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Abstract: The production of coffee leaf tea (Coffea arabica) in El Salvador and the influences of pro-
cessing steps on non-volatile compounds and volatile aroma-active compounds were investigated.
The tea was produced according to the process steps of conventional tea (Camellia sinensis) with
the available possibilities on the farm. Influencing factors were the leaf type (old, young, yellow,
shoots), processing (blending, cutting, rolling, freezing, steaming), drying (sun drying, oven drying,
roasting) and fermentation (wild, yeast, Lactobacillus). Subsequently, the samples were analysed
for the maximum levels of caffeine, chlorogenic acid, and epigallocatechin gallate permitted by the
European Commission. The caffeine content ranged between 0.37–1.33 g/100 g dry mass (DM),
the chlorogenic acid was between not detectable and 9.35 g/100 g DM and epigallocatechin gallate
could not be detected at all. Furthermore, water content, essential oil, ash content, total polyphe-
nols, total catechins, organic acids, and trigonelline were determined. Gas chromatography—mass
spectrometry—olfactometry and calculation of the odour activity values (OAVs) were carried out to
determine the main aroma-active compounds, which are β-ionone (honey-like, OAV 132-927), decanal
(citrus-like, floral, OAV 14-301), α-ionone (floral, OAV 30-100), (E,Z)-2,6-nonadienal (cucumber-like,
OAV 18-256), 2,4-nonadienal (melon-like, OAV 2-18), octanal (fruity, OAV 7-23), (E)-2 nonenal (citrus-
like, OAV 1-11), hexanal (grassy, OAV 1-10), and 4-heptenal (green, OAV 1-9). The data obtained in
this study may help to adjust process parameters directly to consumer preferences and allow coffee
farmers to earn an extra income from this by-product.

Keywords: coffee leaf tea; novel food; coffee by-products; Coffea arabica; caffeine; epigallocatechin gallate

1. Introduction

Coffee is one of the most consumed beverages in the world. Worldwide, more than 10
million tons are produced each year with a turnover of more than 20 billion US dollars [1].
However, the volatile world coffee market and climate change put pressure on the farmers
to keep their farms in good condition. The use of coffee by-products, i.e., products that
are created during the production of coffee, could help to create increased income along
with increased sustainability [2]. One of these coffee by-products is the coffee leaf, which
has been approved as a tea beverage in the EU since July 2020, with maximum permitted
quantities of 80 mg/L for caffeine, of 100 mg/L for chlorogenic acid, and of 700 mg/L for
epigallocatechin gallate [3]. Coffee leaves are usually produced as a by-product during the
pruning of the plants [4].
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Coffee leaves from the coffee plant are typically light green (buds and young leaves)
to dark green (matured leaves) with a size range of 15 cm (Coffea arabica) up to 50 cm (Coffea
liberica). The lifetime of a leaf is about 7–10 months [5]. Considerable evidence suggests
that the leaves of the coffee plant have long been used as a traditional food in the countries
where it is grown. Von Pröpper observed in 1882 [6] that “The leaves of the coffee plant,
roasted and poured over with hot water, make an excellent tea, which has long been one of
the staple foods of the entire Indian archipelago, and is said to be not inferior in effect to
the true Chinese tea, but apparently has not yet come into commerce” (authors’ translation
from German). Further mentioned in the literature are the countries Ethiopia, West Sumatra,
Jamaica, Java, and South Sudan [7,8]. Novita et al. [9] described the traditional production
of “Kahwa daun”, a herbal tea from coffee leaves produced in West Sumatra. Herby
branches with leaves were clasped on a bamboo stick and then smoked or dried over
a cooking fire. In Indonesia, the infusion of coffee leaves is called “copi daon” or “leaf
coffee” and in Ethiopia it is called “Quti”; in both countries the leaves are sun dried [10].
Consumption of teas in general may be associated with beneficial health effects, but in most
countries, it is consumed just for the taste or the effects of caffeine [11–13]. Coffee leaves
also contain nutritionally interesting compounds, including carbohydrates, amino acids,
organic acids, alkaloids, phenolic compounds, terpenes, carotenoids, phytosterols and
flavour compounds such as aldehydes, alcohols, ketones, and esters [14–17]. The chemical
composition of a leaf is highly influenced by the light intensity, nitrogen concentration of
the soil, age of the plant and the leaf, growing region and the coffee species [16].

Novel foods or traditional foods from third countries require an authorization to be
placed on the market in the European Union (EU) [18]. The application to authorise the
placing on the market of an infusion of coffee leaves of the species Coffea arabica and/or
Coffea canephora as a traditional food was approved by the EU Commission on 1 July 2020.
Since the applicant could not provide evidence of the use of coffee leaves as an ingredient
in other beverages, only the infusion of coffee leaves was approved as a novel food. Critical
values have been set for the substances caffeine, chlorogenic acid and epigallocatechin
gallate [3].

In this study, the possibility of producing coffee leaf tea in a country of origin were
investigated aiming to provide coffee farmers with easily applicable procedures. With the
locally available resources, different coffee tea samples were produced. Furthermore, the
effects of leaf types, coffee varieties, processing, and drying methods on consumer accep-
tance, the aroma profile and the product characteristics were studied. This understanding
can later help to optimally adjust process and manufacturing parameters to the desired
taste. For the analyses of non-volatiles, near-infrared spectroscopy (NIR), high-performance
liquid chromatography (HPLC) and nuclear magnetic resonance (NMR) spectroscopy were
used. The water content, essential oil, ash content, caffeine, polyphenol content, catechins,
organic acids, trigonelline and lactic acid were determined. Afterwards, the samples were
sensorically evaluated by a panel according to DIN 10,809 [19], followed by aroma analysis
using gas chromatography-olfactometry.

2. Materials and Methods
2.1. Coffee Leaf Tea Production in El Salvador

The collected leaves are shown in Table 1. The leaf types, their variety, and their
collection place are given. Finca La Palma is located in Chinameca, San Miguel and Finca
La Quintanilla is located on the north side of Cacahuatique mountain in Morazan, El
Salvador. Furthermore, different leaf types are shown in Figure 1.

The harvest of the leaves was conducted between February and March 2021. Old
leaves were cut directly from the plant on the field. About five leaves were harvested per
plant. All yellow leaves of a plant were picked directly from the branches. Shoots were
completely cut off from the plants and then divided into old and young leaves. All leaves
were cleaned with fresh water before further processing. For each sample, 600 g of fresh
leaves were picked. Typically, about 5–10 leaves were picked per plant, so that about 1000
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different plants were picked per variety. For determination of the water content of fresh
leaves, one sample of each leaf type was dried in the oven at approx. 80 ◦C. The weight
was determined before drying (approx. 2 g) and after drying with a precision balance. Each
experiment was carried out in triplicates.

Table 1. Leaf types, their variety, and their collection place.

Leaf Type Coffea arabica Variety Collection Place

Old leaf Pacamara Finca La Palma
Yellow leaf Pacamara Finca La Palma

Old leaf Bourbon Tekisic Finca La Quintanilla
Young leaf Bourbon Tekisic Finca La Quintanilla

Shoot Bourbon Tekisic Finca La Quintanilla
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Different processing steps were applied to obtain a variety of different teas. These steps
were related to the processing, drying and fermentation of the leaves. All leaves underwent
a withering process where the leaves were stored on drying beds for 12 h overnight at
20 ◦C. Subsequently, the leaves were either dried whole or processed by various mechanical
methods. The methods are shown in Table 2. Furthermore, the processing steps are shown
in Figure 2.

Table 2. Processing steps and their explanation.

Processing Explanation

None (whole leaf) No further mechanical intervention.
Blending The leaves were blended in a kitchen blender. For 100 g leaves, around 400 mL tap water was added.
Cutting Leaves were cut with a kitchen knife to small strips (20 mm wide).
Rolling The leaves were rolled by hand.

Freezing The leaves were frozen in a freezer at −20 ◦C for 2 days.
Crumbling Leaves were crumbled by hand.

Steaming
Leaves were steamed in a 50 L pot. A sieve was placed in the centre of the pot and approximately 2 L
of tap water was boiled under the leaves. The temperature was measured at the lid of the pot. The

process was stopped when the temperature reached around 100 ◦C.
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2.1.1. Drying Methods

Three different drying methods were carried out for the samples, namely sun/air
drying, oven drying and roasting. For sun drying, the leaves were stored on a drying bed
for at least 48 h until they were crispy. The oven drying was performed at 70 ◦C in a gas
oven with circulating air for 4 h. The roasting was done on a gas stove until the leaves were
crispy. The sun drying process is shown in Figure 3.
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2.1.2. Fermentation

For pre-cultivation of the microorganisms (Saccharomyces cerevisiae var. bayanus, Lac-
tobacillus plantarum), around 1 g of the dry culture was dissolved in 100 mL of water, 1 h
before mixing it with the samples. Following that, 40 mL starter cultures were sprayed on
the leaves. The leaves were then fermented by storing in closed plastic buckets (anaerobi-
cally) for 12 h at a temperature of around 25 ◦C (overnight). For the wild fermentation, the
leaves were stored in the buckets without adding a starter culture.

2.1.3. Postprocessing and Packaging

Samples that had not been already mixed during processing (Table 2) were brought to
approximately the same sheet size with the blender. Subsequently, all samples were packed
into zip bags and vacuum sealed for transport.

2.2. Analysing of Non-Volatile Compounds
2.2.1. Sample Preparation for HPLC, NMR, NIR, and Photometry

The sample preparation of the ground tea sample was carried out according to the
international standard ISO 1572 [20]. In accordance with this standard, the samples were
prepared using a comminution mill so that the ground material subsequently fell completely
through a test sieve with a mesh size of 500 µm. For each sample, a small portion of the
sample was first ground in the mill and discarded. Subsequently, the amount of sample
required for further testing was ground and packed in a separate, airtight package.

2.2.2. Standard Analytical Procedures

The HPLC analysis of catechins was conducted according to a procedure previously
described [21]. For the determination of total phenols, the Folin method was applied using
spectrophotometry with a Lambda 35 instrument (PerkinElmer, Rodgau, Germany). For
near infrared (NIR) spectroscopic measurement of water, essential oil and ash, a layer
of about 1 cm of the tea sample was spread on a Petri dish to cover the entire bottom.
Once spread, the sample was pressed firmly with a stamp and placed in the measuring
device (Büchi NIRFlex Solids, N-500, Büchi Labortechnik AG, Flawil, Switzerland). Each
measurement was performed in triplicate.

2.2.3. Nuclear Magnetic Resonance (NMR) Spectrometry

200 mg of the ground coffee leaf tea was weighed into a 15 mL centrifuge tube and
8 mL of deionised water was added. The tubes were then placed on the combination shaker
and shaken on level 8 for 20 min. 2 mL of the solution was membrane filtered into a 4 mL
glass vial. Sodium dihydrogen phosphate buffer, pH 6.1, and trimethylsilylpropanoic acid
(TSP) were brought to room temperature and 70 µL each of TSP and 100 µL of buffer were
pipetted into an empty vial. Then, 600 µL of the membrane-filtered sample was pipetted
into each of these prefilled vials. The solution was homogenised before 600 µL of each was
pipetted into an NMR tube. The NMR tubes were finally sealed with a lid and a spinner
for the NMR instrument. The measurements were performed according to a previously
described procedure developed for cold brew coffee [22].

2.3. Preliminary Sensory Analysis

Due to COVID-19 pandemic-related contact restrictions during the research period in
2021, only a preliminary sensory analysis was possible using a limited number of tasters.
The 24 tea samples from El Salvador of the Bourbon and Pacamara coffee varieties were
tasted by a trained test panel composed of 7 people with experience in tea tasting. All
respondents have consented to participation in the study. The tasting was done at room
temperature with cupping spoons. The main questions of the tasting are: (i) Which teas
exhibit the highest popularity among testers? (ii) What flavour profiles do each of the top
eight tea samples exhibit?
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The coffee leaf tea is prepared according to DIN 10,809 [19] in infusion vessels. After
5 min, the tea is poured off into the bowl and can be tasted after a short cooling period.

The individual samples were rated according to the personal preference of the tasters
with values from 0 to 5 (0 = dislikes very badly 5 = likes very well). The 8 highest scoring
samples are brewed for a simple descriptive test, a profile test and a rank order test.

The tasted “best eight” were then evaluated in a ranking test by all participants. The
samples are ranked from 1 to 8 according to personal preference (1 = best/8 = worst).
Multiple assignment of numbers is excluded in this test. A selection must be made even if
there are only slight differences (forced-choice test).

The test material was tested for the perceptual attributes of colour, odour, and flavour.
Participants were free to add other properties. The individual results were then shared.
The terms were collected and either accepted or rejected by the testers. A minimum of 50%
agreement was required to define a term.

Finally, the given characteristics (sweet, salty, sour, bitter, body and the dwell time
of the taste (finish)) were described with values ranging from 0 (absent) to 5 (strongly
expressed).

2.4. Analysis of Volatile, Odour-Active Compounds
2.4.1. Tea Preparation

To prepare the tea infusions, 2 g of tea were filled into cellulose bags. These were
infused with 200 mL of boiling distilled water in a beaker and infused for 5 min. The tea
bag was then removed and the samples were frozen in aluminium bottles at −20 ◦C.

2.4.2. Direct-Immersion Stir Bar Sorptive Extraction (DI-SBSE)

To extract the compounds from the tea, DI-SBSE technique was applied. Therefore,
10 mL of tea and 3.3 g of NaCl and 0.05 mL of thymol standard (4.2 mg/L) were transferred
to a headspace vial (20 mL). The mixture was stirred by a Twister (PDMS) with 1000 rpm
for 2 h at room temperature. The Twister was then taken out and rinsed with distilled water
and dried off with a lint-free tissue. Afterwards, the Twister was placed in the autosampler
of the gas chromatograph. Each Twister was conditioned for 1 h at 250 ◦C after use. Each
measurement was done in triplicate.

2.4.3. Gas Chromatography

Gas chromatography (GC) was performed according to Rigling et al. [23]. In short,
an Agilent 7890 B gas chromatograph connected to a 5977 B mass spectrometry detec-
tor (Agilent Technologies, Waldbronn, Germany) was equipped with thermal desorp-
tion unit (TDU), cooled injection system (CIS) as well as an olfactometry detection port
(ODP 3, Gerstel, Mülheim an der Ruhr, Germany). An Agilent J&W DB-WAXms column
(30 m × 0.25 mm ID × 0.25 µm film thickness) (Agilent Technologies) was installed. He-
lium (5.0) served as carrier gas with a constant flow rate of 1.62 mL/min. The gas flow
was split 1:1 into the MS detector and the ODP using a µFlowManager Splitter (Gerstel)
with a column outlet pressure of 20 kPa. The GC oven temperature was held at 40 ◦C
(3 min), then ramped with 5 ◦C/min to 240 ◦C (10 min). The following parameters were
applied: MS mode, scan; scan range, m/z 40–330; electron ionisation energy, 70 eV; source
temperature, 230 ◦C; quadrupole temperature, 150 ◦C; ODP 3 transfer line temperature,
250 ◦C; ODP mixing chamber temperature, 150 ◦C; ODP 3 makeup gas, N2 (5.0) (Westfalen).
The data were collected using Gerstel ODP1 and Agilent Mass Hunter B07.06 combined
with Gerstel Maestro.

Semi quantification was performed using the internal standard thymol (c = 4.2 mg/L)
and the weighed-in standard solutions. The response factor of the respective substances
could then be calculated using the peak areas of the standard.
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2.4.4. Odour Activity Value (OAV)

To determine the odour activity value (OAV) (for details see [23]), the odour threshold
of each substance was retrieved from the literature. Values above 1 indicate the possibility
of sensory perception of the respective substance.

2.5. Statistical Analysis

Microsoft Excel was used to calculate means and standard deviation and for graphical
illustrations. The statistical evaluation of the sensory test was performed using the Fried-
mann test. The calculations (One way ANOVA (confidence level p < 0.05) were applied
using SPSS (IBM Corporation, Armonk, NY, USA). For the analytical data, the statistical
evaluation was carried out using the programme Design Expert 12 (Stat-Ease, Inc., Min-
neapolis, MN, USA). Hereby an ANOVA for selected factorial model (confidence level
p < 0.05) was applied. The results are presented as mean value ± standard deviation of the
respective parameters.

3. Results and Discussion
3.1. Moisture Content of Fresh Leaves

The moisture content of the different types of fresh leaves is shown in Table 3. Young
leaves and shoots showed the highest water content with 72.89 ± 0.99% and 72.74 ± 1.73%,
respectively. Weatherley [24] described a correlation between leaf age and its water content.
The water content decreased in all plants during the ageing process. Yellow leaves show
the lowest water content with 56.28 ± 1.02%. This effect was to be expected as the plant
tries to extract all nutrients and water from the dead leaf before dropping it [25]. To obtain
sufficient quantities for the analyses, 600 g of fresh leaves were collected for each sample.
Since the pruning of the plants was already done, it was important not to cut off too many
leaves and especially not the fresh buds. This could lead to deterioration of the plant [26].

Table 3. Moisture content of the different coffee leaves directly after picking shown as mean ± standard
deviation.

Leaf Type Moisture Content [%]

Pacamara yellow 56.28 ± 1.02
Shoots Bourbon whole 72.74 ± 1.73

Bourbon old 62.83 ± 2.22
Bourbon young 72.89 ± 0.99

3.2. Preparation of Coffee Leaf Tea Samples

In total, 24 different samples were produced during this field study. All samples are
shown in Table 4.

Table 4. Produced coffee leaf tea samples in this study including the test number, the variety, the leaf
type, the processing, the drying and the fermentation process.

Test No. Coffea arabica
Variety Leaf Type Processing Drying Fermentation

1 936 Pacamara old whole air none
2 324 Pacamara yellow whole air none
3 742 Pacamara old crumbled air none
4 183 Pacamara yellow crumbled air none
5 502 Pacamara old cutted air none
6 643 Pacamara old blended air none
7 842 Pacamara old crumbled air Yeast
8 234 Pacamara old whole oven none
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Table 4. Cont.

Test No. Coffea arabica
Variety Leaf Type Processing Drying Fermentation

9 238 Pacamara old blended air Lactobacillus
10 182 Pacamara old blended air Yeast
11 789 Pacamara old blended air Wild
12 156 Pacamara yellow blended air Wild
13 687 Pacamara yellow blended air Yeast
14 463 Pacamara yellow blended air Lactobacillus
15 289 Bourbon shoot blended air Wild
16 138 Bourbon old blended air Yeast
17 147 Bourbon young blended air Wild
18 392 Bourbon young steamed/rolled air none
19 305 Bourbon young rolled/fermented air Wild
20 930 Bourbon shoot blended/steamed air none
21 743 Bourbon old whole air Wild
22 901 Bourbon old whole/frozen air none
23 369 Bourbon old whole roasted none
24 220 Bourbon shoot whole air none

3.3. Water Content, Essential Oil Content and Ash Content

The results of the NIR analysis for water, essential oil and ash are shown in Table A1
in the Appendix A. Furthermore, the influences of the manufacturing methods are shown
in Figure 4.

The water content of the different samples varied from 3.92 g/100 g to 17.42 g/100 g.
Statistical analysis of the individual samples showed significant indication of an influence
of the leaf type, the processing and the drying method. On average, yellow leaves show
the highest water content (8.59 g/100 g), while shoots show the lowest water content
(5.83 g/100 g). In processing, freezing (6.58 g/100 g), the use of the whole leaf (6.65 g/100 g)
and blending (7.93 g/100 g) lead to lower water content. These values are up to 33% lower
compared to the other processing steps. The different surface area plays a role here. Blended
samples will dry much faster than less processed ones [27]. Furthermore, up to 46% lower
water contents could be achieved during drying by roasting and by the oven. According to
Arslan et al. [28], oven drying has a more than double drying rate compared to sun drying.
However, the water content of sample 16 with the highest water content was significantly
higher compared to the other samples, indicating an error during sun drying. Here, the
sample was probably removed from the drying bed too early. Furthermore according to
German guidelines [29], the water content of a tea or tea-like product must not exceed 8%.
In future production, special care must be taken to ensure that the sun-drying process is
not terminated too early.

The essential oil content of the leaves in this experiment varies from not detectable to
1.52 mL/100 g. The statistical analysis showed a significant influence of the variety and the
drying method. Leaves from Pacamara have a significantly higher oil content compared
to Bourbon. The effects of drying methods on the essential oil content have already been
investigated in many previous studies for different plants. Here, gentle drying in the oven
resulted in a higher oil content than drying under direct sunlight [30–32].

The ash content of the leaves showed no significant influencing factors. The values of
all samples ranged between 7.81 g/100 g and 10.20 g/100 g regardless of the influences.
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3.4. Content of Caffeine and Catechins

The results of the HPLC analysis for caffeine and catechins are shown in Table A2 in
the Appendix A. Furthermore, the influence of the manufacturing methods on caffeine and
the total catechins are shown in Figures 5 and 6.
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3.4.1. Caffeine

The caffeine content of the leaves varies between 0.37 g/100 g DM and 1.33 g/100 g
DM. Here, the leaf type and the variety show significant influences on the caffeine content
of the tea. Young leaves show the highest caffeine value (0.91 g/100 g DM) while yellow
leaves show the lowest (0.44 g/100 g DM). The caffeine levels are approximately the same
as those detected by Ratanamarno et al. [33]. The effect of caffeine reduction with leaf age
has already been observed in some studies with different plants [34,35]. Song et al. [36]
explained this effect mainly by the function of caffeine as a pesticide. Younger leaves of the
plant must be more protected compared to old ones; therefore, the plant builds up higher
concentrations in those leaves. Furthermore, the processing is a significant variable towards
the caffeine content. Here, rolling (1.20 g/100 g DM) and freezing (1.00 g/100 g DM) of the
leaf show the highest contents of caffeine. According to Astill et al. [37], the caffeine content
decreases during the fermentation and drying stage. In case of freezing, it is possible that
metabolic pathways are stopped, which result in less degradation during drying. Since
the rolling process was only carried out on young leaves, further tests would be required
to determine whether this influences the caffeine content. Furthermore, the low caffeine
content of the blended samples may be due to the addition of water. Some of the caffeine
may have been dissolved in the water during processing and then dripped off through the
drying bed during drying. Theobromine, which is described in the metabolic pathway as a
precursor of caffeine [38], could only be detected in small amounts in three samples.
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3.4.2. Catechins

The results of the total catechin content show a clear influence of the blending process.
All blended samples, with the exclusion of sample 6, have no catechins at all. According to
scientific findings, this could be due to the oxidation of catechins by polyphenol oxidase
to theaflavin [39]. This effect occurs during the fermentation of black tea [40]. The large
surface area and added water of the mixed samples could be responsible for an enhanced
enzymatic reaction. Furthermore, the drying parameters show an influence on the total
catechin content. Air drying has a significantly higher average value (0.266 g/100 g
DM) than oven drying (0.054 g/100 g DM) and a significantly lower value than roasting
(0.479 g/100 g DM). Li et al. [41] investigated the correlation of temperature and duration
of thermal processing on catechin content. Accordingly, the low content of the oven-dried
sample can be attributed to the 4 h drying time. The roasted sample had a much shorter
drying time (20 min), which resulted in the highest content.

The epigallocatechin gallate mentioned in the European Commission’s novel food
approval could not be detected in any sample. Since Ratanamarno et al. [33] have already
detected epigallocatechin gallate in fresh coffee leaves, it can be concluded that it was
degraded during processing, transport or storage. Turkmen et al. [42] observed an ab-
sence of epigallocatechin gallate in black tea, attributed to oxidation and fermentation
processes [42]. This effect could also have occurred in the coffee leaf tea samples during the
withering process.

3.5. Content of Total Polyphenols

The results of the photometric analysis of the total polyphenol content are shown in
Table A3 in the Appendix A. Furthermore, the influence of the manufacturing methods is
shown in Figure 7.
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The total polyphenol content varies between not detectable and 10.36 g/100 g DM and
depends mainly on the processing. The blended samples show a significantly lower phenol
content with 2.55 g/100 g DM compared to crumbling, cutting, rolling and whole leaves.
Furthermore, no phenol could be detected in the frozen sample. The existing literature
shows the influence of freezing on the polyphenol content. Oszmiański et al. [43] found
a loss of up to 33.6% and Loncaric et al. [44] up to 48% after a freezing process. The low
content in the blended samples can be explained by an increased oxidation process. Due
to the large surface area of the blended leaves, the polyphenol oxidase can degrade the
polyphenols faster compared to the other samples. Turkmen et al. [42] described a decrease
in polyphenol content in fermented black tea compared to green tea. Here, the polyphenol
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oxidase has not been deactivated by a heat process, resulting in a loss that depends on the
duration of the fermentation.

3.6. Content of Organic Acids and Trigonellin

The results of the NMR analysis for organic acids and trigonellin are shown in Table A4
in the Appendix A. Furthermore, the influence of the manufacturing methods is shown in
Figures 8–11.

Foods 2022, 11, x FOR PEER REVIEW 12 of 35 
 

found a loss of up to 33.6% and Loncaric et al. [44] up to 48% after a freezing process. The 
low content in the blended samples can be explained by an increased oxidation process. 
Due to the large surface area of the blended leaves, the polyphenol oxidase can degrade 
the polyphenols faster compared to the other samples. Turkmen et al. [42] described a 
decrease in polyphenol content in fermented black tea compared to green tea. Here, the 
polyphenol oxidase has not been deactivated by a heat process, resulting in a loss that 
depends on the duration of the fermentation. 

3.6. Content of Organic Acids and Trigonellin 
The results of the NMR analysis for organic acids and trigonellin are shown in Table 

A4 in the Appendix A. Furthermore, the influence of the manufacturing methods is shown 
in Figures 8–11. 

  
(a) (b) 

Figure 8. (a) Influence of the processing method on the chlorogenic acid content. (b) Influence of the 
leaf type on the chlorogenic acid content. 

 
Figure 9. Influence of the fermentation on the lactic acid content. 

0
1
2
3
4
5
6
7
8
9

Lactobacillus Yeast None Wild

La
ct

ic 
ac

id
 [g

 / 
10

0 
g 

DM
]

Fermentation

Lactic acid

Figure 8. (a) Influence of the processing method on the chlorogenic acid content. (b) Influence of the
leaf type on the chlorogenic acid content.

Foods 2022, 11, x FOR PEER REVIEW 12 of 35 
 

found a loss of up to 33.6% and Loncaric et al. [44] up to 48% after a freezing process. The 
low content in the blended samples can be explained by an increased oxidation process. 
Due to the large surface area of the blended leaves, the polyphenol oxidase can degrade 
the polyphenols faster compared to the other samples. Turkmen et al. [42] described a 
decrease in polyphenol content in fermented black tea compared to green tea. Here, the 
polyphenol oxidase has not been deactivated by a heat process, resulting in a loss that 
depends on the duration of the fermentation. 

3.6. Content of Organic Acids and Trigonellin 
The results of the NMR analysis for organic acids and trigonellin are shown in Table 

A4 in the Appendix A. Furthermore, the influence of the manufacturing methods is shown 
in Figures 8–11. 

  
(a) (b) 

Figure 8. (a) Influence of the processing method on the chlorogenic acid content. (b) Influence of the 
leaf type on the chlorogenic acid content. 

 
Figure 9. Influence of the fermentation on the lactic acid content. 

0
1
2
3
4
5
6
7
8
9

Lactobacillus Yeast None Wild

La
ct

ic 
ac

id
 [g

 / 
10

0 
g 

DM
]

Fermentation

Lactic acid

Figure 9. Influence of the fermentation on the lactic acid content.

Foods 2022, 11, x FOR PEER REVIEW 13 of 35 
 

  

(a) (b) 

Figure 10. (a) Influence of the processing method on the acetic acid content. (b) Influence of the 
fermentation on the acetic acid content. 

  
(a) (b) 

Figure 11. (a) Influence of the leaf type on the trigonelline content. (b) Influence of the drying 
method on the trigonelline content. 

3.6.1. Chlorogenic Acid 
The content of chlorogenic acid (3-caffeoylquinic acid) varies between not detectable 

and 9.35 g/100 g DM. The significant influences here are the leaf type and the processing. 
The young leaves show the highest amount of chlorogenic acid with 5.33 g/100 g DM fol-
lowed by shoots with 1.96 g/100 g DM, the old leaves with 1.71 g/100 g DM, and the yellow 
leaves with 1.21 g/100 g DM. As with caffeine, chlorogenic acid exerts a protective effect 
on the leaf through its antioxidant property. Therefore, here it is also present in an in-
creased amount in the young leaves. These data also coincide with the analyses already 
carried out by Monteiro et al. [45]. Furthermore, it is shown that freezing (0.31 g/100 g DM) 
and blending (0.47 g/100 g DM) have a negative effect on the amount. The negative effect 
of freezing contradicts a study by Ścibisz et al. [46] where freezing had no effect. 

3.6.2. Lactic Acid 
Lactic acid varied from 0.11 g/100 g DM to 8.12 g/100 g DM in the samples. As ex-

pected, the samples fermented with the Lactobacillus showed the highest value. Further-
more, an increased amount is found in the wild fermented samples. This suggests that a 
certain percentage of lactic acid bacteria is present in the microbiota of the coffee leaf. 

  

Figure 10. (a) Influence of the processing method on the acetic acid content. (b) Influence of the
fermentation on the acetic acid content.



Foods 2022, 11, 2553 13 of 34

Foods 2022, 11, x FOR PEER REVIEW 13 of 35 
 

  

(a) (b) 

Figure 10. (a) Influence of the processing method on the acetic acid content. (b) Influence of the 
fermentation on the acetic acid content. 

  
(a) (b) 

Figure 11. (a) Influence of the leaf type on the trigonelline content. (b) Influence of the drying 
method on the trigonelline content. 

3.6.1. Chlorogenic Acid 
The content of chlorogenic acid (3-caffeoylquinic acid) varies between not detectable 

and 9.35 g/100 g DM. The significant influences here are the leaf type and the processing. 
The young leaves show the highest amount of chlorogenic acid with 5.33 g/100 g DM fol-
lowed by shoots with 1.96 g/100 g DM, the old leaves with 1.71 g/100 g DM, and the yellow 
leaves with 1.21 g/100 g DM. As with caffeine, chlorogenic acid exerts a protective effect 
on the leaf through its antioxidant property. Therefore, here it is also present in an in-
creased amount in the young leaves. These data also coincide with the analyses already 
carried out by Monteiro et al. [45]. Furthermore, it is shown that freezing (0.31 g/100 g DM) 
and blending (0.47 g/100 g DM) have a negative effect on the amount. The negative effect 
of freezing contradicts a study by Ścibisz et al. [46] where freezing had no effect. 

3.6.2. Lactic Acid 
Lactic acid varied from 0.11 g/100 g DM to 8.12 g/100 g DM in the samples. As ex-

pected, the samples fermented with the Lactobacillus showed the highest value. Further-
more, an increased amount is found in the wild fermented samples. This suggests that a 
certain percentage of lactic acid bacteria is present in the microbiota of the coffee leaf. 

  

Figure 11. (a) Influence of the leaf type on the trigonelline content. (b) Influence of the drying method
on the trigonelline content.

3.6.1. Chlorogenic Acid

The content of chlorogenic acid (3-caffeoylquinic acid) varies between not detectable
and 9.35 g/100 g DM. The significant influences here are the leaf type and the processing.
The young leaves show the highest amount of chlorogenic acid with 5.33 g/100 g DM
followed by shoots with 1.96 g/100 g DM, the old leaves with 1.71 g/100 g DM, and the
yellow leaves with 1.21 g/100 g DM. As with caffeine, chlorogenic acid exerts a protective
effect on the leaf through its antioxidant property. Therefore, here it is also present in an
increased amount in the young leaves. These data also coincide with the analyses already
carried out by Monteiro et al. [45]. Furthermore, it is shown that freezing (0.31 g/100 g DM)
and blending (0.47 g/100 g DM) have a negative effect on the amount. The negative effect
of freezing contradicts a study by Ścibisz et al. [46] where freezing had no effect.

3.6.2. Lactic Acid

Lactic acid varied from 0.11 g/100 g DM to 8.12 g/100 g DM in the samples. As
expected, the samples fermented with the Lactobacillus showed the highest value. Further-
more, an increased amount is found in the wild fermented samples. This suggests that a
certain percentage of lactic acid bacteria is present in the microbiota of the coffee leaf.

3.6.3. Acetic Acid

Acetic acid varied from 0.04 g/100 g DM to 0.29 g/100 g DM. Above all, the processing
and the type of leaf influence the amount significantly. As with the other acids, freezing
gives a significantly lower value (0.04 g/100 g DM) than the rest. Samples with larger
surface area such as blended and cut samples show the highest values (0.14 g/100 g DM
and 0.13 g/100 g DM). Samples fermented wild and with Lactobacillus have significantly
higher values (0.17 g/100 g DM/0.18 g/100 g DM) than those fermented with yeast or
not fermented (0.09 g/100 g DM). The yeast fermented samples do not differ from the
non-fermented ones, indicating that this yeast strain produces few organic acids.

3.6.4. Trigonelline

Trigonelline is a substance, which is mainly found in the seeds of many plants. Quan-
tities between 0.62 g/100 g DM and 4.87 g/100 g DM could be detected in the tea samples.
The trigonelline content results in this study are up to four times higher than those found
in a recent study by Monteiro et al. [45]. In the coffee beans, however, only 1–1.2 g/100 g
DM are contained in the untreated state. The trigonelline content is influenced by the leaf
type and the drying method. The higher content in young leaves coincides with the result
of Monteiro et al. [45]. Furthermore, the roasting leads to a high trigonelline content. Zhu
et al. [47] showed a similar relationship with hemp seeds where roasting had the highest
influence on trigonelline levels.
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3.7. Preliminary Sensory Evaluation

The following results of the sensory evaluation must be considered as being prelimi-
nary due to a restricted taste panel (n = 7).

3.7.1. Personal Acceptance

The results of the ranking test with the eight best rated teas are shown in Table 5. An
evaluation of the results using the Friedmann test showed no statistical differences between
the teas. Nevertheless, an improvement in flavour by yeast fermentation can be inferred
by these results. The top 2 were both treated with the Anaferm yeast. For sample 369,
however, a strong polarization could be detected within the panel. It was described as “the
best” by two people and as “the most disliked” by two other people from the panel.

Table 5. Results of ranking test and descriptive terms for colour, odour (via orthonasal detection) and
flavour (via retronasal detection) of the panel for the best 8 tea samples.

Test Number Ranking Colour Odour Flavour

687 1
sediment

turbid
red-brown

peach-like peach-like

182 2 clear
red

floral
woody

sweet
peach-like

369 3 clear
yellow-brown

popcorn-like
smoky
roasty

popcorn-like
roasty

147 4 very clear
yellow-brown

chestnut
flower-like

floral

honey-like
grassy

156 5 red
clear

honey
floral

honey-like
acacia

flower-like

234 6 clear
amber

grassy
rooibos-like

green bean-like
vegetal

930 7 clear
yellow-green

floral
sweet

floral
basil-like

743 8 turbid
light orange green bean-like

grassy
green bean-like

broccoli-like

3.7.2. Simple Descriptive Test

The results of the simple descriptive test are shown in Table 5. They show a wide
range of flavours perceived by the panel. It can be recognised how the fermented samples
182, 687, 156 and 147 differ from the unfermented samples in the type of aromas. While
fermentation tends to produce sweetish fruity notes, the unfermented samples tend to have
green and vegetal aromas. Wang et al. [48] also found a correlation between fermentation
and a loss of green flavour compounds and an increase of fruity flavours. There was also
a wide difference in the various colours. Here, as shown in Figure 12, the fermented teas
especially show a considerably darker colour compared to the rest. The exception is sample
147, which despite fermentation has the lightest colour of all the teas. The change of colour
was also reported by Borah et al. [49]. In the study, the tea changed the colour from green
to a darker copper red during the fermentation process.
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Figure 12. Brewed tea samples along with brewed and unbrewed tea leaves of the best eight teas.

3.7.3. Profile Test

The results of the profile test (Figure 13) show that the taste is mainly dominated
by sweet and partly bitter impressions. Sweetness ranged from 2.8 to 4 in all samples,
bitterness ranged from 1.5 to 2. Acidity was only detected with a value of 0.8 in sample 182
and saltiness could not be detected. Values of less than 0.5 were not considered in this study.
This coincides with the description of Yuwono et al. [50], in which the authors describe the
tea as sweetish, green and woody. The evaluation with the software programme Design
Expert showed no significant influence of the different process parameters on sweetness,
saltiness, bitterness, acidity, body and finish.

3.8. Aroma Analysis via DI-SBSE-GC-MS-O
3.8.1. Identification of Odour-Active Compounds

A total of 68 different olfactory impressions could be detected from the 8 samples
(Table A5). Of these, 44 could be identified by mass spectrum, RI, and odour. Exemplary
total ion chromatograms and mass spectra are shown in Figures A1 and A4. Of the 44
substances identified, 16 are aldehydes, 10 are ketones, 8 are alcohols, 3 are organic acids,
2 are pyrazines, 2 are ionenes, 1 is a terpene, 1 is an aromatic heterocyclic amine, and 1
is a fatty acid ester. A total of four substances were detected in all samples. These are
(E,E)-3,5-octadien-2-one, 2,6-nonadienal, α-ionone and β-ionone. Pyrazines, which are typi-
cal roast aromas, could only be identified in the roasted sample 369. 4-Heptanal could only
be detected in fermented samples and γ-dodecalactone just in yeast fermented samples.

The perceived odours could be described to a large extent as green and grassy (22
substances). Furthermore, some sweetish notes (11 substances) and notes in the area of
melon or cucumber (11 substances) could be identified. In the area of fruity and citrus, 7
and 5 impressions, respectively, were perceived. Other attributes were roasty, herbal, honey,
vanilla, aquarium, unique, nutty, forest and stable.
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3.8.2. Semi-Quantification and Odour Activity Values

The results of the semi-quantification and the calculated OAVs of each sample are
shown in the Tables A6–A13 in the Appendix A. The associated OAVs can be found in
Table A14 in the Appendix A. Additionally, the percentage of the OAVs in the total aroma
for each sample is shown in Figures 14–21.
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Sample 182 showed a total of nine substances with an OAV greater than 1. Three
of these substances, β-ionone (54.5%), (E,Z)-2,6-nonadienal (28.4%), and α-ionone (11.1%)
accounting for 94.0% of the total aroma. Furthermore, the substances decanal, 4-heptenal,
hexanal and (E)-2-nonenal are partly responsible for the aroma.

The smell of the tea was described in the previous tasting as floral and woody while
the flavour was sweetish and peach via retronasal detection. The sweetness here can
most likely be attributed to the β-ionone while the green and floral tones come from
(E,Z)-2,6-nonadienal and α-ionone. Another role is probably played by hexanal (0.7%)
which, according to Zhu and Xiao [51], is one of the key aroma compounds of peach. These,
together with decanal (fruity) and octanal (citrus like) could have caused the perceived
peach-like flavour.

Sample 687 shows six compounds with an OAV over 1. Here the main compounds are
β-ionone (40.3%) and (E,Z)-2,6-nonadienal (28.7%). Furthermore, decanal (8.2%), octanal
(7.7%) (E,Z)-2,4-nonadienal (7.5%) and α-ionone (7.5%) have a relatively large share. Overall,
however, the sample showed significantly lower total concentrations than all other samples.
This could be because the plant has extracted the substances from the yellow leaves before
dropping them [52]. The resulting high percentage of fruity substances, such as (E,Z)-2,6-
nonadienal and (E,Z)-2,4-nonadienal most likely leads to the detected fruity peach-like
flavour of the tea.

A total of 9 aroma compounds with an OAV more than 1 were detected in sample 234.
The main aroma substances are β-ionone (64.7%), decanal (13.9%) and α-ionone (12%).
Furthermore, the substances (E,Z)-2,6-nonadienal, octanal, 2,4-nonadienal, 4–heptenal,
(E)-2-nonenal and hexanal are partly responsible for the aroma. The strongly pronounced
floral tones can therefore probably be attributed to decanal and α-ionone, together with
(E,Z)-2,6-nonadienal (4.7%), hexanal (0.5%) and 4-heptanal (0.6%). The sensory tones of the
green bean and the rooibos do not coincide here, however, with the aroma components of
these two products described in the literature [53,54].

In sample 156, 9 aroma compounds could be identified with an OAV of more than 1.
β-ionone (39.2%) and decanal (34.4%) form the main part of the aroma compounds. Further-
more, (E,Z)-2,6-nonadienal with 10% and α-ionone with 9.1% are main aroma compounds,
while the substances octanal, 2,4-nonadienal, (E)-2-nonenal, hexanal and 4-heptenal ac-
count for the remaining 7.3%. Overall, the total concentrations of the various compounds
are significantly higher compared to the comparable sample 687, which also consists of
yellow leaves and was fermented. The difference here is in the type of fermentation, which
in this sample was wild and uncontrolled. Microorganisms could have caused the increase
in concentrations in this sample; however, this would have to be verified by further studies.

Similar to the previous sample, 9 aroma forming substances were detected in sample 930.
Here, β-ionone (49.2%) and decanal (35.1%) make up the main component. Including α-
ionone (5.4%), the substances (E,Z)-2,6-nonadienal, 2,4-nonadienal, octanal, (E)-2-nonenal,
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hexanal and 4-heptenal account for a total of 15.6% of the aroma. The aroma described as
sweetish and floral is assumed to be composed mainly of the substances β-ionone, decanal,
α-ionone, hexanal and 4-heptenal. Furthermore, no influence of the heat process (steaming)
on the volatile substances can be identified for this sample.

Semi-quantification also identified 9 compounds of importance for the aroma in
sample 743. β-Ionone and α-ionone are the main substances here with 75.1% and 9.1%. Fur-
thermore, decanal (6.5%), (E,Z)-2,6-nonadienal (5.4%) and with 1% or less 2,4-nonadienal,
octanal, hexanal, 4-heptenal,(E)-2-nonenal are odour-active. The aroma described as grassy
and floral is assumed to be composed mainly of the substances, decanal, β-ionone, α-ionone,
hexanal and 4-heptenal.

A total of 8 different substances with an OAV higher than 1 were detected in sample 147.
The main flavouring agent is β-ionone with 80.8%. This is followed by α-ionone (7.7%),
decanal (6.4%) and the others, (E,Z)-2,6-nonadienal, octanal, hexanal, 2,4-nonadienal, and
4-heptenal with 5.1%. In general, the sample had the highest concentration of β-ionone
(6.49 µg/L, Table A12). This high level of β-ionone also seems to be confirmed in the odour
perception, which would be described as chestnut blossom, and the flavour, which was
determined by the panel to be honey.

In roasted sample 369, a total of 9 aroma-active compounds with an OAV above 1
could be detected. Here, β-ionone is the main aroma substance with 86.5%. Furthermore,
2,3-dimethylpyrazines (0.3%) and 2-ethyl-3,5-dimethylpyrazines (0.6%) with an OAV of
1 and 2 are found in the sample. However, the smoky and roasted flavour of this tea is
strongly influenced by these components despite their minute contribution to the overall
aroma. One reason for the strong perception of smoke is a natural protective instinct of
humans against fire. The sensory cells perceive it very strongly in order to detect the danger
of fire at an early stage [55].

In total, 9 main aroma compounds (Figure 22) were identified in coffee leaf tea via
semi quantification and calculation of OAV.
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aroma components is not considered. It is possible that individual aroma components, 
which were excluded because of an OAV below 1, may well contribute to the aroma to-
gether with other substances [58]. Additionally, the perceived intensity of an aroma is not 
proportional to the value of the OAV. A doubling of the OAV around the threshold can 
have a greater impact on the aroma than a doubling of an OAV very far above the thresh-
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4. Conclusions 
In this study, different ways of producing teas from coffee leaves directly on the farm 

were investigated. The samples differed both in popularity among consumers and in the 
chemical composition of the active ingredients and flavourings. In future, the data ob-
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(D): (E,Z)-2,6-nonadienal, (E): 2,4-nonadienal, (F): octanal, (G): (E)-2 nonenal, (H): hexanal, (I): 4-
heptenal [56].
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Three of them, β-ionone, α-ionone and 2-ethyl-3,5-dimethylpyrazines are, according to
Ho et al. [57], also main aroma substances of the tea plant. β-Ionone has the largest overall
share in all samples and varies between 39.2% (156) and 86.5% (369). Furthermore, the
percentage of decanal in two samples with a β-ionone value below 50% is very high, i.e.,
34.4% (156) and 35.1% (930). α-Ionone which is also present in all samples varies from 5.4%
(930) to 12% (234). Moreover, (E,Z)-2,6-nonadienal was found as a main aroma component
in some samples. As in the case of decanal, the value here varies greatly between 1.8%
(147) and 28.7% (687) depending on the sample. The citrusy note of (E)-2-nonenal could
not be noted in any of the samples during tasting by the panel. Despite the large variation
between the samples, it was not possible to correlate the differences with the parameters in
this study. Further studies are required to provide comparable conditions between samples.
Only the roasting process showed a large difference in these tests compared to the other
samples, as the pyrazines also contribute a large proportion to the aroma.

The main disadvantage of the calculated OAV is that the interaction of individual
aroma components is not considered. It is possible that individual aroma components,
which were excluded because of an OAV below 1, may well contribute to the aroma
together with other substances [58]. Additionally, the perceived intensity of an aroma is not
proportional to the value of the OAV. A doubling of the OAV around the threshold can have
a greater impact on the aroma than a doubling of an OAV very far above the threshold [59].

4. Conclusions

In this study, different ways of producing teas from coffee leaves directly on the farm
were investigated. The samples differed both in popularity among consumers and in the
chemical composition of the active ingredients and flavourings. In future, the data obtained
in this study may help to adjust process parameters directly to consumer preferences and
allow farmers to earn an extra income from this by-product. For this purpose, on-site
experiments should be carried out to upscale the processes.

Young leaves showed a positive correlation on various plant protective ingredients
such as caffeine content, chlorogenic acid and trigonelline. The variety played a role in
essential oils and caffeine content in these experiments. Pacamara had an increased level of
essential oil and a slightly lower level of caffeine compared to Bourbon. In the processing
parameters, blending of the samples resulted in a strong decrease in caffeine, catechins,
polyphenols and chlorogenic acid. In contrast, cell disruption processes such as rolling
or crumbling led to increased values. Among the drying methods, roasting and oven
drying had a positive effect on the essential oil and trigonelline content in the samples.
Fermentation mainly affected the acidity of the samples. Increased levels of lactic and acetic
acid were found here, particularly in wild fermented and Lactobacillus fermented samples.

The sensory analysis revealed that fermented teas in particular are ahead in terms of
popularity with consumers. Green tones in particular are masked by more fruity notes (e.g.,
peach). Additionally, the roasting of the tea seems to lead to a polarizing product.

In the aroma analysis by gas chromatography, 68 aroma active compounds were
detected by the ODP. By calculation of the OAV, 6–9 aroma compounds could be determined
for each tea, which are the main components of the aroma profile. These are β-ionone
(honey-like), decanal (citrus, floral), α-ionone (floral), (E,Z)-2,6-nonadienal (cucumber-like),
2,4-nonadienal (melon-like), octanal (fruity), (E)-2 nonenal (citrus), hexanal (grassy) and
4-heptenal (green). Additionally, the two substances 2,3-dimethylpyrazines and 2-ethyl-3,5-
dimethylpyrazines were found in the roasted sample.
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Appendix A

Table A1. Results of the NIR analysis for water, essential oils and ash.

Sample Number Water (g/100 g) Essential Oil (mL/100 g) Ash (g/100 g)

1 7.71 ± 0.15 1.08 ± 0.09 8.41 ± 0.19
2 9.68 ± 0.36 0.79 ± 0.07 10.20 ± 0.20
3 8.26 ± 0.13 0.46 ± 0.21 8.88 ± 0.99
4 10.07 ± 0.11 0.66 ± 0.11 9.85 ± 0.11
5 9.77 ± 0.24 0.52 ± 0.5 9.46 ± 1.01
6 7.86 ± 0.03 0.47 ± 0.06 7.94 ± 0.23
7 9.24 ± 0.23 0.76 ± 0.06 8.14 ± 0.08
8 5.99 ± 0.13 1.52 ± 0.08 9.98 ± 0.08
9 6.27 ± 0.11 1.28 ± 0.20 9.64 ± 0.10

10 7.11 ± 0.26 1.16 ± 0.07 9.00 ± 0.09
11 6.84 ± 0.14 1.20 ± 0.03 8.95 ± 0.10
12 8.12 ± 0.24 1.04 ± 0.29 9.29 ± 0.88
13 7.85 ± 0.22 1.31 ± 0.06 8.53 ± 0.16
14 8.35 ± 0.13 1.25 ± 0.16 8.52 ± 0.37
15 5.52 ± 0.26 0.00 ± 0.00 9.89 ± 0.14
16 17.42 ± 0.04 0.30 ± 0.01 3.22 ± 0.00
17 6.56 ± 0.12 0.02 ± 0.03 8.54 ± 0.09
18 6.75 ± 0.13 0.39 ± 0.02 7.82 ± 0.14
19 8.25 ± 0.30 0.00 ± 0.00 7.81 ± 0.05
20 5.39 ± 0.04 0.37 ± 0.31 9.00 ± 0.86
21 5.99 ± 0.1 0.01 ± 0.02 9.85 ± 0.92
22 6.58 ± 0.06 0.09 ± 0.04 8.62 ± 0.21
23 3.92 ± 0.06 1.48 ± 0.05 8.10 ± 0.16
24 6.58 ± 0.02 0.30 ± 0.26 9.55 ± 0.81
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Table A2. Results of the HPLC analysis for caffeine and catechins.

Sample Number Caffeine
(g/100 g DM)

Epigallocatechin Gallate
(g/100 g DM)

Total Catechins
(g/100 g DM)

Theobromin
(g/100 g DM)

1 0.740 ± 0.003 - 0.306 ± 0.006 -
2 0.565 ± 0.004 - 0.299 ± 0.002 0.021 ± 0.001
3 0.747 ± 0.010 - 0.390 ± 0.023 -
4 0.520 ± 0.001 - 0.290 ± 0.002 0.015 ± 0.001
5 0.699 ± 0.027 - 0.208 ± 0.090 -
6 0.693 ± 0.026 - 0.206 ± 0.089 -
7 0.713 ± 0.006 - 0.345 ± 0.004 -
8 0.669 ± 0.001 - 0.054 ± 0.003 -
9 0.396 ± 0.003 - - -
10 0.406 ± 0.003 - - -
11 0.444 ± 0.001 - - -
12 0.392 ± 0.003 - - -
13 0.370 ± 0.001 - - -
14 0.368 ± 0.004 - - -
15 0.380 ± 0.004 - - -
16 0.449 ± 0.001 - - -
17 0.462 ± 0.003 - - -
18 0.939 ± 0.596 - 0.221 ± 0.157 -
19 1.333 ± 0.019 - 0.699 ± 0.009 0.009 ± 0.003
20 0.381 ± 0.003 - 0.045 ± 0.007 -
21 0.761 ± 0.012 - 0.092 ± 0.008 -
22 1.000 ± 0.004 - - -
23 0.894 ± 0.008 - 0.479 ± 0.001 -
24 0.858 ± 0.003 - 0.091 ± 0.128 -

Table A3. Results of the photometric analysis of the total polyphenol content.

Sample Number Total Polyphenol (g/100 g DM)

1 8.28 ± 0.33
2 9.34 ± 0.36
3 7.62 ± 0.26
4 8.31 ± 0.22
5 7.54 ± 0.67
6 3.73 ± 0.28
7 7.15 ± 0.18
8 4.76 ± 0.13
9 0.91 ± 0.12
10 1.68 ± 0.75
11 1.50 ± 0.81
12 2.35 ± 0.66
13 2.04 ± 0.82
14 2.18 ± 0.82
15 0.91 ± 0.08
16 1.08 ± 0.00
17 1.15 ± 0.00
18 7.91 ± 0.77
19 10.36 ± 0.25
20 2.73 ± 0.45
21 0.79 ± 0.11
22 -
23 5.93 ± 0.27
24 5.08 ± 0.19
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Table A4. Results of the NMR analysis of the organic acid contents.

Sample Chlorogenic Acid
(g/100 g DM)

Acetic Acid
(g/100 g DM)

Lactic Acid
(g/100 g DM)

Trigonellin
(g/100 g DM)

1 2.92 0.107 0.18 2.79
2 2.58 0.088 0.16 0.98
3 2.38 0.101 0.13 2.66
4 2.81 0.097 0.15 1.15
5 3.78 0.136 0.14 2.76
6 1.17 0.068 0.11 1.80
7 3.32 0.124 0.13 2.66
8 1.44 0.114 0.11 2.25
9 0.20 0.145 8.12 1.26
10 0.16 0.102 0.21 1.21
11 0.08 0.266 0.92 1.28
12 0.23 0.115 0.21 0.62
13 0.18 0.093 0.20 0.68
14 0.24 0.21 1.08 0.62
15 0.08 0.137 2.76 1.44
16 0.00 0.051 0.49 1.11
17 0.06 0.29 2.59 1.01
18 9.35 0.061 0.16 4.87
19 6.58 0.078 0.22 4.25
20 2.82 0.078 0.14 2.34
21 0.31 0.122 0.49 2.01
22 0.31 0.042 0.12 3.30
23 6.20 0.14 0.14 3.31
24 3.00 0.074 0.23 2.41

Table A5. Odour-active compounds of the eight tea samples sorted by their retention indices.

Number Compound RI RI (lit/std) Odour Identification 182 687 234 156 930 743 147 369

1 Hexanal 1079 1079 green, grassy RI,MS,O X X X X X X X X
2 4-Heptenal 1242 1239 green RI,MS,O X X X X
3 Octanal 1285 1286 fruity RI,MS,O X
4 n.i. 1298 - green / X
5 1-Hydroxy-2-propanone a 1307 1305 sweetish RI,O X
6 2,3 Dimethylpyrazin 1347 1347 - RI,MS X
7 1-Hexanol a 1357 1357 sweetish green RI,O X
8 n.i. 1370 - green/cucumber / X
9 (E)-2-Octenal 1430 1430 cucumber RI,MS,O X X X
10 (E)-4-Nonenal a 1435 1435 fruity RI,O X
11 n.i. 1449 - melon / X
12 1-Octen-3-ol 1453 1452 forest RI,MS,O X
13 n.i. 1465 - fruity / X
14 3-Ethyl-3,5-dimethyl-pyrazine a 1468 1466 roasty, coffee RI,O X
15 Decanal 1502 1497 citrus, floral RI,MS,O X X X X X X X X
16 2-Ethyl-3,5-dimethylpyrazine 1512 1512 - RI,MS X
17 (E,E)-3,5-Octadien-2-one a 1519 1521 green, grassy RI,O X
18 Benzaldehyde 1523 1522 sweetish fruity RI,MS,O X
19 n.i. 1530 - green, grassy / X
20 (E)-2-Nonenal 1536 1537 citrus like RI,MS,O X
21 n.i. 1560 - green, grassy / X
22 n.i. 1562 - green, grassy / X
23 2,6-Nonadienal 1587 1586 cucumber RI,MS,O X X X X X X X X
24 5H-5-Methyl-6,7-dihydrocyclopentapyrazine a 1629 1630 peanut RI,O X
25 (E,E)-2,4-Nonadienal a 1699 1698 melon,cucumber RI,O X
26 α-Terpineol 1699 1699 citrus like RI,MS,O X X
27 n.i. 1700 - citrus like / X X
28 2,4-Nonadienal 1702 1700 melon,cucumber RI,MS,O X
29 2,3-Nonadienal a 1703 1703 melon,cucumber RI,O X
30 4-Ethyl-benzaldehyde a 1709 1711 fruity RI,O X
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Table A5. Cont.

Number Compound RI RI (lit/std) Odour Identification 182 687 234 156 930 743 147 369

31 n.i. 1712 - pineapple / X
32 (E,Z)-2,6-Nonadien-1-ol a 1769 1770 green, cucumber RI,O X X X
33 3,7,11-Trimethyl-1-dodecanol a 1770 green RI,O X
36 3,4-Dimethylbenzaldehyde a 1811 1790 sweetish, green RI,O X X X X X
37 2,5-Dimethylbenzaldehyde a 1812 1812 sweetish, green RI,O X
38 Hexanoic acid a 1844 1844 fatty RI,O X
39 Dodecanoic acid, ethyl ester a 1846 1846 sweetish, floral RI,O X
40 α-Ionone 1857 1855 sweetish, floral RI,MS,O X X X X X X X X
41 n.i. 1874 - green / X
42 Benzyl alcohol 1878 1877 fruity RI,MS,O X
43 β-Ionone 1942 1943 honey, flower RI,MS,O X X X X X X X X
44 1-Dodecanol 1969 1971 cocutnut RI,MS,O X
45 n.i. 2005 - green / X X X
46 n.i. 2007 - green / X X
47 4-Methoxybenzaldehyde 2027 2025 vanilla RI,MS,O X X X
48 n.i. 2034 - cocutnut RI,MS,O X
49 n.i. 2078 - green, cucumber / X X
50 n.i. 2081 - green, cucumber / X
51 1-Ethylundecylbenzene a 2092 2094 herbal RI,O X
52 n.i. 2094 - herbal / X X
53 n.i. 2096 - herbal / X X X
55 n.i. 2155 - green, cucumber / X X X
56 1-Methyldodecylbenzene a 2158 mint RI,O X
57 Nonanoic acid 2168 2164 sweetish green RI,MS,O X X X
58 Tetrahydro-6-pentyl-2H-pyran-2-one a 2201 2201 cocotnut RI,O X
59 Isopropyl palmitate a 2242 2237 sweetish RI,O X
60 n.i. 2251 - citrus like / X
61 Dihydro-5-pentyl-2(3H)-furanone a 2264 2266 cocutnut RI,O X X
62 5-Heptyldihydro-2(3H)-furanone a 2264 roasty, coffee RI,O X
63 γ-Dodecalactone 2381 2379 fruity RI,MS,O X X
64 n.i. 2397 - aquarium / X
65 (Z)-Dihydro-5(2-octenyl)-2(2H)-furanone a 2402 2390 green, sweetish RI,O X
66 n.i. 2402 - green, sweetish / X X X X
67 Indole 2449 2443 Nutty RI,MS,O X
68 n.i. 2471 - Stable / X

Abbreviations: RI, retention index; X, found in the sample; a, provisionally identified; n.i.: not identified, MS:
mass spectrometry, O: olfactometry.

Table A6. Results of semi-quantification and calculated OAVs for sample 182.

Compound Concentration in µg/L OAV

β-Ionone 3.44 ± 0.33 491
(E,Z)-2,6-Nonadienal 2.56 ± 0.36 256

α-Ionone 3.01 ± 0.59 100
Octanal 12.87 ± 0.93 18
Decanal 1.69 ± 0.15 17

4-Heptenal 7.15 ± 1.22 9
Hexanal 28.4 ± 4.19 6

(E)-2-Nonenal 0.22 ± 0.02 3
1-Dodecanol 0.33 ± 0.09 <1
3-Hexen-1-ol 28.91 ± 3.76 <1
α-Terpineol 0.76 ± 0.08 <1
1-Dodecanol 0.3 ± 0.03 <1
(E)-2-Octenal 1.78 ± 0.19 <1

Nonanoic acid 638.8 ± 36.55 <1
Benzyl alcohol 147.73 ± 26.28 <1

(E,E)-2,4-Heptadienal 101.17 ± 6.95 <1
γ-Dodecalactone 2.54 ± 0.43 <1
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Table A7. Results of semi-quantification and calculated OAVs for sample 687.

Compound Concentration in g/L OAV

β-Ionone 0.93 ± 0.05 132
(E,Z)-2,6-Nonadienal 0.49 ± 0.06 49

α-Ionone 0.9 ± 0.04 30
Decanal 1.41 ± 0.16 14
Octanal 6.72 ± 1.05 10

2,4-Nonadienal 0.76 ± 0.13 8
Hexanal 23.46 ± 3.89 5

(E)-2-Nonenal 0.26 ± 0.01 3
4-Heptenal 2.21 ± 0.37 3

1-Dodecanol 0.38 ± 0.07 <1
3-Hexen-1-ol 41 ± 8.15 <1
α-Terpineol 0.82 ± 0.11 <1
1-Dodecanol 0.13 ± 0.01 <1
(E)-2-Octenal 0.39 ± 0.06 <1

Nonanoic acid 730.46 ± 13.3 <1
Benzyl alcohol 53.87 ± 7.15 <1

(E,E)-2,4-Heptadienal 25.07 ± 1.45 <1
γ-Dodecalactone 2 ± 0.36 <1

Benzaldehyde 2.71 ± 0.28 <1

Table A8. Results of semi-quantification and calculated OAVs for sample 234.

Compound Concentration in µg/L OAV

β-Ionone 1.75 ± 0.07 249
Decanal 5.37 ± 0.91 54
α-Ionone 1.39 ± 0.04 46

(E,Z)-2,6-Nonadienal 0.18 ± 0.03 18
Octanal 5.75 ± 0.71 8

2,4-Nonadienal 0.28 ± 0.03 3
4-Heptenal 1.97 ± 0.34 2

(E)-2-Nonenal 0.19 ± 0.02 2
Hexanal 9.28 ± 1.6 2

1-Dodecanol 0.24 ± 0.03 <1
1-Octen-3-ol 0.63 ± 0.1 <1
3-Hexen-1-ol 14.35 ± 2.77 <1
α-Terpineol 1.13 ± 0.06 <1

(E)-2-Octenal 0.1 ± 0.02 <1
Nonanoic acid 1199.03 ± 347.21 <1
Benzyl alcohol 33.6 ± 3.78 <1

γ-Dodecalactone 0.05 ± 0 <1
Benzaldehyde 5.66 ± 0.37 <1

Indole 3.32 ± 0.13 <1

Table A9. Results of semi-quantification and calculated OAVs for sample 156.

Compound Concentration in µg/L OAV

β-Ionone 2.14 ± 0.15 306
Decanal 26.83 ± 3.29 268

(E,Z)-2,6-Nonadienal 0.78 ± 0.21 78
α-Ionone 2.13 ± 0.06 71
Octanal 15.84 ± 2.13 23

2,4-Nonadienal 1.01 ± 0.01 11
(E)-2-Nonenal 0.74 ± 0.04 9

Hexanal 38.98 ± 1.25 9
4-Heptenal 4.65 ± 0.72 6

1-Dodecanol 0.73 ± 0.08 <1
3-Hexen-1-ol 40.6 ± 1.07 <1
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Table A9. Cont.

Compound Concentration in µg/L OAV

α-Terpineol 1.46 ± 0.15 <1
(E)-2-Octenal 0.67 ± 0.08 <1

Nonanoic acid 1508.67 ± 310.48 <1
Benzyl alcohol 130.01 ± 14.89 <1

(E,E)-2,4-Heptadienal 57 ± 4.83 <1
γ-Dodecalactone 0.16 ± 0.03 <1

Benzaldehyde 6.5 ± 0.76 <1
Benzaldehyde, 4-methoxy- 1.83 ± 0.07 <1

Table A10. Results of semi-quantification and calculated OAVs for sample 930.

Compound Concentration in µg/L OAV

β-Ionone 2.95 ± 0.23 421
Decanal 30.06 ± 3.49 301
α-Ionone 1.39 ± 0.07 46

(E,Z)-2,6-Nonadienal 0.31 ± 0.03 31
2,4-Nonadienal 1.66 ± 0.06 18

Octanal 12.37 ± 1.9 18
(E)-2-Nonenal 0.86 ± 0.12 11

Hexanal 36.85 ± 3.52 8
4-Heptenal 0.81 ± 0.06 1

1-Dodecanol 0.96 ± 0.09 <1
3-Hexen-1-ol 57.73 ± 10.8 <1
α-Terpineol 6.01 ± 0.84 <1

(E)-2-Octenal 0.37 ± 0.06 <1
Nonanoic acid 1462.18 ± 228.82 <1
Benzyl alcohol 20.44 ± 0.05 <1

(E,E)-2,4-Heptadienal 21.27 ± 1.36 <1
γ-Dodecalactone 0.06 ± 0.01 <1

Benzaldehyde 3.56 ± 0.31 <1
Indole 1.9 ± 0.07 <1

Table A11. Results of semi-quantification and calculated OAVs for sample 743.

Compound Concentration in µg/L OAV

β-Ionone 3.79 ± 0.31 541
α-Ionone 1.96 ± 0.06 65
Decanal 4.7 ± 0.54 47

(E,Z)-2,6-Nonadienal 0.39 ± 0.04 39
2,4-Nonadienal 0.65 ± 0.06 7

Octanal 5.02 ± 0.19 7
Hexanal 31.71 ± 2.48 7

4-Heptenal 2.84 ± 0.29 4
(E)-2-Nonenal 0.24 ± 0.03 3
1-Dodecanol 0.66 ± 0.05 <1
1-Octen-3-ol 0.58 ± 0.11 <1
3-Hexen-1-ol 50.56 ± 6.39 <1
α-Terpineol 0.89 ± 0.08 <1

(E)-2-Octenal 0.19 ± 0.01 <1
Nonanoic acid 949.75 ± 121.15 <1
Benzyl alcohol 35.32 ± 3.23 <1

(E,E)-2,4-Heptadienal 24.74 ± 1.93 <1
γ-Dodecalactone 0.05 ± 0.01 <1

Benzaldehyde 6.07 ± 0.93 <1
Indole 3.14 ± 0.34 <1
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Table A12. Results of semi-quantification and calculated OAVs for sample 147.

Compound Concentration in µg/L OAV

β-Ionone 6.49 ± 0.67 927
α-Ionone 2.66 ± 0.25 89
Decanal 7.38 ± 0.86 74

(E,Z)-2,6-Nonadienal 0.2 ± 0.03 20
Octanal 11 ± 0.89 16
Hexanal 42.82 ± 2.57 10

2,4-Nonadienal 0.74 ± 0.09 8
4-Heptenal 3.31 ± 0.07 4

1-Dodecanol 0.38 ± 0.04 <1
1-Octen-3-ol 0.3 ± 0.05 <1
3-Hexen-1-ol 44.86 ± 5 <1
α-Terpineol 1.7 ± 0.24 <1

(E)-2-Octenal 0.19 ± 0.02 <1
Nonanoic acid 1235.09 ± 11.07 <1
Benzyl alcohol 35.18 ± 2.8 <1

(E,E)-2,4-Heptadienal 11.5 ± 1.07 <1
γ-Dodecalactone 0.05 ± 0 <1

Benzaldehyde 5.84 ± 0.68 <1
Indole 1.61 ± 0.13 <1

Benzaldehyde, 4-methoxy- 0.9 ± 0.15 <1

Table A13. Results of semi-quantification and calculated OAVs for sample 369.

Compound Concentration in µg/L OAV

β-Ionone 2.57 ± 0.12 367
α-Ionone 0.97 ± 0.03 32
Octanal 7.97 ± 0.41 11

1-Octen-3-ol 5.07 ± 0.19 5
2,4-Nonadienal 0.22 ± 0.01 2

2-ethyl-3,5-dimethylpyrazine 0.1 ± 0.01 2
(E)-2-Nonenal 0.1 ± 0.01 1

Hexanal 5.66 ± 0.24 1
2,3-dimethylpyrazine 2.85 ± 0.11 1

1-Dodecanol 0.43 ± 0.02 <1
3-Hexen-1-ol 29.8 ± 1.1 <1
α-Terpineol 0.2 ± 0.02 <1
1-Dodecanol 0.29 ± 0.01 <1
(E)-2-Octenal 0.1 ± 0.01 <1

Nonanoic acid 951.9 ± 121.64 <1
Benzyl alcohol 47.66 ± 5.34 <1

(E,E)-2,4-Heptadienal 0.93 ± 0.05 <1
γ-Dodecalactone 0.06 ± 0.01 <1

Benzaldehyde 2.92 ± 0.2 <1
Indole 6.58 ± 0.43 <1

2,5-Dimethyl-3-(2-
methylpropyl)-pyrazine 2.6 ± 0.03 <1
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+EI Scan (rt: 13.049 min) 210624_687_2.D 4-Heptenal, (Z)-Head to Tail MF=833 RMF=923
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+EI Scan (rt: 14.344 min) 210629_234_1.D OctanalHead to Tail MF=941 RMF=972
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+EI Scan (rt: 14.957 min) 210617_369_smell.D  Subtrac 2-Propanone, 1-hydroxy-Head to Tail MF=783 RMF=935
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+EI Scan (rt: 16.232 min) 210708_743_1.D 1-HexanolHead to Tail MF=915 RMF=932
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Figure A2. Cont.
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+EI Scan (rt: 18.157 min) 210629_234_1.D  Subtract 2-Octenal, (E)-Head to Tail MF=757 RMF=847
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+EI Scan (rt: 18.303 min) 210708_743_1.D  Subtract 4-Nonenal, (E)-Head to Tail MF=805 RMF=872
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+EI Scan (rt: 18.753 min) 210629_234_1.D 1-Octen-3-olHead to Tail MF=832 RMF=895
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+EI Scan (rt: 19.898 min) 210629_234_1.D DecanalHead to Tail MF=838 RMF=852
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+EI Scan (rt: 19.114 min) 210617_369_smell.D Pyrazine, 2-ethyl-3,5-dimethyl-Head to Tail MF=765 RMF=792
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+EI Scan (rt: 20.431 min) 210713_147_1.D 3,5-Octadien-2-one, (E,E)-Head to Tail MF=898 RMF=926
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+EI Scan (rt: 20.518 min) 210629_234_1.D  Subtract BenzaldehydeHead to Tail MF=671 RMF=920
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+EI Scan (rt: 19.063 min) 210629_234_1.D 2,4-Heptadienal, (E,E)-Head to Tail MF=902 RMF=905
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+EI Scan (rt: 20.814 min) 210702_930_1.D 2-Nonenal, (E)-Head to Tail MF=884 RMF=920
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+EI Scan (rt: 20.518 min) 210629_234_1.D  Subtract BenzaldehydeHead to Tail MF=671 RMF=920
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+EI Scan (rt: 22.057 min) 210629_234_1.D  Subtract (2) 2,6-Nonadienal, (E,Z)-Head to Tail MF=537 RMF=699
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+EI Scan (rt: 23.046 min) 210617_369_smell.D 5H-5-Methyl-6,7-dihydrocyclopentapyrazineHead to Tail MF=777 RMF=832
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+EI Scan (rt: 24.672 min) 210708_743_1.D  Subtract 2,4-Nonadienal, (E,E)-Head to Tail MF=721 RMF=917
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+EI Scan (rt: 24.693 min) 210629_234_1.D L-α-TerpineolHead to Tail MF=832 RMF=879
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+EI Scan (rt: 24.742 min) 210618_182_1.D 2,4-NonadienalHead to Tail MF=867 RMF=944
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+EI Scan (rt: 26.211 min) 210701_156_1.D  Subtract trans,cis-2,6-Nonadien-1-olHead to Tail MF=656 RMF=756
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+EI Scan (rt: 26.215 min) 210624_687_2.D  Subtract 1-Dodecanol, 3,7,11-trimethyl-Head to Tail MF=589 RMF=624
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+EI Scan (rt: 27.148 min) 210629_234_1.D  Subtract Benzaldehyde, 3,4-dimethyl-Head to Tail MF=890 RMF=899
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+EI Scan (rt: 27.127 min) 210702_930_1.D Benzaldehyde, 2,5-dimethyl-Head to Tail MF=913 RMF=936
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+EI Scan (rt: 27.788 min) 210708_743_1.D Hexanoic acidHead to Tail MF=782 RMF=881
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+EI Scan (rt: 27.833 min) 210617_369_smell.D Dodecanoic acid, ethyl esterHead to Tail MF=750 RMF=767
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+EI Scan (rt: 28.018 min) 210629_234_1.D α-IononeHead to Tail MF=905 RMF=906
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+EI Scan (rt: 28.506 min) 210701_156_1.D Benzyl alcoholHead to Tail MF=783 RMF=914
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+EI Scan (rt: 29.832 min) 210629_234_1.D 3-Buten-2-one, 4-(2,6,6-trimethyl-1-cyclohexen-1-yl)-Head to Tail MF=919 RMF=923

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280

0

50

100

50

100

15 27

43

43

45
45

55

55

60 65

65

71
71

77

77

91

91

105

105

119

121

135

135
142

149

149

159

159

177

177

181 192

192
207 267

+EI Scan (rt: 30.341 min) 210701_156_1.D  Subtract 1-DodecanolHead to Tail MF=831 RMF=896
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+EI Scan (rt: 31.476 min) 210624_687_2.D  Subtract Benzaldehyde, 4-methoxy-Head to Tail MF=609 RMF=916
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Figure A3. Cont.
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Figure A2. MS spectra of the identified substances (red beams) and the corresponding substance of 
the NIST Mass Spectral Library (blue beams). 
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Compound Odour Threshold [ppb]  
α-Terpineol 330 Takeoka et al., 1990 [60] 
1-Dodecanol 7.1 Pal et al., 2014 [61] 
1-Octen-3-ol 1 Buttery et al., 1988 [62] 

2-ethyl-3,5-dimethylpyrazine 0.04 Buttery and Ling, 1997 [63] 
2-Nonenal, (E)- 0.08 Buttery et al., 1988 [62] 
2-Octenal, (E)- 3 Guadagni et al., 1972 [64] 

2,3-dimethylpyrazine 2.5  
2,4-Heptadienal, (E,E)- 778  

2,4-Nonadienal 0.09 Teranishi et al., 1974 [65] 
2,5-Dimethyl-3-(2-methylpropyl)-pyrazine 800  

2,6-Nonadienal, (E,Z)- 0.01 Teranishi et al., 1974 [65] 
3-Hexen-1-ol 70 Takeoka et al., 1990 [60] 
4-Heptenal 0.8  

Benzaldehyde 350 Buttery et al., 1988 [62] 
Benzaldehyde, 4-methoxy- 47  

Benzyl alcohol 10000 Buttery et al., 1988 [62] 
Decanal 0.1 Guadagni et al., 1963 [66] 
Hexanal 04.05.05 Buttery et al., 1988 [62] 
Indole 140 Buttery et al., 1988 [62] 

Nonanoic acid 3000  
Octanal 0.7 Buttery et al., 1988 [62] 
α-Ionone 0.03  
β-Ionone 0.007  

γ-Dodecalactone 7 Engel et al., 1988 [67] 
  

+EI Scan (rt: 31.556 min) 210702_930_1.D  Subtract 2(3H)-Furanone, dihydro-5-pentyl-Head to Tail MF=713 RMF=827
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+EI Scan (rt: 32.726 min) 210702_930_1.D  Subtract Benzene, (1-ethylundecyl)-Head to Tail MF=696 RMF=803
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+EI Scan (rt: 33.948 min) 210702_930_1.D  Subtract Benzene, (1-methyldodecyl)-Head to Tail MF=887 RMF=888
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+EI Scan (rt: 34.101 min) 210629_234_1.D Nonanoic acidHead to Tail MF=917 RMF=919
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+EI Scan (rt: 35.446 min) 210622_182_2.D Isopropyl palmitateHead to Tail MF=602 RMF=626
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+EI Scan (rt: 31.605 min) 210617_369_smell.D  Subtrac 2(3H)-Furanone, dihydro-5-pentyl-Head to Tail MF=734 RMF=904
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+EI Scan (rt: 37.848 min) 210618_182_1.D γ-DodecalactoneHead to Tail MF=821 RMF=863
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+EI Scan (rt: 38.214 min) 210624_687_2.D  Subtract 2(3H)-Furanone, dihydro-5-(2-octenyl)-, (Z)-Head to Tail MF=813 RMF=922
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+EI Scan (rt: 38.969 min) 210617_369_smell.D  Subtrac IndoleHead to Tail MF=806 RMF=918
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Figure A4. MS spectra of the identified substances (red beams) and the corresponding substance of
the NIST Mass Spectral Library (blue beams).

Table A14. Chemical compounds and their associated odour thresholds.

Compound Odour Threshold
[ppb]

α-Terpineol 330 Takeoka et al., 1990 [60]
1-Dodecanol 7.1 Pal et al., 2014 [61]
1-Octen-3-ol 1 Buttery et al., 1988 [62]

2-ethyl-3,5-dimethylpyrazine 0.04 Buttery and Ling, 1997 [63]
2-Nonenal, (E)- 0.08 Buttery et al., 1988 [62]
2-Octenal, (E)- 3 Guadagni et al., 1972 [64]

2,3-dimethylpyrazine 2.5
2,4-Heptadienal, (E,E)- 778

2,4-Nonadienal 0.09 Teranishi et al., 1974 [65]
2,5-Dimethyl-3-(2-methylpropyl)-pyrazine 800

2,6-Nonadienal, (E,Z)- 0.01 Teranishi et al., 1974 [65]
3-Hexen-1-ol 70 Takeoka et al., 1990 [60]
4-Heptenal 0.8

Benzaldehyde 350 Buttery et al., 1988 [62]
Benzaldehyde, 4-methoxy- 47

Benzyl alcohol 10000 Buttery et al., 1988 [62]
Decanal 0.1 Guadagni et al., 1963 [66]
Hexanal 04.05.05 Buttery et al., 1988 [62]
Indole 140 Buttery et al., 1988 [62]

Nonanoic acid 3000
Octanal 0.7 Buttery et al., 1988 [62]

α-Ionone 0.03
β-Ionone 0.007

γ-Dodecalactone 7 Engel et al., 1988 [67]
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