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Abstract: This study investigated the mechanical properties of steel in flanges, with the goal of
obtaining high strength and high toughness. Quenching was applied alone or in combination with
tempering at one of nine combinations of three temperatures TTEM and durations tTEM. Cooling
rates at various flange locations during quenching were first estimated using finite element method
simulation, and the three locations were selected for mechanical testing in terms of cooling rate.
Microstructures of specimens were observed at each condition. Tensile test and hardness test were
performed at room temperature, and a Charpy impact test was performed at −46 ◦C. All specimens
had a multiphase microstructure composed of matrix and secondary phases, which decomposed
under the various tempering conditions. Decrease in cooling rate (CR) during quenching caused
reduction in hardness and strength but did not affect low-temperature toughness significantly. After
tempering, hardness and strength were reduced and low-temperature toughness was increased.
Microstructures and mechanical properties under the various tempering conditions and CRs during
quenching were discussed. This work was based on the properties directly obtained from flanges
under industrial processes and is thus expected to be useful for practical applications.

Keywords: flange; F70 steel; heat treatment; multiphase microstructure; mechanical property

1. Introduction

The flange is a component used to interconnect pipelines and must provide a strong and reliable
connection. Since pipelines are increasingly being developed for harsh environments such as high
pressure, low temperature and corrosive atmospheres, flanges are thus also required to have excellent
mechanical properties and reliability [1–5].

The mechanical properties of thick steel plates used for large structures such as flanges are
controlled using post-heat treatment [6–9]. Quenching is used for the purpose of improving strength
but it has a detrimental effect on low temperature toughness due to the formation of a hard secondary
phase. Thus, tempering has been used to obtain a balance of strength and toughness by optimizing the
microstructure [4,10]. In low carbon steels, it is well known that tempering after quenching induces
decomposition of as-quenched martensite into tempered martensite and precipitates, static recovery of
dislocation and release of residual stress [11–14]. Martensite after tempering loses strength but gains
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toughness by the release of embedded carbons, which later form precipitates. Not only tempered
martensite itself but also the precipitates affect mechanical properties as they vary by their type,
morphology and size [11,12]. Generally appropriate control of various process parameters included
tempering temperature TTEM and holding time tTEM can yield the desired mechanical properties.

However, when a thick steel plate is subjected to a given TTEM and tTEM, different parts of it
cool at different rates; this variation causes non-uniformity of microstructures and variation in final
mechanical properties [8,9,15–17]. After hot-forging of the flange, a post-heat treatment process can
also be used to control its mechanical properties, but the combination of high strength and high
toughness is difficult to obtain due to the non-uniform microstructure and the complicated effects of
the parameters of the tempering process.

When dealing with bulk flanges of large dimensional size and complex structure, it should be
taken into consideration that heat treatment would not be uniformly applied to each location of the
products. However, most previous studies have tended to use standardized specimens [18–22] or sheet
plates [9,16] of certain sizes to which uniform heat treatment can be applied within the specimens,
so the results cannot be directly used to understand the bulk flanges. It is rather useful, especially from
an industrial point of view, to investigate the effect of heat treatment on flanges by directly obtaining
local properties of interest from the flanges under heat treatment processes.

Therefore, this study considered 10-inch-diameter weld neck flanges at three locations selected
according to cooling rates (CRs) estimated using finite element method (FEM) simulation. Microstructures
were investigated at the corresponding locations on the untempered flange and on flanges that had been
subjected to one of nine types of tempering conditions (3 TTEM × 3 tTEM). Specimens were cut from
each location of each flange and then subjected to tensile and hardness tests at room temperature
and a Charpy impact test at −46 ◦C. The results were used to determine the correlation between
microstructure and mechanical properties under various CRs and tempering conditions.

2. Background

Low-carbon steel sheets have various microstructures and therefore various characteristics.
Microstructures are distinguished into matrix and secondary phase. According to the morphological
characteristics, the matrix is classified as granular bainitic ferrite (GBF), lath bainitic ferrite (LBF),
acicular ferrite (AF) and quasi-polygonal ferrite (QPF), and the secondary phases are classified as
martensite (M), martensite–austenite constituent (MA), degenerated pearlite/pearlite (DP/P) and
carbide (C).

GBF and LBF are two different morphologies of bainitic structure, based on descriptions in the
literature [23,24]. GBF consists of block ferrite and a granular M/A constituent. GBF is transformed
during continuous cooling and can transform over a wide range of CRs. For these reasons, GBF tends
to form a major structure in low carbon steels that have cooled at various rates [17,25–27]. After GBF
transformation ends, LBF is formed in the region of retained austenite with rich carbon content, but
not rich enough to form M/A constituent [11]. LBF has a parallel lath shape and has relatively higher
strength than GBF due to the fine laths and rich carbon content [25–27].

The transformation temperature ranges of AF and GBF are similar; typically, AF is formed at
a faster CR than GBF. AF nucleates within grains in austenite as lath-shaped needles that radiate
irregularly in various directions to form basket weaves. These chaotically arranged AF laths impede
crack propagation so the AF microstructure produces an excellent combination of strength and
toughness [17,25,27].

QPF transforms at slow CRs at high temperatures. It has higher dislocation density than polygonal
ferrite and has irregular grain boundaries. Secondary phases often form at QPF grain boundaries [25].
Compared to other matrices, OPF has the lowest strength but excellent ductility.

M is formed by cooling austenite at a greater than critical CR, which prevents carbon from
spreading. As a result, carbon forms a solid solution and M is an unstable microstructure with high
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dislocation density. M has a lath phase in low-carbon steel, so it has very high hardness and strength,
but M is brittle, so its presence degrades toughness. MA consists of martensite and retained austenite.

The distribution of martensite in MA depends on the stability of retained austenite and affects the
mechanical properties of MA [4,17,28–30].

P is a eutectoid structure composed of ferrite and cementite with a lamellar structure and forms
at high temperatures with slow CR. The mechanical properties of P are between those of martensite
and ferrite. DP has almost the same mechanical properties as P. DP is transformed by low carbon
concentration or increased CR compared to that of P [31].

C is usually observed on grain boundaries and impurities form and aggregate at the end of
phase transformation. C is also observed inside GBF and may be finely precipitated by tempering.
The influence of C on the mechanical properties depends on the shape and size [32].

3. Materials and Methods

In this study, low-alloy steel (Table 1) was used to make 10-inch-diameter weld neck flanges.
The raw steel was heated at 1250 ◦C for 12 h in a furnace. Hot-forging and punching were performed
at 850 to 1250 ◦C using a hydraulic press. The completed flanges were then subjected to post-heat
treatment of the entire flange in a furnace (Figure 1). All flanges were heated at a heating rate of 80 ◦C/h
to 940 ◦C and held at that temperature for 4 h and quenched in a water bath that had a temperature
of 25 to 50 ◦C. Afterward, flanges were reheated at 80 ◦C/h to TTEM = 450, 530 or 600 ◦C, held at that
temperature for tTEM = 1, 3 or 5 h, then air-cooled. Specimens were named according to their tempering
conditions (Table 2).

CRs during quenching by location of flange were estimated using FEM simulation (Forge NxT 3.0,
Enginsoft, Rome, Italy). Thermal parameters for the heat transfer simulation during annealing and
quenching were set as those of a low-alloy steel (C45 steel), provided by the commercial FEM software.
Metal to metal contact and metal to fluid quenching were applied to the heat transfer simulation.
Three rectangular zones (20 mm × 19 mm) were then selected (Figure 2a): they had fast CR (FC)
−10.6 ◦C/s, middle CR (MC) −4.6 ◦C/s or slow CR (SC) −2.5 ◦C/s (Figure 2b). The sample size was
defined considering the production of test specimens.

Table 1. Chemical composition (mass %) of the present steel sheet.

Element Fe C Si Mn P S Cr Ni As

Content Bal. 0.1605 0.246 1.266 0.0147 0.0045 0.191 0.014 0.004

B Ca Cu Mo N Nb Sn Ti V Al

0.0002 0.0002 0.027 0.082 0.0037 0.0019 0.002 0.0016 0.054 0.026
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Table 2. Post-heat treatment conditions and symbols.

Specimen
Name

Tempering
Temperature (◦C)

Tempering
Time (h)

Q × ×

450_1 450 1
450_3 450 3
450_5 450 5

530_1 530 1
530_3 530 3
530_5 530 5

600_1 600 1
600_3 600 3
600_5 600 5
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Figure 2. (a) Schematic illustration of each specimen location according to CR. Dimensions: mm.
(b) Cooling curve of each specimen obtained by FEM simulation (Forge NxT 3.0). Colors in (a) location
and (b) cooling curves indicate cooling rates; red, green and blue mean FC (−10.6 ◦C/s), MC (−4.6 ◦C/s)
and SC (−2.5 ◦C/s) respectively.

Microstructure observation, hardness test, tensile test and Charpy impact test were conducted
using specimens taken at three locations (Figure 3a,b). To observe microstructure, 5 × 10 × 3 mm
specimens were obtained along the vertical direction of the flange and then polished physically
using SiC paper and diamond paste. Then, they were etched using 4% Nital solution (4% NHO3 +

ethanol), and then the matrix was observed using an optical microscope (Olympus corporation, GX51F,
Okayama, Japan) and the secondary phase was identified using a scanning electron microscope (JEOL,
7200F, Tyoko, Japan) and energy dispersive spectrometer (EDS) (Oxford Instruments, Nanoanalysis,
Oxford, England). Using these microphotographs, microstructure types were classified according
to their morphological features and their area fractions were calculated. To confirm the presence of
MA constituents in the microstructure, the specimens were etched using Klemm’s I solution (50 mL
saturated aqueous Na2S2O3 + 1 g K2S2O5) for 40 to 50 s and then observed using an optical microscope.
To understand phase evolution during tempering, equilibrium phases were predicted based on
themodynamics calculation using Thermocalc with TCFE 9 database (Thermocalc, ver. 2020b).

Hardness tests were performed using a Rockwell hardness (HRC) tester (Hanbando commerce,
HBD-DBE SW2259, Seoul, Korea) on specimens with dimensions of 13 × 13 × 5 mm taken along the
vertical direction of the flange. Hardness was measured using a C-type scale. Nine measurements
were taken from each parts and then the maximum and minimum values were discarded and the
average was calculated for the rest.



Materials 2020, 13, 4186 5 of 16

Materials 2020, 13, x FOR PEER REVIEW 5 of 17 

were taken from each parts and then the maximum and minimum values were discarded and the 

average was calculated for the rest.  

Tensile test specimens were round according to sub-size standard of ASTM-E8 and were 

prepared along the horizontal direction of the flange. The tests were conducted using a tensile testing 

machine (MTS criterio, model 45, Eden Prairie, MN, USA) and were gauged once at a crosshead speed 

of 1.5 mm/min at room temperature.  

The Charpy impact test was performed on specimens that had been machined according to 

ASTM-E23 standard; these samples were taken along the horizontal direction of the flange. Charpy 

impact tests were conducted once at −46 °C using an impact tester (ZwickRoell, PSW750+TZE, Ulm, 

Germany). 

 

Figure 3. Schematic illustration of testing location in flange for samples. (a) Horizontal direction, (b–

f) vertical direction, (c) microstructure, (d) hardness test (marked as orange), (e) tensile test, (f) Charpy 

impact test. Dimensions: mm. 

4. Results and Discussion 

Q-condition specimens had a matrix that included LBF, AF, GBF and QPF and secondary phases 

M, MA, DP/P and C (Figure 4). These microstructure types were classified by morphological features 

(Table 3) [23–25,33,34]. The area fraction of phases (Figure 5) was measured three times in each and 

averaged using an image analyzer [35]. C microstructures were smaller than other microstructures 

and very rare, so C was excluded due to difficulties in identification and measurement of area 

fraction. 

GBF was a major microstructure at all CRs (Table 3). As CR increased, the fractions of LBF, AF 

and M increased but the fractions of QPF and DP/P decreased.  

Figure 3. Schematic illustration of testing location in flange for samples. (a) Horizontal direction,
(b–f) vertical direction, (c) microstructure, (d) hardness test (marked as orange), (e) tensile test,
(f) Charpy impact test. Dimensions: mm.

Tensile test specimens were round according to sub-size standard of ASTM-E8 and were prepared
along the horizontal direction of the flange. The tests were conducted using a tensile testing machine
(MTS criterio, model 45, Eden Prairie, MN, USA) and were gauged once at a crosshead speed of
1.5 mm/min at room temperature.

The Charpy impact test was performed on specimens that had been machined according to ASTM-E23
standard; these samples were taken along the horizontal direction of the flange. Charpy impact tests were
conducted once at −46 ◦C using an impact tester (ZwickRoell, PSW750+TZE, Ulm, Germany).

4. Results and Discussion

Q-condition specimens had a matrix that included LBF, AF, GBF and QPF and secondary phases
M, MA, DP/P and C (Figure 4). These microstructure types were classified by morphological features
(Table 3) [23–25,33,34]. The area fraction of phases (Figure 5) was measured three times in each and
averaged using an image analyzer [35]. C microstructures were smaller than other microstructures
and very rare, so C was excluded due to difficulties in identification and measurement of area fraction.

GBF was a major microstructure at all CRs (Table 3). As CR increased, the fractions of LBF, AF
and M increased but the fractions of QPF and DP/P decreased.

In FC-Q (Figure 4a,b), the matrix was mainly composed of GBF (47 ± 4.1% area fraction), followed
by AF (16 ± 4.0%) and LBF (13 ± 1.0%), and the secondary phase was mostly M (17 ± 2.0%) with small
amounts of DP/P (5 ± 1.5%) and MA (2 ± 0.2%). Because of the fast CR, FC-Q had fine grains; coarse
grains were not observed.
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In MC-Q (Figure 4c,d), the matrix was mainly composed of GBF (51 ± 4.7% area fraction) but
included QPF (6 ± 3.4%), and the secondary phases were M (11 ± 3.1%) and DP/P (10 ± 0.7%); compared
to FC-Q, this was a lower area fraction of Am and a higher area fraction of DP/P. The area fraction of
MA was still low (2 ± 0.1%), and the grains were coarser than in FC-Q.

In SC-Q (Figure 4e,f), the matrix was composed of similar area fractions of OPF (39 ± 7.9% area
fraction) and GBF (37 ± 5.9%); AF and LBF were not observed. The main secondary phase was DP/P
(15 ± 1.4%); M (7 ± 1.3%) was relatively uncommon. The area fraction of MA was the same as in FC-Q
and MC-Q. Grains in SC-Q were coarser than in FC-Q and MC-Q, because in SC-Q, the CR was slow so
the specimen stayed at a high temperature for a relatively long time.
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Figure 4. (a–c) Optical and (d–f) scanning electron micrographs of Q specimens etched by 4% Nital.
(a,d) FC (−10.6 ◦C/s), (b,e) MC (−4.6 ◦C/s), (c,f) SC (−2.5 ◦C/s). (LBF: lath bainitic ferrite, AF: acicular
ferrite, GBF: granular bainitic ferrite, QPF: quasi-polygonal ferrite, M: martensite, DP: degenerated
pearlite, MA: martensite–austenite constituent).

Table 3. Microstructure and area fraction (%) of experimental steel according to the CR in the
quenching-only treatment, Q.

Name
Matrix Secondary Phase

LBF AF GBF QPF M DP/P MA

FC-Q 13 ± 1.0 16 ± 4.0 47 ± 4.1 - 17 ± 2.0 5 ± 1.5 2 ± 0.2
MC-Q 8 ± 3.0 12 ± 4.4 51 ± 4.7 6 ± 3.4 11 ± 3.1 10 ± 0.7 2 ± 0.1
SC-Q - - 37 ± 7.9 39 ± 5.9 7 ± 1.3 15 ± 1.4 2 ± 0.1
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Figure 5. Optical micrographs of microstructure etched by Klemm’s I to distinguish MA (colored as
white) according to various CRs and heat treatment conditions: (a,d,g,j,m) FC (−10.6 ◦C/s), (b,e,h,k,n) MC
(−4.6 ◦C/s), (c,f,i,l,o) SC (−2.5 ◦C/s), (a–c) Q, (d–f) 450_1, (g–i) 450_5, (j–l) 600_1, (m–o) 600_5.

The area fractions of MA were not affected by CR, unlike the other microstructure types. The effect
of CR on the formation of MA has not been established. Previous studies have reported that the area
fraction of MA increased [26,35] or decreased [36,37] as CR increased.

The area fraction of MA was significantly reduced after tempering [38,39]. Q specimens (Figure 5a,b,c)
had numerous small MA inclusions. In 450_1 specimens, some of the relatively coarse MA remained,
but the rest disappeared (Figure 5d,e,f). In 450_5 specimens (Figure 5g,h,i) with increased tempering
time and in 600_1 specimens (Figure 5j,k,l) with increased TTEM, almost all of the MA disappeared.
In 600_5 (Figure 5m,n,o) with increases in both TTEM and tTEM, MA was not observed. From the
literature [4,10,29,30], the disappearance could be explained by decomposition of MA to ferrite matrix
and cementite. Decomposition of MA could be expected to reduce hardness and strength and improve
toughness. However, the area fraction of MA was 2% in all specimens before tempering (Table 3) and
so should not affect their mechanical properties.
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Tempering decomposed the secondary phases. As TTEM and tTEM increased, cementite became
spheroidized and coarsened. Spheroidization of cementite is thermodynamically driven by a decrease
in ferrite/cementite interfacial energy. Small cementite belongs to large cementite by Ostwald ripening.
These cementites are coarsened and the total surface area to volume ratio is decreased [40,41].

M content decreased as TTEM and tTEM increased. Comparison to the Q specimen (Figure 6a)
indicated that the decomposition of M started in the 450_1 specimen (Figure 6d); pre-existing M broke
up into ferrite and cementite, and then they mixed with fine cementite and precipitated after tempering.
In the 450_5 specimen (Figure 6g) and the 600_1 specimen (Figure 6j), M was decomposed completely
into fine ferrite and tempered martensite. Cementite became coarsened and nearly spherical in the
600_5 specimen (Figure 6m).
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DP/P content was affected by TTEM and tTEM. DP/P content did not differ noticeably between Q
(Figure 6b) and 450_1 specimens (Figure 6e). In 450_5 (Figure 6h) and 600_1 specimens (Figure 6k),
pre-existing degenerated cementite of DP was spheroidized, and the edges of lamellar cementite of
P became rounded. In the 600_5 specimen (Figure 6n), spheroidized cementite was coarsened and
non-degenerated lamellar cementite was still present.

C content was not affected by TTEM or tTEM and did not differ noticeably between Q specimens
(Figure 6c) and 450_1 specimens (Figure 6f). This indicates the occurrence of the decomposition and
coarsening of C in 450_5 (Figure 6i) and 600_1 specimens (Figure 6l). In the 600_5 specimen (Figure 6o),
C was spheroidized in comparison to the specimens of 450_5 and 600_1.

It was attempted to identify carbides in decomposed M during tempering and the results are depicted
in Figure 7. As can be seen in Figure 7a,b, EDS analyses of carbides in 450_1 and 600_5 specimens
clearly revealed that carbide formation was promoted with increasing tempering time and temperature.
The stoichiometry of the carbides was close to M3C, cementite carbides. These results were well
matched with the stable phase predicted by equilibrium thermodynamics calculation, as shown in
Figure 7c. Within the present tempering temperatures, cementite was predicted to be stable. This is also
in good agreement with previous reports in which decomposition of M into M3C cementite carbides
was observed [10,42].Materials 2020, 13, x FOR PEER REVIEW 10 of 17 
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The mechanical properties of the steels were affected by the decomposition of the secondary phase
and the decomposition velocity of each type according to tempering conditions. M decomposed faster
than DP/P under the same tempering conditions; this phenomenon has been reported previously [43,44].
M is unstable at high temperatures and has a pronounced tendency to decompose to ferrite and cementite,
which are thermodynamically stable microstructures. Furthermore, carbon’s activation energy for
diffusion is low, so carbon has a strong tendency to escape the microstructure. In contrast, DP/P is
stable and has markedly lower spheroidizing velocity than that of unstable structures [40]. Moreover,
tempering drives various phenomena such as the release of residual stress, decline in dislocation
density and appearance of fine precipitates. These phenomena combine with the transformation of
MA and decomposition of the secondary phase identified to control the mechanical properties of the
steels [4,10,19,30,45].

As the CR decreased, hardness under the same tempering condition decreased (Figure 8). Hardness
decreased as a result of the change from LBF and AF to QPF in the matrix and from M to DP/P in the
secondary phase. FC-Q, MC-Q and SC-Q had hardness values of 19, 15.7 and 11.7 HRC, respectively.
Grain size in each specimen was not quantified, so the contribution of the grain size could not be
calculated. However, as CR increased, the grain size decreased and the hardness increased, so we infer
that the grain refinement depending on the CR also influenced the increased hardness [18,20,46].
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Figure 8. Hardness of (a) FC (−10.6 ◦C/s), (b) MC (−4.6 ◦C/s), (c) SC (−2.5 ◦C/s) specimens according
to the tempering conditions. Tempering conditions represented in black, red, green and blue mean
quenching, 450, 530 and 600 ◦C, respectively.

The degree of hardness decreased after tempering and the range of the decrease increased
as TTEM and tTEM increased. The range of reduction was decreased as the CR during quenching
slowed. The hardness of FC specimens decreased by 5.2 HRC from 19 (FC-Q) to 14.8 HRC (FC-650_5);
the hardness of MC specimens decreased by 4.9 HRC from 15.7 (MC-Q) to 10.8 HRC (MC-650_5),
and the hardness of SC specimens decreased by 3.8 HRC from 11.7 (SC-Q) to 7.9 HRC (SC-650_5).
Previous studies [2,47–49] have reported that TTEM changes the hardness of M, LBF, P and ferrite and
that the decreasing range of hardness is in the order of M, LBF and P and is highly dependent on TTEM.
In contrast, the hardness of ferrite was not much affected by tempering.

Decomposition of the secondary phase increased as TTEM and tTEM increased (Figures 5 and 6).
Hardness was reduced by decomposition and softening of hard secondary phases that were enriched
in carbon. Tempering of LBF decreased the hardness due to the diffusion of carbon in LBF and the
reduction in the dislocation density. The major reasons for the change in the hardness of ferrite were
reduced residual stress and reduced dislocation density [47,49]. Tempering reduced hardness by
releasing residual stress, decreasing the dislocation density and causing precipitation of solute carbon
in the microstructure.

Tensile strength and yield strength decreased with decreasing CR under the same tempering
conditions. The tensile strength and yield strength were highest in FC-Q (730 and 578 MPa, respectively)
(Figure 9a), followed by MC-Q (668, 492 MPa) (Figure 9b) and SC-Q (638, 455 MPa) (Figure 9c).
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All specimens had high strength due the high content of GBF in the microstructure. Microstructure
types and their fractions were affected by CR and affected the samples’ strengths (Table 3, Figure 4).
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Figure 9. Tensile properties of (a) FC (−10.6 ◦C/s), (b) MC (−4.6 ◦C/s), (c) SC (−2.5 ◦C/s) specimens
according to tempering conditions. The solid line and dotted line show tensile strength and yield
strength. Tempering conditions represented in black, red, green and blue mean quenching, 450, 530
and 600 ◦C, respectively.

Strengths were decreased after tempering (Figure 9), but not as quickly as hardness (Figure 8).
Decomposition of the secondary phase was caused by precipitation of solute carbon during tempering
(Figure 6). Carbon is in solid solution and has a strong strengthening effect; therefore the strength
decreased significantly as the carbon content in the secondary phase decreased due to the diffusion of
carbon atoms into M3C cementite carbides during tempering [10]. The formation of the carbides was
indeed observed in tempered specimens, as shown in Figure 7.

The reduction ranges of strength after tempering under CRs were defined as the difference
between the Q specimen and the tempered specimen that had the lowest strength. In FC specimens,
the reduction ranges were 80 MPa for tensile strength and 55 MPa for yield strength; in both MC and
SC specimens, the reduction ranges were 60 MPa for tensile strength and 40 MPa for yield strength.
Tempering reduced strength by decomposing hard phases, and the reduction ranges increased with
the increase in the area fraction of the hard phase. The similarity of the reduction ranges of strength in
MC and SC may be a result of complex phenomena that include not only the fraction of the hard phase
but also grain size and fine precipitates.

Strain–stress curves of the entire specimen showed dome-shaped, continuous yielding behavior
(Figure 10). This phenomenon could be related to high mobile dislocation density without pinning effect
of carbons or precipitates [50–53]. On the contrary, some previous studies have shown discontinuous
yielding after tempering or ageing [50–56]. It is well accepted that discontinuous yielding is caused
by unpinning of dislocation from the Cottrell atmosphere, which formed by the interaction between
dislocation and interstitial atoms such as carbon and nitrogen [52,54,55]. Heat treatment could induce
diffusion of interstitial atoms into the dislocation core so dislocation is pinned during deformation and
able to escape from the atmosphere by reaching the upper yield point. Moreover, this discontinuous
yielding can be caused by the pinning effect of fine precipitates of critical size on dislocation [53].
For breaking away from pinning precipitates, higher stress will be required to drive dislocation.
Therefore, it can be postulated that both chemical composition and the tempering conditions of this
study may have been insufficient to form the Cottrell atmosphere or to grow precipitates to the critical
size that is necessary for the development of discontinuous yield behavior.
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Figure 10. Engineering stress–strain curves of (a) FC (−10.6 ◦C/s), (b) MC (−4.6 ◦C/s), (c) SC (−2.5 ◦C/s)
specimens according to the tempering conditions. Line colors and patterns distinguish tempering
temperature: black is quenching, red is 450 ◦C and blue is 600 ◦C, respectively. Solid lines are 1 h,
dotted lines are 5 h (excluded quenching).

Chary V-notch (CVN) impact energy was not significantly affected by CR (Figure 11).
The experimental temperature (−46 ◦C) was assumed to be in the ductile-to-brittle transition temperature
(DBTT) range. Steels that had a similar composition to that of the steels in this experiment had DBTTs
in the range of −25 ◦C to −100 ◦C, as in earlier investigations [9,16,30,57–59].
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Figure 11. CVN impact energy of (a) FC (−10.6 ◦C/s), (b) MC (−4.6 ◦C/s), (c) SC (−2.5 ◦C/s) specimens
according to the tempering conditions. Colors indicate tempering conditions: black, red, green and
blue mean quenching, 450, 530 and 600 ◦C, respectively.

After tempering, all specimens under various CRs had increased CVN impact energy (Figure 10).
It increased with both TTEM and tTEM. By observing the fracture surface (Figure 12a,b), it was found
that tempering increased the area fraction of the dimpled surface (red lines in Figure 12a), indicating
that tempering promoted ductile fracture. The size distribution of the dimple did not show any feasible
difference after tempering at 450 ◦C but became irregular after tempering at 600 ◦C. This increase in
CVN impact energy could be possibly explained with the tempering effect which induced martensite
to lose its brittleness by rejecting carbons and annihilating dislocation. Moreover, as evidenced in
Figure 6, the rejected carbons formed cementite carbides in tempered martensite and those carbides
were spheroidized with increasing tempering time and temperature. It can be postulated that the
carbides with high aspect ratio could cause local concentrated stress, which can lead to fracture, but
spheroidized cementite relieves local concentrated stress, and thereby inhibit initiation and propagation
of cracks and increases toughness (Figure 12c) [13]. Tempering also reduces dislocation density and
residual stress, and these changes also contribute to the increase in toughness [19,60–62].
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5. Conclusions

The present work investigated the effect of heat treatment on microstructure and mechanical
properties of flanges by directly obtaining local properties of interest from the flanges under the heat
treatment process. Conclusions are as follows:

(1) During quenching, cooling rates varied among locations due to non-uniform cooling in flanges.
Microstructure was strongly affected by cooling rates in a way that area fraction of either hard or
soft constituent phases was determined by cooling rate. FC-Q has the highest area fraction of
hard phase such as LBF, AF and M while SC-Q showed the area volume fraction of softer phases
like QPF and DP/P.

(2) Both strength and hardness were dependent on cooling rates; faster cooling rates induced hard
phases so that hardness and strength resultantly increased. CVN impact energy at −46 ◦C,
however, did not show clear dependence on cooling rates.

(3) Tempering evidently changed microstructure by decomposing of secondary phases such as M
and P and spheroidizing cementite carbide. Accordingly, hardness, strength and CVN impact
energy were improved.
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