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In digital mammograms, an early sign of breast cancer is the existence of microcalcification clusters (MCs), which is very important
to the early breast cancer detection. In this paper, a new approach is proposed to classify and detect MCs. We formulate this
classification problem as sparse feature learning based classification on behalf of the test samples with a set of training samples,
which are also known as a “vocabulary” of visual parts. A visual information-rich vocabulary of training samples is manually built
up from a set of samples, which include MCs parts and no-MCs parts. With the prior ground truth of MCs in mammograms, the
sparse feature learning is acquired by the 𝑙

𝑃
-regularized least square approach with the interior-point method. Then we designed

the sparse feature learning based MCs classification algorithm using twin support vector machines (TWSVMs). To investigate its
performance, the proposedmethod is applied toDDSMdatasets and comparedwith support vectormachines (SVMs)with the same
dataset. Experiments have shown that performance of the proposedmethod ismore efficient or better than the state-of-artmethods.

1. Introduction

Breast cancer is the most common tumor disease in women,
with the increasing incidences in recent years. And also, it is
one of the major death causes among middle-aged women
in the world. Currently, digital mammograms are one of the
most reliable methods to perform the early diagnosis, which
is very important for the effectiveness of treatment methods.

In digital mammograms, an important sign of the early
breast cancer is the existence of MCs. They always exist in
30%–50% of mammographically diagnosed cases, which are
presentwith tiny bright spots of differentmorphology.Micro-
calcifications are small calcifications with different shapes
and densities, approximately 0.1–1mm in diameter. Isolated
microcalcifications are not dangerous, but a microcalcifica-
tion cluster might be an early sign of breast cancer [1], which
is a region including more than three microcalcifications per
5mm × 5mm.

However, there is only about 3% of useful information in
mammograms, which can be seen by doctors with the naked
eye. Due to the fact thatmost details inmammograms cannot
be perceived by human eyes, it is even very difficult for a
skillful radiologist to find the sign of early breast cancer, that

is,MCs, as a resultmissing the best time for treatment. So, one
of the key techniques for early diagnosis of the breast cancer
is to detect MCs and to judge whether they are malignant or
not in mammograms.

According to recent researches, there are several existing
criteria to characterize the MCs shape properties. Among
them, one of the well known is the category criterion
proposed by Le Gal et al. [2], which illustrates five groups
(shown in Figure 1). Different groups identify different kinds
of MCs in the ascending order of the degree of malignancy.
As shown in Figure 1, the first group describes the O-shaped
calcifications and partially calcified ones, known as teacup
calcifications. The second one includes regular and round
calcifications with uniform density. The third is composed
of calcifications with the same shape and smaller size than
the second one. Class IV is also called salt shaped, which is
irregular MCs related to the high degree of malignancy. Type
V is also closely related to a very high degree of malignancy,
which is called vermicular shaped.

Up till now, computer aided diagnosis (CAD) is still a
useful tool in breast cancer detection to improve the accuracy
of radiologists and to help radiologists to read mammogram
films. It may provide good help to radiologists in interpreting
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Figure 1: LeGal’sMCs classification standards. Type I: annular; Type II: regularly punctiform; Type III: dusty; Type IV: irregularly punctiform;
Type V: vermicular calcification.

mammograms to detect MCs and classify them into malig-
nancy or not. A large number of researchers in this field have
been trying to find effective methods to automatically detect
MCs and categorize them as normal, benign, or malignant.

Because it is very important in breast cancer diagnosis,
the detection accuracy of MCs has become a crucial applica-
tion task and research. Recently a lot of methods have been
developed. These approaches have been also greatly assisting
radiologists and doctors in diagnosing the disease [3–5].
Among them, several methods focus on image enhancement
and segmentation of regions of interests (ROIs), such as local
threshold and classical image filter [6, 7], optimal filters [7, 8],
fractal models [9], wavelet and multiscale analysis [6, 10, 11],
and mathematical morphology [12, 13]. Various classification
approaches based on machine learning have also been pre-
sented to detect and classify MCs, such as rule-based systems
[14], fuzzy logic systems [15–19], statistical methods based
on Markov random fields [20, 21], support vector machines
(SVMs) [20, 22], twin support vector machines (TWSVMs)
[23, 24], and twin support tensor machines (TWSTMs) [24].
In the last ten years, a lot of researches reported in the liter-
atures have used neural networks for MCs characterization
[9, 10, 12, 25–28]. With the development of SVMs, various
SVMs have been designed to categorize ROIs [29].

However, how to successfully apply the mammography
technology to detect breast cancer and design a breast cancer
detection system greatly depends on the careful designing
of the two important modules: feature selection and sample
classification. A lot of well-established methods have been
proposed to address this challenge problem. According to
[30], these methods can be categorized into the following
groups: (a) traditional methods, such as linear discriminant
analysis (LDA), K-nearest neighbor (KNN), logistic regres-
sion (LR), and generalized partial least square (GPLS); (b)
classification trees and aggregation methods, such as classi-
fication and regression tree (CART), bagging and boosting
(BB), random forest (RF), and ensemble learning (EL); (c)
machine learning based methods, such as neural network
(NN), support vector machines (SVMs), and twin support
vector machines (TWSVMs); and (d) generalized methods,
such as flexible discriminant analysis (FDA), bias discrimi-
nant analysis (BDA), mixture discriminant analysis (MDA),
and shrunken centroid method.

To detect the early sign of this disease and to aid doctors
to diagnose breast cancer in early stage, a novel approach
for MCs classification is proposed based on sparse feature

learning and representationwith TWSVMs, which is inspired
by the recent progress in 𝑙

1
-norm minimization-based

approaches [31, 32]. These approaches, such as compressive
sensing for sparse signal reconstruction, basis pursuit denois-
ing, and the Lesso algorithm for features selection, have been
well developed. Inspired from the above well-established
approaches, our approach presented in this paper is based
on the belief that the key problem to finding a solution to
the problem depends on learning the suitable representa-
tion.

Especially, to extract high-level and conceptual informa-
tion, for example, the existence of an MC in a mammogram
block, it is very important for us to convert the low-level
input, such as the pixel value, to high-level and more mean-
ingful representations. Through this transformation, the fea-
ture learning and detection process will be well constructed.

Ideally, a test example can be represented just from the
training samples of the same category. Therefore, when the
test sample is expressed as a linear combination of the entire
training sample, the coefficient vector will be sparse. That
is, there will be relatively few nonzero coefficients in the
vector. Test samples from the same category will have a sim-
ilar sparse representation, while test samples from different
categories will lead to different sparse representations. So the
sparse representation coefficients can be treated as the more
meaningful and discriminant information for the samples
classification. In order to get the sparse coefficient vector, we
use 𝑙
1
-regularized least square [33] to solve the problem.

To achieve a good performance for MCs detection, we
designed two methods to achieve the goal of the detection
system.The first one is the sparse discriminant analysis algo-
rithm, which is achieved by computing the residuals of sparse
coefficients of the test sample between the centroid sparse
coefficients of training samples. Aswe have known traditional
supervised learningmethods always use a training procedure
to create a classification model for testing. But the proposed
sparse representation based approach does not contain the
separate training and testing sections. We directly achieved
the classification goal out of the testing samples’ sparse
representation according to the training samples. Another
unique feature of the new method is that no model selection
is needed. The second one is designed by the combination
of sparse representation and the state-of-the-art classifier
TWSVMs. We employ the sparse representation approach as
a feature learning method in terms of the coefficient vector
for samples feature extraction, and then we feed it with the



The Scientific World Journal 3

trained TWSVMs to formulate the detection method as a
supervised learning approach.

The paper is organized in five sections. Technology
backgrounds of our approach are presented in Section 2;
sparse representation based MCs detection algorithm and
TWSVMbasedMCs detection with sparse representation are
given in Section 3.Thereafter, the sparse representation based
MCs detection algorithms are formulated, and experimental
results are illustrated in Section 4 accordingly. Finally, con-
clusions are drawn in Section 5.

2. Technology Backgrounds

2.1. Image Sparse Representation and Learning. Given a train-
ing dataset {(x

𝑖
, 𝑙
𝑖
); 𝑖 = 1, . . . , 𝑛}, x

𝑖
∈ 𝑅
𝑑
, 𝑙
𝑖

∈ {1, 2, . . . , 𝑁},
where x

𝑖
is the 𝑖th sample, a 𝑑-dimension column vector

contains MCs features, 𝑑 is the number of features, and 𝑙
𝑖

represents the label of the 𝑖th sample with 𝑁 as the number
of categories, and a test sample y ∈ 𝑅

𝑑, the problem of
sparse representation aims to find a column vector c =

[𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
]
𝑇 such that

y = 𝑐
1
x
1

+ 𝑐
2
x
2

+ ⋅ ⋅ ⋅ + 𝑐
𝑛
x
𝑛
, (1)

and ‖𝑐‖
0
is minimized, where ‖𝑐‖

0
represents the 𝑙

0
-norm,

which means that it is equal to the number of non-zero
components in the vector c.

Suppose that we define a matrix by putting x
𝑖
as the 𝑖th

column ofA = [x
1
, x
2
, . . . , x

𝑛
]; we can convert the problem of

sparse representation into

c = min
c∈𝑅𝑛


c0 subject to y = Ac. (2)

How to get the close solution of the sparse represen-
tation problem is NP-hard, because it is a combinational
optimization. If we replace the 𝑙

0
-norm in (2) with 𝑙

𝑝
-norm,

an approximation solution can be gotten. Thus,

c = min
c∈𝑅𝑛


c𝑝 subject to y = Ac, (3)

where the 𝑙
𝑝
-norm of a vector u is defined as ‖u‖

𝑝
=

(∑
𝑖
|u
𝑖
|
𝑝
)
1/𝑝. A generalized version of (3), which allows for

certain degree of noise, is defined to find a vector c, when the
following objective function is minimized:

𝐽 (c, 𝜆) = minc {
Ac − y2 + 𝜆‖c‖𝑝} , (4)

where the scalar regularization 𝜆 is a positive parameter,
which balances the trade-off between sparsity and recon-
struction error.

Recently, development in the theory of compressed sens-
ing and sparse representation reveals that, if the solution
of (2) is sparse enough, the solution of the 𝑙

0
-minimization

problem is equal to the solution of the following 𝑙
1
-

minimization problem [33], which takes 𝑝 = 1 in (4):

c = min
c∈𝑅𝑛


c1 subject to y = Ac,

𝐽 (c, 𝜆) = minc {
Ac − y2 + 𝜆‖c‖1} .

(5)

We can solve the problem in polynomial time by quad-
ratic programming or standard linear programming meth-
ods. If the solution is very sparse, there will be more efficient
methods to solve this problem.

2.2. Twin Support Vector Machines. Twin support vector
machines (TWSVMs) are a new binary data classifier pro-
posed by Jayadeva et al. [34], which aims at obtaining two
nonparallel planes close to two nonparallel planes such that
each plane is closer to one of the two classes and is as
far as possible from the other. There are two quadratic
programming problems (QPPs) to be solved in the TWSVMs.
But each QPP is of a smaller size instead of a large one as we
have in the traditional SVMs. So, to some extent, TWSVMs
work much faster than the stand SVMs facing the same
classification problem; that is, it is more efficient

According to (6) we can solve the following two QPPs to
obtain the TWSVM classifier:

(TWSVM1)

min
w(1) ,𝑏(1) ,q

1

2
(Aw(1) + e

1
𝑏
(1)

)
𝑇

(Aw(1) + e
1
𝑏
(1)

) + 𝑐
1
e𝑇
2
q

s.t. − (Bw(1) + e
2
𝑏
(1)

) + q ≥ e
2
, q ≥ 0,

(6)

(TWSVM2)

min
w(2) ,𝑏(2) ,q

1

2
(Bw(2) + e

2
𝑏
(2)

)
𝑇

(Bw(2) + e
2
𝑏
(2)

) + 𝑐
2
e𝑇
1
q

s.t. (Aw(2) + e
1
𝑏
(2)

) + q ≥ e
1
, q ≥ 0,

(7)

where e
1
and e
2
are vectors of ones with proper dimensions

and 𝑐
1
, 𝑐
2

> 0 are scalar parameters.
The first term, in the objective function of (6) or (7), is

defined by the sum of squared distances from the points of
each class to the hyper plane. So, minimizing the objective
function tends to keep the hyper plane close to points which
belong to one class (say class +1). Meanwhile, the constraints
request of the hyper plane to be a distance of no less than
1 to the points belonging to the other class (say class −1).
In the model, we use a set of error variables to measure the
computing error, whenever the distance to the hyper plane is
less than 1. In (7), the objective function aims at minimizing
the total error variables, so as to attempt tominimize themis-
classification with respect to the points belonging to class −1.

TWSVMs are composed of two QPPs. And the objective
function in each QPP, corresponding to a particular class and
constrains, is determined by the patterns belonging to the
other class. In TWSVM1, patterns of class +1 are clustered
near the hyper plane x𝑇w(1) + 𝑏

(1)
= 0. Similarly, in

TWSVM2, patterns of class −1 are clustered around the
hyper plane x𝑇w(2) + 𝑏

(2)
= 0. The Lagrange equation

corresponding to TWSVM1 is given by

𝐿 (w(1), 𝑏
(1)

, q,𝛼,𝛽)

=
1

2
(Aw(1) + e

1
𝑏
(1)

)
𝑇

(Aw(1) + e
1
𝑏
(1)

) + 𝑐
1
e𝑇
2
𝑞

− 𝛼
𝑇

(− (Bw(1) + e
2
𝑏
(1)

) + q − e
2
) − 𝛽
𝑇q,

(8)
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where 𝛼 = (𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑚
2

)
𝑇 and 𝛽 = (𝛽

1
, 𝛽
2
, . . . , 𝛽

𝑚
2

)
𝑇

are the vectors of Lagrange multipliers. The Karush-Kuhn-
Tucker (K.K.T.) conditions for TWSVM1 are given by

A𝑇 (Aw(1) + e1𝑏(1)) + B𝑇𝛼 = 0,

e
1

𝑇
(Aw(1) + e1𝑏(1)) + e𝑇

2
𝛼 = 0,

𝑐
1
e
2

− 𝛼 − 𝛽 = 0,

− (Bw(1) + e
2
𝑏
(1)

) + q ≥ e
2
, q ≥ 0,

𝛼
𝑇

(− (Bw(1) + e
2
𝑏
(1)

) + q − e
2
) = 0, 𝛽

𝑇q = 0,

𝛼 ≥ 0, 𝛽 ≥ 0.

(9)

If we define H = [A e
1], G = [B e

2], and u = [w(1); 𝑏
(1)

]
𝑇

,
we can get

u = −(H𝑇H)
−1

G𝑇𝛼, (10)

where H𝑇H is positive semidefinite. With the K.K.T. condi-
tions and the Lagrange equation of problem TWSVM1, we
can get the Wolfe dual of TWSVM1 as follows:

(DTWSVM1)

max
𝛼

e𝑇
2
𝛼 −

1

2
𝛼
𝑇G(H𝑇H)

−1

G𝑇𝛼

s.t. 0 ≤ 𝛼 ≤ 𝑐
1
.

(11)

Similarly, if we consider TWSVM2; then we can also obtain
its dual as

(DTWSVM2)

max
𝛾

e𝑇
2
𝛾 −

1

2
𝛾
𝑇H(G𝑇G)

−1

H𝑇𝛾

s.t. 0 ≤ 𝛼 ≤ 𝑐
1
.

(12)

And we define the augmented k = [w(2); 𝑏
(2)

]
𝑇

as

k = −(G𝑇G)
−1

H𝑇𝛾. (13)

If we get the vector u and k from (10) and (13), the hyper
planes

x𝑇w(1) + 𝑏
(1)

= 0, x𝑇w(2) + 𝑏
(2)

= 0 (14)

can be obtained. Suppose that we have a new sample x ∈ 𝑅
𝑛,

which is assigned to class 𝑝 (𝑝 = 1, 2). The data belongs to
which category will be determined by the closer plane to the
sample; that is,

x𝑇w(𝑝) + 𝑏
(𝑝)

= min
𝑙=1,2


x𝑇w(𝑙) + 𝑏

(𝑙)
, (15)

where | ⋅ | represents a vertical distance of the point x to the
plane x𝑇w(𝑙) + 𝑏

(𝑙)
= 0, 𝑙 = 1, 2.

From the K.K.T. conditions, we can observe that patterns
lie on the hyper plane given by x𝑇w(1) + 𝑏

(1)
= 0 of class −1

given 0 < 𝛼
𝑖
< 𝑐
1
(𝑖 = 1, 2, . . . , 𝑚

2
), and such patterns of class

−1 are called support vectors of class 1 according to class −1
as they play a key role when we determine the required hyper
plane. A similar observation can be gotten from the problem
TWSVM2. From the example shown in Figure 2, one can find
the difference between TWSVMs and traditional SVMs.

3. Materials and Methods

3.1. Database and Evaluation Metrics. The digital database
for screening mammography (DDSM) [35] was built by the
University of South Florida, which is available for research at
[36]. In our experiments, all images manually selected from
this database are intensity images, digitized at 43.5𝜇m/pixel
and 12-bit gray scale. To evaluate our methods, we totally
selected a set of 267 images from the DDSM, which are all
clinical mammograms, to form an evaluation database.

To summarize quantitatively the performance of the
proposed method, we used receiver operating characteristic
(ROC) curves [37]. Receiver operating characteristic analysis
is based on statistical decision theory, which is a commonly
used criterion for classification performancemeasure.We can
get a ROC curve by figuring the plotting of the classifier’s
sensitivity (also known as true positive classification rate)
as a function of the classifier’s specificity (also known as
false positive rate). Sensitivity is a probability of correctly
classifying a target object. Specificity is a probability of
incorrectly classifying a non-target object.The area under the
ROC curve (Az) is defined as an accepted way to compare
the classifiers performance.HigherAzwould characterize the
greater discrimination capacity. A good classifier should have
a true positive rate of 1.0 (or 100%) and the false positive rate
of 0.0 accordingly with respect to an Az of 1.0.

3.2. MCs Classification Based on Sparse Representation. Ide-
ally, the nonzero entries in the estimated c will be associated
with all the columns in A from a single category. So we can
easily designate the test image y to that category. However,
because of the existence of noise, the nonzero entries some-
times may be related tomultiple categories. A lot of the-state-
of-art classifiers can resolve the problem. For example, we can
simply designate y to the category with the largest entry of c.
However, such heuristics cannot model the structure of the
subspace associated with MCs blocks.

To better model the structure, we classify y based on how
much the coefficients relate to the training sample of each
category reproducing y alternatively. For each category 𝑖 we
define the corresponding characteristic function 𝛿

𝑖
: R𝑛 →

R𝑛 to select the coefficients associated with the 𝑖th category.
If 𝑥 ∈ R𝑛, 𝛿

𝑖
(𝑥) ∈ R𝑛 is a new vector whose nonzero entries

are the entries in 𝑥 that belongs to the category 𝑖 and whose
entries associated with all the other subjects are zero or very
close to zero.The classification algorithm can be summarized
as follows.

Algorithm 1 (MCs detection and classification based on sparse
representation (MCs-SRC)). Input: We have a matrix of
training images A ∈ R𝑚×𝑛 from two categories (MCs or not),
a linear transformD ∈ R𝑑×𝑚, and an error tolerance 𝜀.
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Figure 2: An example of SVMs and TWSVMs: (a) SVMs and (b) TWSVMs. All the points of class +1 are represented by a “×” and those of
class −1 by “I.”

(1) Compute features ỹ = Dy and Ã = DA, and
normalize ỹ and columns of Ã to unit length.

(2) Solve the convex optimization problem:

c = min
c∈𝑅𝑛


c1 subject to y = Ac,

𝐽 (c, 𝜆) = minc {
Ac − y2 + 𝜆‖c‖1} .

(16)

(3) Compute the residuals 𝑟
𝑖
(y) = ‖ỹ − Ãc‖

2
for 𝑖 =

+1, −1.

Output: 𝑓(y) = arg min
𝑖
𝑟
𝑖
(y).

3.3. MCs Classification Approach with Twin Support Machines
and Sparse Representation (TWSVMs-SR). Given a set of
mammogram blocks, each block is transformed and repre-
sented in terms of the sparse coefficients with respect to
the parts from the vocabulary constructed in the image
sparse representation and learning stage. Each block is then
transformed into a vector and represented as a sparse feature
vector based on the vocabulary parts (the negative and
positive samples in the sparse learning set). Then we can use
the learned sparse coefficients as each block’s sparse feature.
Sowe consider the sparse representation approach as a feature
extraction method in terms of the coefficient vector, and
then we feed it with the state-of-the-art classifier (TWSVMs)
to formulate the detection method as a supervised learning
approach.

If we have a set of training blocks labeled as positive
(MCs) or negative (non-MCs), each image is represented as a
feature vector using the method described above. These fea-
ture vectors are then fed as inputs to TWSVMs, which learns
to classify an image block as a member or not a member of
the object category, under some associated confidence.When
we get the learned TWSVMs model, we can use the learned
classifier as a reliable detector to perform the detection task.

4. Results and Discussion

Up till now, we have illustrated our new methods to detect
MCs in mammograms. In this section, we will evaluate the

performance of our methods by using the real mammogram
data obtained from DDSM. In our experiments, we use
the training, test, and validation sets, which were randomly
selected from the preprocessed image blocks. The blocks
included 3000 with true MCs and 3000 with normal tissue.
We chose 75% of the blocks for training and 25% for test.

For a given digital mammogram, we formulate the MCs
detection and classification approach as the following steps.

Step 1. We first preprocess the mammogram to remove the
artifacts, suppress inhomogeneity of the image background,
and enhance microcalcifications in the breast area.

Step 2. At each pixel location of the image, wemanually select
a small window (x = 𝐴

𝑚×𝑚
, where 𝑚 = 115) to describe its

surrounding image feature.

Step 3. Get the sparse representation of each image block by
using the proposed methods.

Step 4. Apply the proposedMCs detectionmethods to decide
whether x belongs to MCs or not.

In our experiments, they are designed to quantitatively
verify the performance of sparse representation based meth-
ods for MCs detection and classification by using mam-
mograms. To get an accurate performance measure in this
study, a stratified 5-fold cross validationmethod is employed.
We also compared our approaches with the state-of-the-art
algorithm, SVMs, which have been successfully applied in
MCs detection.

All the experiments are performed on a notebook com-
puter with DUO Intel 2.54G CPU and 4G memory under
Windows 7. MATLAB 2011 is used to implement sparse
representation based MCs detection methods. To get the
sparse representation of each image block, we employed the
𝑙
1

𝑙𝑠 MATLAB package to achieve the optimization. 𝑙
1

𝑙𝑠 is
a toolbox in MATLAB implementation of the interior-point
method for 𝑙

1
-regularized least squares solution.

Beforewe performed theMCs detectionmethods, we first
used the 𝑙

1
𝑙𝑠 package to learn the sparse transform matrix

with the training dataset.The trained sparse transformmatrix



6 The Scientific World Journal

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

False positive rate

Se
ns

iti
vi

ty

SVMs-SR
TWSVMs-SR
MCs-SRC

Figure 3: Comparisons of ROC curves of MCs detection and
classification using the proposed methods.

is evaluated using all the mammograms in the test dataset.
Because TWSVMs do not vary significantly over a wide
range of parameter settings, we chose the fixed parameters
of TWSVMs, having an RBF kernel with 𝜎 = 15 and 𝑐

1
= 𝑐
2

=

1000 in our experiments.
First, we did the experiments using MCs-SRC algorithm

to perform the MCs detection and classification. The test
results are summarized with ROC curves in Figure 3 for the
MCs-SRCmethod. For comparison, ROCcurve is also shown
for the sparse representation based TWSVMs and SVMs
methods with the same inputs.

From Figure 3, it can be shown that the proposed algo-
rithm has a higher detection accuracy rate compared with
SVMs and TWSVMs with the same dataset and configura-
tion. By using the same test samples, compared with SVMs
and TWSVMs, the proposed method has a better detection
performance when we train the classifier. In particular,
the proposed method achieved the averaged sensitivity of
approximately 92.17% with respect to 7.83% false positive
rate and Az = 0.9507. With the same training data set and
test data set, the TWSVMs classifier achieved a sensitivity of
90.01%, 9.63% false positive rate, and Az = 0.9459, and SVMs
achieved a sensitivity of 87.13%, 9.88% false positive rate, and
Az = 0.9298.

To evaluate the stability of our methods, we repeat the
sampling 50 times so that we can compute the mean and
standard deviation of the detection accuracy, sensitivity,
and specificity. We perform the detection and classification
task in 20 rounds, and in each round we randomly select
training samples from 95% of training samples to 5% to
train classifiers.The trained classifiers are evaluated using the
other 500 test samples. Average experimental results of the
MCs-SRC method, compared with SVMs and TWSVMs, are
shown in Table 1.

From Table 1, we can see that the MCs classification
with Twin Support Machines and sparse representation
(TWSVMs-SR) approach has a bit better performance than
the other two. But as we have known, the MCs-SRC method

Table 1: Experimental results of the proposed MCs-SRC method
for MCs detection, compared with sparse representation based
TWSVMs and SVMs methods.

Methods Sensitivity Specificity Az
MCs-SRC 90.84 ± 1.07% 92.37 ± 0.78% 0.9407 ± 0.0564

TWSVMs-SR 92.07 ± 0.89% 89.93 ± 0.91% 0.9678 ± 0.0977

SVMs-SR 87.53 ± 0.94% 89.72 ± 0.88% 0.9304 ± 0.1001

does not need to train a classifier, because the features are
acquired by learning, so it will get the classificationmore effi-
ciently.

5. Conclusions

In this paper, a novel approach is described to aid breast
cancer detection and classification using digital mammo-
grams. The proposed method is based on sparse feature
learning and representation, which expresses a testing sample
as a linear combination of the built vocabulary (training
samples). The sparse coefficient vector is obtained by using
𝑙
1
-regularized least square method. MCs detection and clas-

sification are achieved by defining discriminating functions
from the coefficient vector for each category (called MCs-
SRC) and TWSVMs based algorithm using sparse repre-
sentation as a feature learning method (called TWSVMs-
SR). The demonstrated experiments show that TWSVMs-
SR method gets the best performance, and MCs-SRC can
match the performance achieved by the-state-of-art classifier.
Furthermore, the MCs-SRC approach does not need to select
optimal model parameters of the used classifier.
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