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Behavioural patterns are important indicators of health status in a number of conditions and changes in behaviour can often indicate a change in
health status. Currently, limited behaviour monitoring is carried out using paper-based assessment techniques. As technology becomes more
prevalent and low-cost, there is an increasing movement towards automated behaviour-monitoring systems. These systems typically make use
of a multi-sensor environment to gather data. Large data volumes are produced in this way, which poses a significant problem in terms of
extracting useful indicators. Presented is a novel method for detecting behavioural patterns and calculating a metric for quantifying
behavioural change in multi-sensor environments. The data analysis method is shown and an experimental validation of the method is
presented which shows that it is possible to detect the difference between weekdays and weekend days. Two participants are analysed,
with different sensor configurations and test environments and in both cases, the results show that the behavioural change metric for
weekdays and weekend days is significantly different at 95% confidence level, using the methods presented.
1. Introduction: Behavioural change is an important factor in the
maintenance of health and well-being in a number of conditions;
a change in a person’s behaviour can often be an indication of a
change in their health state. Monitoring behaviour and detecting
change as part of self-management can therefore be an effective
tool for the maintenance of stable health in chronic diseases [1],
including bipolar disorder [2] and chronic fatigue syndrome [3].
By monitoring behaviour, changes that correlate to prodromes or
early warning signs can be identified and corrective or
preventative action taken early. There are many paper-based
solutions available for these conditions, but the prevalence of
technology and potential cost savings are creating a driver
towards more automated behaviour-monitoring systems.

Behaviour-monitoring systems, which are increasingly used in
dementia care [4], typically take the form of distributed sensing
environments that capture a large volume of information about
the subject from a variety of sensors, such as in [5]. This produces
a very large, multivariate dataset, often with significant elements of
noise. The establishment of what constitutes a ‘normal’ pattern of
behaviour and the detection of deviations from such a dataset
pose significant challenges.

In this Letter, a novel approach to the detection of both normal be-
havioural patterns and deviations from these patterns is presented,
which operates on a distributed sensing environment. The approach
centres on the application of an existing algorithm, the continuous
profile model (CPM), to an application domain it has not been previ-
ously applied to and the novel processing of the output of the CPM
algorithm to detect behavioural patterns and changes in a multi-
sensor system. This approach is termed multivariate behavioural
modelling (MBM). An experimental validation of the MBM ap-
proach is presented to demonstrate that behavioural patterns and
change can be detected by showing that the method is capable of de-
termining the difference in behaviour between weekday and weekend
days in two normal controls under different circumstances.

The method developed to detect change is described in Section 2,
the experimental approach to validating the method is described in
Section 3 and the results obtained are given in Section 4. Section 5
provides a discussion of the results and Section 6 presents some
conclusions.

2. Method: The MBM method uses the CPM algorithm to detect
the underlying behaviour from the data provided by the sensors
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in the system and to assess the similarity between new data and
the established pattern for each sensor. The output from this step
is then fused in an automatically weighted manner to detect the
changes in behaviour.

The CPM has been chosen for this task as it is specifically
designed to extract the underlying pattern from a cohort of input
patterns and assumes that these patterns are all noisy and derived
from some underlying pattern. This maps very closely to the
problem addressed in this work of detecting an underlying behaviour
pattern from several days of observation of free living behaviour.

The CPM is particularly suited to this task as it is cohort based, in
that it works on the entire input set at once, and is capable of per-
forming two key aspects of the analysis – identification of normal
behavioural patterns and calculation of differences using the same
model. Alternative methods exist that can handle one of these
tasks, but not both. Dynamic time warping (DTW) [6], for
example, is suited to analysing the difference between a known
pattern and a new pattern, but does not provide a robust way to
determine the underlying pattern. Statistical methods, such as a
temporal average, could be used to perform this task but are less
resistant to noise than the CPM. Other approaches such as identify-
ing clusters of sensor firings as significant events and looking
for the presence or absence of these [7] have been presented in
the literature but do not offer the same granularity of output as
the CPM.

This Section gives first an overview of the MBM method and
then further details on the pattern detection and change detection
algorithms.
2.1. Overview: The MBM method operates on a multivariate input
set where several sensors exist that each produce one or more data
streams. The MBM method proceeds in four steps:

(1) Pre-processing. The pre-processing step performs feature ex-
traction on the raw data to compress the data stream into a set of
characterising features. Pre-processing is not performed on data
that are very simple, such as those from PIR sensors, which
simply comprise the timestamps of sensor firings. Further details
on potential pre-processing techniques can be found in [8];
however, a range of pre-processing options are possible dependent
on the data being used.
Healthcare Technology Letters, 2014, Vol. 1, Iss. 4, pp. 92–97
doi: 10.1049/htl.2014.0089

mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:


Table 1 Sensor locations for participant #1

Sensor name Location

camera kitchen
PIR 1 bedroom
PIR 2 lounge
door switch 1 kitchen
door switch 2 kitchen
IR sensor lounge
pressure mat bedroom
environmental node lounge
(2) Time-series generation. A time-series generation step converts
the pre-processed sensor output into a time series. At this point,
the data stream has some level of basic meaning with respect to
time and provides the lowest level of information in the system.
An example of this is the processing of raw accelerometry data
through to providing a measure of activity intensity within a five-
minute epoch and generating a data stream consisting of activity
scores for successive five-minute epochs. The pre-processing and
time-series generation steps are bespoke for each data stream
included in the MBM analysis. More details on suitable processing
techniques can be found in [9].
(3) Data fusion and pattern detection. The data fusion and pattern
detection step utilises the CPM algorithm to detect the normal
pattern of activity from each time-series data stream and combines
these to establish a normal pattern of behaviour for the user.
(4) Change detection. The change detection step uses the CPM al-
gorithm to detect differences between the detected normal pattern
and new data and fuses the detected difference scores across all
data streams to detect deviations from the normal pattern of
behaviour.

2.2. Pattern detection and change detection: The data fusion and
pattern detection step is where the user’s data are processed to
extract their normal behaviour pattern. This pattern is used to
detect changes in their behaviour over time. The core algorithms
for both of these stages are in the CPM [10], which is a model
for the simultaneous alignment, and estimation of the underlying
pattern, of a set of time-warped input time series. Briefly, the
CPM takes a set of repeated observations of a phenomenon,
aligns them in time and generates a model for the underlying
phenomenon that is capable of generating the input set. A full
explanation of the CPM can be found in [10] but the principal
points are repeated here as the change detection step makes use
of a number of outputs that the CPM provides.

(1) CPM background. The primary assumption of the CPM is that
there is an input set comprising many uniformly sampled time
series that are all time-shifted and locally time-warped observations
of an underlying process, termed the latent trace. This is analogous
to a set of data recorded from a person repeating the same patterns
of behaviour over many days; the underlying behaviour is the same,
but individual parts may be shifted in time or take longer or shorter
times to complete. The CPM provides a way to reverse engineer the
input set to model the latent trace and align the input set in time.

Given a model for a particular input set, the CPM is capable of
producing a log-likelihood of a new input being generated from
the model in addition to the total log-likelihood of producing all
the time series in the input data set from the model. These two mea-
sures, as well as the latent trace and time-aligned input set are the
outputs of the CPM that are used by the MBM method.

(2) MBM method. The CPM is used in the MBM system to model
the behaviour patterns for each data stream given a set of training
data from that data stream. Assuming N data streams, the processing
for each data stream is as follows. Over a training period of T days,
the CPM model is trained and the total log-likelihood of producing
the input set is calculated as Ls, where s denotes the data stream. The
average log-likelihood of generating any one of the input time series
is thus calculated as

Las =
Ls
T

The latent trace obtained as a result of the training process corre-
sponds to the detected normal pattern of behaviour observed for that
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data stream. During training a further measure, ρs, is calculated as
the correlation of the input set after alignment with the CPM.
This is a measure of the consistency of the input from the data
stream and is used in subsequent processing.

The process of pattern detection from training data is repeated for
all the data streams in the system. In this way, a collection of known
behavioural patterns is built up and collectively termed an activity
signature. The activity signature defines the normal patterns of be-
haviour for the user as captured by the data streams used to monitor
that user.

Once an activity signature is defined for a user, it is possible to
calculate a metric that identifies how different a given day is to
the activity signature. This calculation is performed in three steps.
First, for each data stream, a likelihood measure for generating
the new data from the optimised model is obtained using the
CPM and denoted Lβs. The weighted behavioural difference
(WBD) between the new data and the established pattern can be cal-
culated by comparing the difference between the two
log-likelihoods as

Ws = rs(Lbs − Las)

where the multiplication by the consistency factor, ρs, emphasises
the differences in data streams that produce highly consistent data
since a change in an otherwise consistent data source is deemed
to be more significant than a change in an inconsistent data
source. Furthermore, if any Ws is positive it is set to 0, which has
the effect of ignoring it in subsequent processing.

Given difference scores across all the data streams, an averaged
WBD (AWBD) score for a single day can be calculated as

WA = 1

N

∑N

s=1

Ws

The averaging over N allows the calculation ofWA to take account of
a varying number of data streams and for a sensor to drop out
without adversely distortingWA. The reasoning for ignoring positive
Ws values also becomes apparent in this equation. A positive Ws

indicates that the new data is highly typical of the training data;
that it is not different. Since the objective is to identify differences,
and since high positive scores could overwhelm smaller negative
scores (which indicate difference), positive Ws values are ignored.

By following the processing outlined above, a number of differ-
ent data streams are used to calculate a single metric that quantifies
how similar the behaviour of a new day is to the patterns that have
been detected in the training data.

3. Technical trial: To develop and test the MBM method, data
from a technical trial of a self-management system for bipolar
disorder [8] was used. The trial was run at two sites using
multi-sensor systems to monitor the behaviour of two
participants, both health controls. Participant #1’s trial lasted for
12 weeks and participant #2’s trial lasted for 5 weeks. A slightly
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Table 2 Sensor locations for participant #2

Sensor name Location

camera kitchen
PIR 1 hallway
PIR 2 hallway
pressure mat bedroom
environmental node lounge

Figure 1 Behavioural traces from four data streams for participant #1 showing came
a Camera cooker AOI
b PIR sitting room
c Pressure mat
d Environmental artificial light
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different sensor set was used in each trial and these are shown in
Tables 1 and 2. Data obtained from the trials were used to
develop the processing architecture described above.

To test the MBM method, a hypothesis was made that the
weekday behavioural patterns are different from weekend behav-
ioural patterns and the system was used to detect this difference.
For each trial participant, an activity signature was obtained based
on their weekday behavioural data over a training period.
Following the training period, the activity signature was used to
assess the similarity of each new day. This was performed on
ra cooker AOI, PIR sitting room, pressure mat and environmental artifical light
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Figure 2 Activity signature for participant #1 showing how behavioural patterns from each data stream align in time
both weekdays and weekends and the AWBD scores were used to
identify weekend days from the data.
During the training period, only good days of data were used. A

‘good’ day of data is defined as a day with enough data that the pro-
cessing algorithms run correctly. In practical terms, this means that
when a sensor drops out during the training period, the training
period for the data streams associated with that sensor are extended.
This results in some of the data streams not being used at the start of
the testing phase because they are still being trained. This is not a
problem as the way the AWBD is calculated accounts for differing
number of data streams.

4. Results: The results of the technical trial for participants #1 and
#2 are presented in this Section. To take account of the difference in
days of the two datasets, each set was analysed using a different
number of days for training; participant #1’s data was analysed
with a 30-day training period and participant #2’s data with a
7-day training period. A summary of the results is shown in Table 3.

4.1. Participant #1: Fig. 1 shows behavioural patterns obtained
from four of the data streams from participant #1. The Camera
Cooker AOI, Fig. 1a, shows a definite peak at around 2000 with
smaller peaks during the day. The PIR sitting room pattern,
Fig. 1b, and environmental artificial light pattern, Fig. 1d, also
Table 3 Summary of technical trial results

Participant Trial length, weeks Training length, days P-value

#1 12 30 0.0182
#2 5 7 0.0106
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show activity peaks around this time and the PIR pattern
continues to identify activity later into the evening. The pressure
mat pattern, Fig. 1c, identifies three peaks, around 1000, 1900
and 0000.

The overall activity signature for participant #1 is shown in
Fig. 2, in which amplitudes of the behavioural patterns have been
normalised for display purposes. The behavioural patterns from
Figure 3 WBD scores for all data streams for participant #1
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Figure 4 AWBD scores obtained from participant #1 Figure 6 AWBD scores obtained from participant #2
Fig. 1 can be seen from this figure along with behavioural patterns
from the remaining sensors. The alignment between the behavioural
patterns can be clearly seen from this figure, in particular the activ-
ity in the evening, around 2000, and during the middle of the day,
around 1300.

The activity peaks identified in Figs. 1 and 2 are consistent with
the general patterns known for participant #1, particularly leaving
the office for lunch and preparing food in the evening. This is par-
ticularly evident in the data streams ‘WER Accelerometer’ and
‘CAM Cooker’.

Fig. 3 shows all of the WBD scores from the test data. Gaps in the
data are because of sensor problems and missing data. In general, it
is difficult to identify any trends from this graph; however, there are
several days that show a drop across several sensors, notably days
23, 30 and 37.

Fig. 4 shows the AWBD score over the testing period for partici-
pant #1. From this figure, the difference between weekdays and
weekends is much clearer; weekends have a significantly lower
AWBD score than weekdays. This observation is verified with a
Student’s t-test on the data with a null hypothesis that there is no
statistical difference between the scores obtained on weekdays
and weekends. A P-value of 0.0182 was obtained, which rejects
the null hypothesis at the 5% confidence interval and indicates
that there is a significant difference between weekday and
weekend AWBD scores for participant #1.
Figure 5 Activity signature for participant #2 showing how behavioural patterns
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4.2. Participant #2: Fig. 5 shows the activity signature for
participant #2. There is no particular correlation in the data
streams, other than a trend for activity in the evenings. Only one
sensor, the PIR, is of particular note as it displays two distinct
activity peaks, one in the morning and one in the evening. These
correspond to the times that participant #2 got up and went to bed.

Fig. 6 shows the AWBD score for the test period from participant
#2. As with participant #1, the weekends can be clearly seen as dif-
ferent. This is verified with a Student’s t-test P-value of 0.0106
which rejects the null hypothesis at the 5% significance level and
indicates that there is a significant difference between the
weekday and weekend AWBD scores.

Table 3 shows the t-test results for both participants. Both tests
reject the null hypothesis (that there is no statistical difference
between the scores obtained on weekdays and weekends) at the
5% significance level.
5. Discussion: The results of the technical trial show that
behavioural patterns can be extracted and that the difference
between weekdays and weekend days can be identified; the
AWBD scores were shown to be significantly different at the
95% confidence level for both participants. The AWBD metric
allows easy identification of difference and allows an inspection
of the individual WBD scores to identify those that caused a
from each data stream align in time
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difference to be flagged, providing additional insight into the user’s
behaviour. Furthermore, the results show that the calculation of the
AWBD metric is able to run successfully with poor quality data that
include significant and inconsistent gaps across different data
streams.
The data processing does not identify every weekend as different,

but it would not be expected to. It is entirely possible that the behav-
ioural pattern for a weekend day might be similar enough to a
weekday for it to be given the same score. A record of what each
participant did on each day of the trial was not maintained, which
prevented a complete verification that the change detection algo-
rithm was working correctly for each day. However, a general
record of activity for each participant was maintained and this is
sufficient to know that, in general, they behaved differently at the
weekend and the Student’s t-tests confirm that the AWBD scores
in the weekend and weekday groups are statistically different.
It is, however, acknowledged that there are some misclassifica-

tions present in the data. A principal cause of some of these in
the testing period is sensor drop-out. If the sensors that are import-
ant in distinguishing between weekdays and weekends drop-out
then the system will not be able to distinguish between the two.
Days 50 and 51 from participant #1 display this type of misclassi-
fication and can be seen in Fig. 3. Many of the sensors dropped out
over those 2 days, causing a reduction in the number of data streams
available for classification. Of the data streams remaining, two were
light sensors, which report the same pattern each day. Thus, the
WBD scores for the light sensor data streams are very high, result-
ing in a very high AWBD score for those days.
The robustness of the algorithm to this form of missing data, and

to noisy data comes from two factors. Noisy data are accounted for
through the use of the probabilistic approaches in the CPM and
through the consistency factor, which deliberately reduces the influ-
ence of noisy data. Robustness to missing data is a result of the
modular treatment of the difference scores from each data stream.
By treating each data stream independently and averaging scores
as the final step, missing days of data do not adversely affect the
AWBD unless those sensors are key to determining the behavioural
difference, as can be seen for days 50–51 for participant #1.

6. Conclusions: The work presented in this Letter demonstrates an
approach to monitoring behavioural change from multi-sensor
systems and shows that macro-level changes in behaviour can be
identified using the MBM method. The use of a cohort-based
pattern detection method (CPM) in this application to generate
activity signatures, and the use of automatically weighted
behavior difference scores in the data fusion step are the principal
novel contributions of this work. In particular, the way in which
the data are analysed provide for a method that is particularly
robust to noise and data drop-out and that can adjust
automatically to the addition and removal of sensor components.
The results, presented in summary form in Table 3, show that the

AWBD scores for weekdays and weekend days are significantly dif-
ferent at the 95% confidence level for two different test scenarios,
providing P-values of 0.0182 and 0.0106, respectively, which
strongly reject the null hypothesis that there is no difference
between weekday and weekend data. Behavioural differences are
shown in both participant’s data and this indicates that the MBM
method is capable of operation on differing datasets with differing
underlying behavioural characteristic expressed by the two trial
participants.
The above results show that the MBM method provides a solid

foundation for detecting behavioural change and a single overarch-
ing indicator metric that can be drilled down into to provide
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additional insight. This approach could be used as a data analysis
technique in self-management systems for chronic health as a
means of detecting changing behaviour patterns and further work
with this approach will focus on this area.

In such a system, the input sensor devices could be tailored to be
condition specific and a decision support system (DSS) used to
provide insight to the user. The DSS would be able to take action
when behaviour change was detected, such as providing alerts or
suggestions to the user. Since the data processing can be examined
to identify specific changes, these, coupled with the use of specific
input sensors, could be used to make inferences about the user’s
health state, predicting affective change, for example, in bipolar
disorder.

The development of such a system has the potential to provide a
significant improvement in long-term health for people with chronic
conditions.

Additionally, the work in this Letter could be extended to support
the detection of different patterns for different days, such as
weekend or weekday patterns and an automation of this process
could be investigated with a cluster-based approach on the activity
signatures. There would also be utility in developing a mechanism
to identify the specific aspects of a day that were different from the
normal, both in terms of which sensors are different, but more im-
portantly, to localise those differences in time. These improvements
would allow for greater flexibility in behaviour detection and
provide a more targeted and specific indicator of change.
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