFR evidence
Two deep networks were constructed to identify TFB articles

and TFR papers. We articulate the construction of the TFB article
identification network here as an example. Because of the severely
imbalanced positive and negative sample numbers in the TFB arti-
cle datasets, we designed a sample-bootstrapping ensemble deep
learning architecture for obtaining a high-performance TFB litera-
ture identification network. Based on the abstracts of the given
articles, TFB deep network annotates if the provided literature con-
tains TFB evidence. The designed sample-bootstrapping ensemble
deep learning architecture is sketched in Fig. 1-Step 2. The TFB auto
tagger was trained using the TFB article training-validation set
formed by the 379 articles with TFB evidence and the 58,135 arti-
cles that have neither curated TFB nor TFR evidence. Since the car-
dinality of the negative set out-numbers that of the positive set, we
applied the sample bootstrapping method to down-sample the
negative set and obtained an ensemble model for overcoming the
imbalance problem [23,24]. We repeated the bootstrap-sampling
five times to obtain five diverse negative subsets that all have
the same cardinality as the positive set. The subsets were sampled
to enforce a similar year distribution to the positive set in the boot-
strapping sampling process. Then based on the positive set and the
five negative subsets, 5 sample-bootstrapping TFB deep models
were constructed to provide probabilities that the given articles
contain TFB evidence, respectively. In each sample-bootstrapping
deep model, the BioBERT [25] network was adopted as the building
block. The ith bootstrapping model based on the ith bootstrapping
dataset can be written as the following:

pi ¼ softmaxðCiWiÞ; Ci ¼ FineTuned BioBERTiðAÞ;
where A is the word piece tensor for the abstract of the given article,
Ci is the summarizing CLS (classifier token) vector generated by the
ith fine-tuned BioBERT model, Wi is the trainable weight matrix for
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the ith sample-bootstrapping model, and pi is the TFB tagging prob-
ability given by the ith sample-bootstrapping model. We initialized
this building block using the pre-trained BioBERT weights. And the
whole weights were fine-tuned on the positive set and one
bootstrap-downsampled negative subset. Fivefold cross-validation
on the positive set and each bootstrap-sampled negative subset
was used for selecting the hyperparameters of each sample-
bootstrapping model. Finally, these five probabilities were averaged
to aggregate the final TFB identification results. The sample-
bootstrapping ensemble deep networks aim to provide robust TFB
literature identifiers among diverse biomedical papers. The same
procedure was also applied to the 970 papers with TFR evidence
in the TFR article training-validation set to build a TFR literature
identification network.
2.2.2. Phase II: recognition of TF-gene binding/regulatory associations
After identifying articles with TFB evidence based on their

abstracts, we further try to recognize the precise TF-gene binding
associations from the article. A similar process is also done for
TFR articles to extract TF-gene regulatory pairs. We explain the
method for recognizing TF binding pairs as an example in this
subsection.

YTLR Phase II (See Fig. 2-Step3) first extracts the sentences that
potentially describe the association between a TF and a gene from
the articles identified to have TFB evidence. We assume that the
authors describe the annotated TF-gene binding associations with
a distinguishable tone from random pairings. Hence the extracted
sentence descriptions are then fed into the deep TF-gene sentence
description understanding network to check if they contain bind-
ing information. Finally, based on the classified sentence descrip-
tions, the TF-gene pairs are recognized as binding associations or
random pairings. We used the gathered TF-gene sentence descrip-
tion training-validation sets to train the TF-gene sentence descrip-
tion understanding deep networks. Two deep networks were
constructed for YTLR Phase II. The TF-gene binding sentence
description understanding network was built to check if a TF-
gene sentence description extracted from a TFB article contains
binding information for a TF-gene pair. Similarly, the TF-gene reg-
ulatory sentence description understanding network was con-
structed to see if a TF-gene sentence description from a TFR
article shows regulation information for a TF-gene pair. The TF-
gene binding understanding networks are formulated as

p ¼ softmaxðFWÞ; F ¼ f 1 � Frozen BioBERTðSÞ;

where S is the word piece tensor for the given TF-gene sentence
description, � denotes function composition, f 1 is the function
formed by the tunable BioBERT last five layers (which includes
the attention operation, dropout, layer-normalization, and dense
sub-layers), F is the summarizing CLS (classifier token) vector, W
is the trainable weight matrix, and p is the probability that the
TF-gene sentence description conveys binding information for this
TF-gene pair. To fairly divide the sample importance into each TF-
gene pair, we enforced the optimization loss of the sentence under-
standing networks to obey the following specification:

L ¼ 1
N

XN

i¼1

wiLi;wi ¼ 1
kj i

;

where L is the training loss, Li is the softmax loss for the sentence
description i; kj i is the number of sentence descriptions related to
the TF-gene pair j that is in the same article as the sentence descrip-
tion i, and N is the total number of sentence descriptions. When
training the sentence description understanding networks, fivefold
cross-validation was applied to the sentence description training-
validation sets.
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The final confident TF-gene binding associations for a given TFB
article are summarized using the following equation:

TGj ¼ fTF gene pairji j #Pji > #Njig;
where TGj represents the set of TF-gene binding associations in the
jth TFB article, Pji denotes the collection of sentence descriptions
classified to contain binding information for the ith TF-gene pair
in the jth TFB article, Nji is the set of sentence descriptions classified
to not relate to transcriptional binding for the ith extracted TF-gene
pair in the jth TFB article, and #(.) denotes the cardinality of the
given set. After YTLR Phase II, TF-gene binding pairs are discrimi-
nated from random TF-gene pairings for a given TFB article. The
same procedure was also utilized to extract TF-gene regulatory
pairs from the identified TFR articles.

2.3. Hyperparameters of YTLR

Hyperparameters of YTLR were chosen by fivefold cross-
validation. We adopted the following hyperparameters in fine-
tuning the two deep identification networks for TFB and TFR arti-
cles in YTLR Phase I: (1) learning rate schedule: step linear
warm-up followed by cosine decay (max learning rate = 1e-5);
(2) optimization method: Adam; (3) number of epochs: 4; (4) neu-
ron initialization: pre-trained BioBERT; (5) batch training size: 16.
Dropout layers (dropout rate = 0.1) were added to regularize the
training process and prevent over-fitting that may kill model gen-
eralization. And hyperparameters used in training the two deep
networks for understanding TF-gene binding and regulatory sen-
tence descriptions in YTLR Phase II were as follows: (1) learning
rate schedule: 1e-5 followed by cosine decay; (2) optimization
method: Adam; (3) number of epochs: 10; (4) neuron initializa-
tion: Phase I fine-tuned BioBERT; (5) batch training size: 16; (6)
dropout: 0.2 for both the hidden state layers and attention layers,
and 0.5 for the last classification layer. The overall YTLR pipeline
was trained using NVIDIA RTX Titan GPUs.

3. Results and Discussions

3.1. Performance of YTLR

The constructed automated literature readers in YTLR were
implemented through two phases to extract TF-gene binding and
regulatory associations. First, the specified article is checked to
see if it contains TFB and/or TFR evidence based on its abstract.
For those articles identified to have TFB evidence, all TF-gene pairs
are extracted from the PMC-retrieved full texts. These TF-gene
pairs are then recognized to be binding pairs or random pairings
based on the extracted TF-gene sentence description summaries.
Similar procedures are applied to TFR articles for extracting TF-
gene regulatory associations. We utilized the following metrics
for estimating the performance of YTLR Phase I (TFB and TFR article
identification) and Phase II (TF-gene binding and regulatory associ-
ation recognition) [26,27]:

RecallðSensitivityÞ ¼ TP
TP þ FN

;

Specificity ¼ TN
FP þ TN

¼ 1� FPR;

Precision ¼ TP
TP þ FP

; F1 ¼ 2 � Precision � Recall
Precisionþ Recall

;

where FPR stands for the false-positive rate, and TP, FP, TN, and FN
abbreviate for true positive, false positive, true negative, and false
negative calculated under a specified threshold on the prediction
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probability, respectively. TP/TN count the numbers of correctly
identified samples from the positive/negative sets, and FP/FN sum
up the numbers of mistakenly annotated samples from the nega-
tive/positive sets. The F1 value is the harmonic mean of the calcu-
lated precision and recall values. It can help evaluate the overall
balance between the precision and recall trade-off under a specific
threshold. Since the recall, specificity, precision, and F1 values are
threshold-specific, in this research, we selected a general prediction
probability threshold of 0.5 in calculating these metrics. To further
eliminate the threshold effect when estimating the intrinsic capa-
bility of a prediction model, we also considered receiver operating
characteristic (ROC) curves. The ROC curve plots Sensitivity values
(i.e., Recall) against the corresponding (1 - Specificity) values (i.e.,
FPR) when the prediction thresholds are varied. In this sense, the
ROC curve evaluates the intrinsic capability of a model under differ-
ent chosen thresholds. Because of the nature of ROC curves, they
can be used for fair model comparisons that eliminate the threshold
effects of different prediction methods. The more upper-left the
ROC curve is observed, the better discrimination power the model
can achieve for the specified task, meaning that the model achieves
a high recall even if the threshold is controlled to have a low FPR.
This result can be estimated by calculating the area under the
ROC curve (AUC). We report these results parallelly in the following
subsections since two networks were built and executed indepen-
dently to recognize TF-gene binding pairs and regulatory associa-
tions from the TFB articles and TFR papers, respectively.

3.1.1. Performance of YTLR Phase I
In YTLR Phase I, a given yeast-related article is checked to see if

it describes (1) TFB and/or (2) TFR evidence based on its abstract. In
the training-validation process of YTLR Phase I, we fine-tuned the
networks built from the pre-trained BioBERT for only four epochs
to avoid model over-fitting when optimizing the full BioBERT
model. To evaluate the performance and generalization of the
TFB literature identification network, we used the test sets formed
by the articles published during 2014–2018 in the TFB article data-
set. The TFB article test set has 84 articles with curated TFB evi-
dence as positive samples. And the same numbers of sampled
non-transcription-related publications are included in the TFB arti-
cle test set as negative samples. The test performance metric sum-
mary for the TFB sample-bootstrapping averaging model is listed in
Table 1. As shown in Table 1, the final aggregation result of identi-
fying articles with TFB evidence achieves an AUC value of 98.8%
and an F1 value of 94.4% on the test set. The high test AUC value
means that YTLR Phase I is well generalized on newly collected
articles and can obtain a high TFB literature identification power
while the false discovery rate is controlled. Similarly, to evaluate
the TFR literature identification network, 226 TFR papers and the
same number of non-transcription-related papers published dur-
ing 2014–2018 were included in the TFR article test set. Similar
conclusions can also be made for identifying articles with TFR evi-
dence in YTLR Phase I (AUC = 98.2% and F1 = 92.4%, also see
Table 1). Summarizing these test performance results, we can see
that users can confidently identify if the given article contains
TFB and/or TFR evidence based on its abstract via YTLR Phase I.

3.1.2. Performance of YTLR Phase II
For an identified TFB article, YTLR Phase II first extracts the sen-

tence descriptions for all TF-gene pairs within its full text. Then the
TF-gene sentence descriptions are automatically reasoned by deep
understanding networks to recognize if they are related to TF-gene
binding relations. Finally, these results are summarized to check if
the TF-gene pairs are binding associations or random pairings. Sim-
ilar procedures were also applied to extract TF-gene regulatory
associations from the identified TFR papers. Learning curves were
used in the fivefold cross-validation process to ensure convergence



Table 1
The performance summary of YTLR Phase I in identifying articles with TFB and TFR evidence on the test sets.

Phase I: evidence literature identification AUC F1 Precision Recall Specificity

TFB articles 98.8% 94.4% 98.7% 90.5% 98.8%
TFR articles 98.2% 92.4% 93.2% 91.6% 93.4%
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and well-fitting of the two deep networks that recognize sentences
describing TF-gene binding pairs and regulatory associations. In
Figure S1-a and S1-b of the Supplementary File, the training and
validation learning curves show that the two deep networks are
well-fitted and converge to the optimal configurations. To evaluate
the correctness of the final extracted and summarized TF-gene
binding and regulatory pairs, we resorted to ROC curves of the
results. YTLR Phase II was evaluated on the reserved TF-gene asso-
ciation test sets (Table 2). The test AUC values for extracting and
summarizing the exact TF-gene binding pairs and regulatory asso-
ciations are 83.4% and 80.4%, respectively. Other performance met-
rics can be found in Table 2. These results show that YTLR Phase II
can recognize TF-gene binding and regulatory associations from
random pairings with good discrimination power.
3.2. Comparison with previous models and baseline methods

YTLR is the first complete pipeline for automated extraction of
yeast TF-gene binding and regulatory associations from the litera-
ture using machine readers. In YTLR Phase I, YTLR identifies if the
given yeast-related article provides TFB evidence and TFR results
based on its abstract. And in YTLR Phase II, TF-gene binding associ-
ations are recognized from an article if this article is identified to
have TFB evidence. And TF-gene regulatory associations are also
recognized from the TFR articles. While no software can carry
out the same goals as YTLR, some previous models and baseline
methods were designed to provide functions close to parts of YTLR.
We compared these models and methods with the corresponding
parts of YTLR.
3.2.1. Comparison among YTLR Phase I and similar models
We first compared YTLR Phase I with related models in identi-

fying literature with TFB and TFR evidence. In the work of Burns
et al. [28], they proposed models that combine word embeddings
with convolution neural networks (CNNs) or long short-term
memory (LSTM) networks to unravel the existence of molecular
interaction descriptions in the literature. To provide a fair compar-
ison among YTLR Phase I models, the CNN models, and the LSTM
networks, we retrained the CNN and LSTM models designed by
Burns et al. using the BioBERT word embeddings and the model
architectures designed by the authors. Learning curves for the
CNN models and LSTM networks were monitored to ensure model
well-fitting and convergence. Details of the learning curves and
hyperparameters of the CNN models and LSTM networks can be
found in Figure S2 and Figure S3 of the Supplementary File. On
the TFB article test set, YTLR TFB literature identification results
(AUC = 98.8%) outperform the corresponding CNN classifier by
4.3% (98.8–94.5%) and the corresponding LSTM network by 13.9%
(98.8–84.9%) in AUC values (see Fig. 2-a). And on the TFR article
test set, YTLR TFR literature identification results (AUC = 98.2%)
also achieve 2.4% (98.2–95.8%) and 9.9% (98.2–88.3%) AUC perfor-
mance boost over the CNN model and the LSTM network (see
Fig. 2-b). These results demonstrated that YTLR Phase I provides
better transcription-related literature identification performance
than previously proposed models.
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3.2.2. Comparison among YTLR Phase II and baseline methods
We next compared YTLR Phase II with one baseline method and

one language model. The REACH (Reading and Assembling Contex-
tual and Holistic Mechanisms from Text) language model system
[29] is selected since it is currently the only available association
extraction tool that can handle TF-gene binding pair and regulatory
association recognition. We also implemented the simple
occurrence-counting metrics of TF-gene pairs as a baseline
method. The counting metric is computed by summing up the
occurrence of the given TF-gene pair that appears within two con-
secutive sentences in the full text of a given article. The ROC curves
of REACH, the occurrence counting baseline method, and YTLR
Stage II results on the TF-gene binding pair and TF-gene regulatory
association test sets are summarized in Fig. 3. As shown in Fig. 3-a,
YTLR Stage II obtains better AUC values in recognizing TF-gene
binding pairs (83.4%) than both the full-text TF-gene occurrence
counting metric baseline (57.11%) and the REACH system (55.5%)
on the TF-gene binding pair test set. And for TF-gene regulatory
association extraction, YTLR Phase II (80.4%) also outperforms the
full-text TF-gene occurrence-counting metric baseline (48.77%)
and the REACH system (50.3%) on the TF-gene regulatory associa-
tion test set (See Fig. 3-b). In summary, YTLR Stage II is the leading
tool to recognize TF-gene binding pairs and regulatory associations
from the literature and outperforms existing tools in grasping the
detailed TF-gene transcriptional associations.
3.3. The YTLR software tool facilitates the extraction of TF-gene
transcriptional association conclusions from large-scale articles

YTLR is designed to serve as an automated machine reader that
extracts the potential TF-gene transcriptional relations from mas-
sive numbers of queried articles. For given queried papers, the con-
structed pipeline helps users narrow down the possible TF-gene
binding pairs and regulatory associations for the articles that
deserve further detailed investigation. Therefore, YTLR serves to
help perform the transcriptional literature pre-screening that facil-
itates downstream curation or customized knowledge base con-
struction. The tool does not aim to replace or surpass human
curation. It is more of a helper tool to facilitate and speed up the
curation process.

To facilitate researchers in applying the constructed YTLR pipe-
line to large-scale yeast article information extraction, we imple-
mented the YTLR software tool with two extra features in
addition to the auto-machine literature reader pipeline to lessen
the burden of data preparation: (1) Collected summary of TF-
gene pairs from large-scale input articles; (2) Automated retrieval
of the major measurement methods and experimental conditions.
First of all, YTLR aims to provide automated TF-gene transcrip-
tional relation machine readers that can deal with massive num-
bers of articles. Therefore, we implemented the batch processing
function for large-scale article information retrieval. For YTLR
Stage I, users can utilize the PubMed function to download all
abstracts of the selected (or queried) articles in a .txt file for
large-scale processing. And YTLR also automates the full-text
retrieval process through the PMC-provided FTP services. In YTLR
Stage II, users can either rely on our script, which is based on the
PMC-provided FTP services, to automatically obtain the available
full texts of the provided abstracts or download the .html files of



Table 2
The performance summary of YTLR Phase II in recognizing the TF-gene binding pairs and regulatory relations on the test sets.

Phase II: TF-gene association recognition AUC F1 Precision Recall Specificity

TF-gene binding association 83.4% 81.9% 80.5% 83.3% 79.7%
TF-gene regulatory association 80.4% 80.7% 75.4% 86.8% 71.8%

Fig. 2. The test ROC curve comparison among tools that can identify articles with
(a) TFB or (b) TFR evidence. Fig. 3. The test ROC curve comparison among methods in recognizing (a) TF-gene

binding pairs from the articles with TFB evidence and (b) TF-gene regulatory pairs
from the articles with TFR evidence.
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the full texts by themselves. Since the term usage of PMC does not
allow web scrawling on their contents, YTLR utilizes only the
allowed FTP services in PMC and does not provide website scrawl-
ing functions. Based on the available full texts or abstracts, YTLR
Stage II outputs the summary of the extracted TF-gene binding
pairs and regulatory associations from the massive numbers of
TFB and TFR articles for users. The summary of extracted TF-gene
pairs can help users understand the involving TFs and genes for
the queried cellular situations of the provided article pools.

The second additional feature of the YTLR software tool helps
researchers to obtain the major experimental methods and condi-
tions in the full texts. Since researchers may need to understand
the experimental methods and conditions for a given TFB or TFR
article, we further fined-tuned a BioBERT-based question–answer-
ing network that can help identify the mentioned experiments
within the ”Materials and Methods” sections of the given full-
texts. In the fined-tuned question–answering network, it will try
to extract the first occurrence of answers to the question: What
4642
are the primary experiments and conditions for the given
research? The question–answering network is trained and vali-
dated on the YEASTRACT-curated data of paragraphs with known
experiment conditions and measurement methods. The perfor-
mance of standard question–answering models is usually esti-
mated by the strict accuracy (sACC) value. sACC is defined by
counting the percentage of predictions that have more than 50%
overlap with the true answer sentence segments [30]. As a result,
the fine-tuned question–answering network can achieve a test
sACC value of 0.35, which indicates that the network can help
extract the experiment information within some articles. Hence,
the possible experimental conditions and methods are also pro-
vided for the users. Last, the YTLR software tool also supports GPUs
(graphics processing units) to accelerate the pipeline. When a GPU
is set up on the system, YTLR can utilize the GPU to speed up the
computation. And a simple one-line command to the YTLR soft-
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ware tool can automatically finish all these features. The README
file with step-by-step installation instructions and the YTLR tool
can be downloaded from the URL in the ”Data Availability” section.

3.4. Issues related to YTLR

YTLR is a two-staged auto literature reader pipeline for TF-gene
transcriptional association extraction. In the training steps of the
deep learning networks, the quality of the ground truth positive
samples and negative sets usually determines the general perfor-
mance of the models [31]. In constructing the sample-
bootstrapping ensemble models in YTLR Phase I, the negative sets
were collected from the deposited yeast articles in PubMed that do
not contain any YEASTRACT-curated TFB or TFR evidence. How-
ever, there might be articles describing TFB or TFR evidence that
were missed by human curators, contributing to incorrectly
labeled negative samples. The percent of missed papers that actu-
ally describe TFB or TFR evidence can be estimated using false-
negative rates (FNR):

FNR ¼ FN
FN þ TP

;

where TN and FN are defined in the ”Performance of YTLR” section.
In YTLR Phase I, the TFB/TFR article identification networks result in
around 9.5%/8.4% FNRs on the test sets. Hence YTLR may miss
around 9% more transcriptional regulation-related papers than
human curators when trying to save tremendous numbers of
human resources.

It is worth noticing that in YTLR Phase II, only TF-gene binding/
regulatory associations with evidence discussed in the full texts or
abstracts can be extracted. In some yeast transcriptional
regulation-related research works, the novel TF-gene pairs can
only be inferred from reanalyzing or re-interpreting the experi-
mental results from the supplementary files or data deposited else-
where. Since these TF-gene pairs lack the proper sentence
descriptions within the articles, YTLR ignores these TF-gene pairs.
Currently, YTLR aims to provide automated TF-gene transcriptional
association extraction only from the literature texts. Recognizing
these pure experimental data-inferred TF-gene pairs requires com-
pletely different reasoning methods other than natural language
understanding. Developing experimental data deduction models
can be a future topic in biomedical literature machine
understanding.

Currently, YTLR aims to help automatically identify TF-gene
binding pairs and regulatory associations for the yeast species
since large-scale manually curated TF-gene transcriptional associ-
ations are only available in Saccharomyces cerevisiae. However, the
designed pipeline for generating auto literature readers is general
and applicable for different species. Transfer learning techniques
[32] can be further applied to these networks to obtain the auto lit-
erature readers for other species. Therefore, YTLR can be updated
to support the auto-curation of TF-gene transcriptional associa-
tions in species other than yeast when manually curated
transcription-related literature datasets are available for those spe-
cies in the future.
4. Conclusions

We constructed a two-phased machine literature reader pipe-
line called YTLR (Yeast Transcription-regulation Literature Reader)
to automate the extraction of yeast TF-gene transcriptional associ-
ations from the literature. In YTLR Phase I, articles with TFB evi-
dence and TFR results are identified. Then in YTLR Phase II, TF-
gene pairs in a TFB article are recognized as TF-gene binding pairs
or random pairings within the article, and TF-gene pairs from a TFR
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paper are summarized to be TF-gene regulatory associations or
random pairings within the paper. YTLR is demonstrated to achieve
high AUC values in identifying articles with TFB and TFR evidence
and in mining out detailed TF-gene binding pairs and regulatory
associations from TFB articles and TFR papers. Moreover, YTLR out-
performs previous models and baseline methods in both tasks and
shows a modest miss rate compared with human curators. By
building a software tool to facilitate large-scale literature TF-gene
transcriptional relation summarization, we believe that YTLR can
speed up the knowledge accumulation in TF-gene transcriptional
regulation research for the community.

Data Availability

The YTLR literature TF-gene association extraction pipeline and
the supplementary file can be downloaded at https://github.com/
cobisLab/YTLR/.
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