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SARS-CoV and emergent corona
viruses: viral determinants of
interspecies transmission
Meagan Bolles1, Eric Donaldson2 and Ralph Baric1,2
Most new emerging viruses are derived from strains circulating

in zoonotic reservoirs. Coronaviruses, which had an

established potential for cross-species transmission within

domesticated animals, suddenly became relevant with the

unexpected emergence of the highly pathogenic human SARS-

CoV strain from zoonotic reservoirs in 2002. SARS-CoV

infected approximately 8000 people worldwide before public

health measures halted the epidemic. Supported by robust

time-ordered sequence variation, structural biology, well-

characterized patient pools, and biological data, the

emergence of SARS-CoV represents one of the best-studied

natural models of viral disease emergence from zoonotic

sources. This review article summarizes previous and more

recent advances into the molecular and structural

characteristics, with particular emphasis on host–receptor

interactions, that drove this remarkable virus disease outbreak

in human populations.
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Introduction
Coronaviruses have an established potential for cross-

species transmission that became broadly recognized with

the emergence of a novel human coronavirus, Severe

Acute Respiratory Syndrome Coronavirus (SARS-CoV),

in 2002. SARS was first identified as an atypical pneu-

monia in isolated patients in Guangdong Province, China.

The disease reached epidemic proportions following key

super spreader events that were associated with a novel

respiratory virus introduction into a globalized com-

munity. SARS-CoV caused about 8000 infections and

800 deaths worldwide by July 2003, by which time

aggressive public health intervention strategies contained

the epidemic absent any effective therapeutics [1]. The
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decimating lethality of SARS-CoV emergence was borne

largely by the elderly, in whom mortality rates

approached 50% or more. A subsequent explosion of

coronavirus research identified SARS-CoV in several

small carnivores (palm civets and raccoon dogs) of the

Chinese wet markets and SARS-like CoV in the predicted

reservoir host, horseshoe bats (genus Rhinolophus). The

vastly expanded CoV phylogeny includes two novel

human coronaviruses (NL63 and HKU1) and ultimately

tripled the number of full-length genome sequences

available in GenBank. SARS-CoV was shown to use a

novel host receptor, Angiotensin Converting Enzyme 2

(ACE2), for docking and entry and the viral attachment

protein, Spike, was extensively characterized both as a

determinant of host specificity and as a therapeutic target.

The more recent studies of coronaviruses have progressed

to increased surveillance and characterization of numer-

ous new coronaviruses circulating in bats, bids, and other

species, integrated bioinformatics and microbiological

studies, and extensive evaluations of potential thera-

peutics [2].

Coronavirus phylogeny and mechanisms of
genome diversity
Following the SARS-CoV outbreak a surge in global

coronavirus genome sequencing efforts vastly expanded

our insight into the CoV phylogeny and resulted in the

definition of several subclassifications (Figure 1). The

greatest contribution of new strains was derived from the

newly discovered bat coronavirus (BtCoV), which may be

the source of most, if not all, mammalian CoVs identified

to date [3–9]. The high diversity of coronaviruses is

attributable to three viral traits [10]. The first character-

istic is the potentially high mutation rates associated with

RNA replication, generally estimated as 10�3 to 10�5.

Surprisingly, the estimated mutation rate for SARS-CoV

and other coronaviruses approached 2 � 10�6 [11–13]. In

contrast to other RNA viruses, recent data suggest that

coronaviruses encode an RNA proof-reading activity

associated with the 30–50 exonuclease activity encoded

within nsp14 [14]. It is not clear whether RNA proof-

reading fidelity is altered in changing environmental

settings or during virus replication under stress related

conditions, but such possibilities may allow for rapid virus

evolution in changing ecologic conditions [14]. Second,

recombination frequencies within the coronavirus family

have been calculated to be as high as 25% during mixed

infection, likely the result of discontinuous RNA tran-

scription and the presence of full length and subgenomic

negative strand RNAs that allow for frequent strand
www.sciencedirect.com
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Figure 1
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Spike phylogeny of representative CoVs and models of SARS-CoV

emergence. (a) The Spike peptide sequence of 40 representative CoVs

demonstrates that CoVs make up three distinct groups named alpha,

beta, and gamma. These names replaced the former group 1, 2, and 3

designation, respectively. Classical subgroup clusters are marked as

2a–2d for the beta CoVs and 1a and 1b for the alpha CoVs. The tree was

generated via Maximum Likelihood using the PhyML package. Major

branch labels represent bootstraps that were greater than 70. SCoV:

SARS-CoV; BtSCoV: bat SARS-like CoV; BtCoV, ZBCoV, and ARCoV:

bat CoVs; HCoV: human; FCoV and FIPV: feline CoVs; BCoV: bovine;

IBV: avian; PHEV, TGEV, PRV, PEDV: porcine CoVs; and MHV: murine

hepatitis virus. (b) Competing models of SARS-CoV emergence. Early
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switching and recombination between viral genomes and

subgenomic replication complexes [15,16]. The role of

discontinuous transcription in recombination is supported

by the higher rate of recombination toward the 30 ends of

viral genomes and by targeted RNA recombination tech-

niques designed to genetically manipulate the 30 end of

the genome [17]. Although poorly studied, conservation

of transcription regulatory sequence (TRS) sites across

viral species may implicate these sequences as foci or hot

spots of recombination [17]. Thirdly, as the largest of the

RNA viruses at �27–31 kb, coronaviruses have both

increased opportunity for change and room for modifi-

cation, clearly evidenced by the presence of numerous

unique open reading frames and protein functions

encoded toward the 30 end of the genome [10]. These

genomic characteristics allow for rapid adaptation to novel

hosts, ecological niches, tissue tropism, and even gener-

ation of novel coronavirus species, as seen in the gener-

ation of FIPV type II strains from double recombination

events between FIPV type I and CCoV [10].

Multiple incidents of cross-species
transmission
Coronaviruses have a strong history of host shifting as

evidenced by phylogenetic incongruences in the family

tree [18]. In addition to SARS-CoV, two human corona-

viruses, HCoV-OC43 and HCoV-229E, are now also

recognized as having likely emerged from animal reser-

voirs. HCoV-OC43 and bovine coronavirus (BCoV), both

betacoronaviruses, have very high sequence similarity

suggesting a recent and common origin (Figure 1). Mol-

ecular clock analysis of the Spike glycoprotein of both

species estimates that HCoV-OC43 originated from a

BCoV ancestor around 1890 [19]. Similarly, HCoV-

229E likely emerged from a bat alphacoronavirus approxi-

mately 200 years ago [20]. In an example of reverse

zoonosis, porcine epidemic diarrhea virus emerged sud-

denly in the early 1980s, most likely originating from

HCoV-229E [20]. Additionally, a coronavirus isolated in

1988 from a child with acute diarrhea, HECV-4408, was

shown to be closely related to bovine coronavirus (BCoV),

indicating the continued introduction of zoonotic coro-

naviruses into human populations [21]. The origins of

HCoV-NL63 and HCoV-HKU1, the most recently dis-

covered human coronaviruses, remain under study. The

most recent example of zoonotic emergence of a human

coronavirus is the example of SARS-CoV, which had at

least two independent emergence events from zoonotic

reservoirs, recognized in 2002 and 2003 [22]. The most

recent phylogenetic data estimate the emergence of

SARS-CoV some seven years earlier, consistent with
data suggested that SARS-CoV initially jumped from the zoonotic

reservoir, bats, to palm civets, followed by a second jump from civets to

humans (blue arrow). More recent phylogenetic and receptor analysis

studies suggest a direct emergence from bats to humans, with

subsequent cross-transmission between humans and civets (red arrow).

Current Opinion in Virology 2011, 1:624–634
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the identification of low sero-positive cases from archived

serum samples in 2001 in China [23].

SARS-related CoVs in bats
Following its emergence in 2003, SARS was quickly

identified as a zoonotic virus, and the identification of

the wet markets as a potential source may have assisted

epidemiological control of the disease [24]. While palm

civets, raccoon dogs, and horseshoe bats (Rhinolophus
genus) have all been identified as hosts of SARS-like

CoVs, it is suggested that only the horseshoe bats are

likely reservoir hosts. Bats are widely distributed, highly

diverse, and extremely mobile mammals with an estab-

lished role as hosts of emergent RNA viruses. Corona-

viruses occupy an exceptionally wide distribution in bats;

recent surveillance studies have extended our recognition

of this range to Africa, Europe, South America, and North

America [4,9,25–27]. The genetic variation encoded

within many recently discovered coronaviruses hosted

by bats is far greater than the diversity noted between

many human coronaviruses, despite a proportionally small

sampling of the �1200 bat species, leading some

researchers to speculate that all mammalian coronaviruses

are derived from bat reservoir strains [4,28]. The exten-

sive sequence diversity provides considerable opportu-

nity for the emergence of new animal and human

coronaviruses, which would be sufficiently antigenically

distinct as to not be influenced by preexisting exposure

and memory immune responses to established human

CoVs. For example, little antigenic cross reactivity exists

between the S glycoproteins of more distantly related

group 2b bat coronaviruses and the SARS-CoV [29]. From

a historic context, the next emergent event is likely

dependent only on ecological and epidemiological situ-

ations and time, as the viral potential is well established

[30,31].

Repeated efforts have been made in recent years to

identify the zoonotic reservoir and path of emergence

for SARS-CoV, both by sampling zoonotic populations

and by attempting to clarify SARS-CoV receptor usage in

alternate hosts. A recent study attempting to address the

paucity of bat SARS-related coronavirus sequences gath-

ered and analyzed SARS-related coronaviruses in Rhino-
lophus bats (SARSr-Rh-BatCoV) (Rp3) genomes from

horseshoe bats in China [32�]. Interestingly, several bats

sampled were coinfected with HKU2, an alphacorona-

virus, providing direct evidence that individual bats can

host divergent coronaviruses, even across groups. Further,

tagging and clinical assessment of infected bats over a

four-year period showed only minor weight loss associ-

ated with Rp3 infection, with viral clearance occurring

between two weeks and four months. Analysis of the ten

novel genomes gathered in this study combined with

previously published sequences demonstrated evidence

of frequent recombination between the strains. They also

note a 26-bp deletion in ORF8 near, but not identical to,
Current Opinion in Virology 2011, 1:624–634
the 29-bp deletion seen in human SARS-CoV epidemic

strains, suggesting ORF8 may undergo frequent deletions

[32�].

ACE2 is the receptor for SARS-CoV, but following the

identification of several SARS-like CoVs (SL-CoVs) in

horseshoe bats (genus Rhinophus) the ACE2 molecule of

R. pearsonii proved incapable of serving a receptor for

SARS-CoV [3,33]. These and other initial studies

suggested that the ancestral SARS-CoV strain in bats

used an alternate receptor and that the emergence of

SARS-CoV was dependent upon either acquisition of an

ACE2 binding region or initial utilization of an alternative

human receptor [33]. However, while human ACE2 is

genetically conserved, the bat ACE2 sequences are

highly heterogeneous, with 78–84% amino acid identity

between families [34,35]. Despite this heterogeneity, the

residues that interface with the SARS Spike–receptor

binding domain (RBD) are more conserved [36]. A recent

study determined that a minimum three substitutions in

the ACE2 of R. pearsonii (RpACE2) allowed this protein

to serve as a receptor for SARS [37]. Looking more

broadly at the ACE2 molecules from seven bat species,

the ACE2 proteins from Myotis daubentoni and Rhinolophus
sinicus are capable of supporting Spike-mediated pseu-

dovirus and SARS-CoV infection, though less efficiently

than human ACE2 [34]. Assessment of receptor usage by

early phase and civet isolate Spike proteins might better

inform our understanding of emergence pathways, deter-

mining if SL-CoV jumped directly from bat to human

hosts or whether civet or other intermediate hosts were

required as early intermediates before human adaptation.

Although original data suggested a bat to civet to human

origin, evidence supporting direct bat to human trans-

mission of SL-CoV emerged from recent phylogenetic

studies, in addition to the receptor studies mentioned

above (Figure 1b). Initially, a reanalysis of published

genome sequences developed phylogenies using out-

groups that were non-SARS-CoV sequences, designed

to test the monophyly of the SARS-CoV sequences

[38]. Under this assessment, bat isolates are ancestral

host to all SARS-CoVs, while civet and raccoon dog

sequences (small carnivores), as well as pig isolates cluster

within the human SARS-CoV sequences. The small

carnivore CoVs are consistently shown to be terminal

branches with human CoVs intermediate, with later

transmission of CoV between carnivores and humans

responsible for isolated cases such as GD03, a late phase

human isolate that phylogenetically clusters with civet

rather than human sequences [38]. This phylogeny there-

fore supports a direct bat to human transmission, with

subsequent and bidirectional transmissions between civet

cats, raccoon dogs, and humans.

A more recent study analyzed CoV sequences gathered

from 24 R. sinicus bats in geographically distant regions of
www.sciencedirect.com
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Figure 2
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Sequence changes over the SARS-CoV epidemic. Shown here are the most significant changes important for transition of SARS from civet to early,

middle and late phases of epidemic strains. Mutations indicative of lineages that were not likely to have contributed to the expansion to other phases

have been removed. All other positions in the genome are identical.
China, characterizing two distinct genotypes, Rs672 and

Rs806 [39�]. Interestingly, one sequence (Rs672) and the

previously published Rp3 are shown in a monophyly more

closely related to human-SCoV than to bat SARS-like

CoV strains, based on the strong similarity of Rs672

ORF1a/b region to human SARS sequences. This study

also provided further evidence of recombination between

Bat-SL-CoV, with a recombination breakpoint identified

immediately after the start codon of Spike, identical to

the recombination position in the Rp3 genome [39�]. The

combination of highly diverse BtCoV species and diver-

gent ACE2 molecules among bat hosts suggests direct bat

to human transmission may be feasible. Thus, the field is

left with two potentially competing models for the origins

of the SARS-CoV epidemic: first, transmission from bats

to an intermediate amplifying reservoir in small carni-

vores, with subsequent transmission to humans or second,

direct bat to human transmission followed by cross-trans-

mission between humans and civets and raccoon dogs

(Figure 1b). In both models civets and raccoon dogs serve

as key amplifying hosts for virus persistence and reintro-

duction into human populations.

Genesis of an epidemic
A chronological set of SARS-CoV sequence changes

spanning the SARS outbreak provided an unparalleled

opportunity to identify the genetic basis for zoonotic virus

cross-species transmission and human adaptation during

an expanding epidemic. Molecular changes noted at with
www.sciencedirect.com
the end of the early phase and expansion into the middle

phase of the epidemic include A3047V, A3072V in the

replicase and D778Y and perhaps E1163K in the Spike

gene. Transition from the middle to late phase of the

epidemic included A2552V in ORF1a, E1389D in ORF1b,

D77G and T244I in the S gene, respectively (Figure 2)

[40]. It has been hypothesized that these alterations were

key to an expanding epidemic, yet empirical data to

support these claims and functional significance of these

alterations remain unavailable. For example, it is not clear

whether the ORF8 29 bp deletion is central for human

adaptation as suggested, or a genetic hitchhiker amplified

and maintained following a selective sweep mediated by

other beneficial mutations located elsewhere in the gen-

ome [3,40]. In addition to these changes, the SARS-CoV

Spike glycoprotein was under strong positive selection,

with 23 substitutions evolving during the expanding

phases of the epidemic [41]. Experimental evidence

suggests both adaptation to ACE2 and antibody selection

contributed to Spike changes [40,42].

Coronavirus cross-species transmission: role
of Spike–receptor interactions in viral entry
Coronavirus–receptor interactions are key determinants

regulating host range, cross-species transmission, and

tissue tropism. The various coronaviruses demonstrate

broad receptor and coreceptor usage, from proteases such

as aminopeptidase N for transmissible gastroenteritis

virus (TGEV), canine-CoV, feline infectious peritonitis
Current Opinion in Virology 2011, 1:624–634
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virus (FIPV), and HCoV-229E, to cell adhesion molecules

such as CEACAM1a for MHV, to sugars as coreceptors for

some alpha, beta, and gammacoronaviruses [36,43,44].

This diverse receptor usage directly impacts host range

and tissue tropism as demonstrated by the closely related

PRCoV and TGEV. PRCoV lacks the sugar-binding

region of TGEV, and consequently is limited to a respir-

atory rather than enteric tropism [45]. The recently

crystallized structure of the group 2a coronavirus MHV

complexed with its receptor, murine CEACAM1a,

emphasizes again the broad diversity and flexibility of

CoV Spike glycoproteins. The core structure of the MHV

RBD is hypothesized to have been derived from a host

sugar-binding protein (galectin) and subsequently modi-

fied to allow mCEACAM1a binding, thus enhancing

MHV affinity for host cells [43]. Other coronaviruses

encode a second putative viral attachment protein, the

hemagglutinin esterase (HE), which was likely derived

from influenza C strains by recombinatory mechanisms

[46]. Coronaviruses selected in vitro to broaden host range

oftentimes mutate to bind heparin sulfate for docking and

entry [47]. It is notable that OC43 and BCoV have

carbohydrate (sialic acid) binding capacities, as well as

broader host ranges [48]. The capacity to bind carbo-

hydrates for docking and entry may provide an additional

pathway for coronavirus host range expansion, cross-

species transmission, and disease emergence, and

requires further study.

The key determinant of SARS coronavirus host speci-

ficity is the Spike glycoprotein, an envelope-anchored

trimeric protein responsible for binding human ACE2 as

the principle receptor for virus docking and entry. SARS-

CoV S glycoprotein also binds C-type lectins like DC-

Sign and/or L-Sign as a coreceptor, an interaction which

is blocked by mannose binding lectin [49,50]. Impor-

tantly, SARS-CoV docking and entry is also highly de-

pendent upon transmembrane protease/serine subfamily

member 2 (TMPRSS2) S and ACE2 cleavage, especially

in airway and alveolar sites, and cathepsin L cleavage and

subsequent S2 fusion activation [51–53]. Several studies

in the past two years have worked to clarify the plasticity

of this protein, with particular emphasis on the RBD.

The Spike glycoprotein underwent rapid evolution

during the human epidemic [40], was the most signifi-

cantly variable protein across civet and human isolates

[22], and shows evidence of positive selection during

both interspecies and intraspecies transmission events

[10,22,40,54]. The SARS Spike can recognize and use

bat, civet, mouse, and raccoon dog ACE2 receptor mol-

ecules for docking and entry, indicating that SARS traf-

ficked along receptor ortholog networks to move

between species [34,55,56]. As several alphacoronavir-

idae also use APN from different species, these data

suggest a common theme in coronavirus host range

switching: recognizing receptor orthologs from different

species [36]. Additionally, the role of different ortholog
Current Opinion in Virology 2011, 1:624–634
proteases for facilitating coronavirus S glycoprotein clea-

vage and entry processes remains undefined, and could

significantly contribute to the efficiency of virus cross-

species transmission processes.

SARS-CoV replicates but does not produce clinical dis-

ease in mice. Two experimental adaptations of SARS-

CoV to murine hosts by serial passage independently

identified a substitution in the Spike gene at residue

436 which alone has been shown to enhance infectivity

and pathogenesis in mice, and is predicted to allow

stronger binding to the murine ACE2 receptor

[29,57,58�]. However, substitutions outside of Spike are

necessary for the full lethal disease phenotype in MA15,

and presumably also in v2163 [57]. For example, two

other proteins, nsp9 and nsp13, contained mutations in

both mouse-adapted strains, MA15 and v2163. Addition-

ally, single substitutions in the M gene are common to

MA15 and adaptation to persistent infection of human

tubular kidney cells, suggesting the M protein influences

tropism or pathogenesis by facilitating the efficiency of

particle egress [59]. The substitutions common to both

mouse-adapted strains suggest potential SARS-CoV viru-

lence factors in the later stages of adaption to a novel host,

and indicate potential mutation driven emergence path-

ways. The mouse-adapted viruses may not represent true

cross-species transmission events, as SARS could already

replicate in the mouse lung, but it is notable that the most

conserved change in both mouse-adapted strains

enhances receptor binding at the same Spike residue.

Further, serological studies indicate multiple cross-

species transmissions into humans in the years before

the epidemic, suggesting that the virulence factors con-

tributing to the later stages of adaptation to novel hosts, in

Spike or elsewhere, are critically important [23].

The RBD (aa318–510) is the strongest determinant of

host range for SARS-CoV and other coronaviruses [29].

Single substitutions within the RBD can significantly

affect the binding affinity of Spike to its receptor [60].

Indeed, a minimum of 1–2 substitutions in the RBD are

sufficient to allow the virus to alter host receptor speci-

ficity [61]. Experimental adaptation of civet-Spiked SAR-

S virus to human ACE2 receptor by Sheahan et al.
demonstrated the minimal requirements for host range

expansion. In these studies, a civet-Spiked SARS-CoV

was incapable of propagating in Vero cells until a human-

tropic substitution was introduced at residue 479. When

the civet-Spiked virus included the K479T substitution it

was capable of propagating on Vero cells and further

capable of replicating on human airway epithelial cells

(HAE) and hACE2-expressing DBT cells, demonstrating

that single substitutions are capable of expanding the

virus host range. Interestingly, when the K479T-civet-

SARS was experimentally selected for enhanced replica-

tion on human airway epithelial cells, the substitutions

that improved replication did not exactly replicate the
www.sciencedirect.com
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substitutions seen in the epidemic strains. Rather, an

initial substitution at 479 was necessary for the civet-

SARS to use primate ACE2 and propagate in Vero cells,

but the adaptive mutations following passage on human

airway epithelial cells (HAE) selected for substitutions at

two different contact interface sites at residues 442 and

472, rather than the 487 site identified in the epidemic

strain [61,62]. This suggests that multiple genetic path-

ways exist which can improve S RBD–human ACE2

receptor interactions, providing the virus with multiple

strategies to adapt to new host species [56]. It is inter-

esting to note that this alternative pathway for recogniz-

ing hACE2 ablated interactions with the cACE2 receptor,

supporting the hypothesis that epidemic SARS-CoV

strains were coselected to efficiently recognize both civet

and human ACE2 receptors.

Antibodies that neutralize SARS-CoV predominantly

bind to the RBD of Spike. Rockx et al. selected and

sequenced a number of different escape mutants to a

panel of 23 human monoclonal antibodies, the majority of

which contained single substitutions along the RBD

interface with ACE2 [63��]. All but one escape site

mapped within 4 angstroms of contact interface residues,

and yet all viruses grew to comparable peak titers in Vero

and hACE2-restricted DBT cells. However, growth on

civet-ACE2-restricted DBT cells was restricted for all

escape viruses, suggesting that escape from antibody

neutralization can alter Spike–receptor binding and,

consequently, host range [63��]. That antibody escape
Figure 3

SARS

ACE2ACE2

(a) (b)

Crystal structures of coronavirus receptor binding domains (RBDs) complexe

Spike RBD–receptor complexes have been solved: (a) the RBDs of SARS c

human ACE2 (3KBH) [71��], and (c) MHV complexed with murine CEACAM1
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variants can stably adopt substitutions in the Spike–
ACE2 receptor interface suggests that the host response

to an infection may select for host range variants by a

mutation-driven mechanism.

Extensive structural modeling tools are available to pre-

dict receptor binding, antibody neutralization, or the

stability of substitutions within the RBD of the SCoV

Spike. Three coronavirus Spike-RBDs have been com-

plexed with receptors to date, allowing for prediction and

validation of the structural determinants of binding to

host and orthologous receptors (Figure 3). Application of

mathematical modeling to Spike–receptor and Spike–
antibody structural models allowed for the prediction

of escape substitutions with a high probability of fixation

in a viral population [64]. These predictions are partially

in accordance with published data, predicting selection

with antibody 80R would select for a substitution at D480

of Spike, as seen in vitro following SARS-CoV escape

from 80R neutralization [64,65].

Plasticity of the Spike glycoprotein
The coronavirus Spike glycoprotein is remarkably plastic,

capable of accommodating mutations and deletions up to

479 (MHV) or 681 nucleotides (PRCoV) while retaining

receptor binding and entry functions [66–68]. To date,

large deletions in the SARS-CoV S glycoprotein have not

been reported. The S protein is divided into discrete

domains: an N-terminal domain, RBD, two heptad

repeats, a transmembrane anchor, and an intracellular tail
NL63 MHV

CEACAM1a

(c)
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d with their receptors. To date, the crystal structures of three coronavirus

omplexed with human ACE2 (pdb 2AJF) [73], (b) NL63 complexed with

1a (3R4D) [43].
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[43]. Discrete regions can be exchanged between strains

while preserving both protein function and antibody

binding [29,36]. Multiple coincident substitutions as well

as contact interface site substitutions can be tolerated to

allow escape from antibody neutralization while main-

taining receptor specificity [42,60,69,70]. This flexibility

allows for multiple genetic pathways from the use of

zoonotic receptors to the human ACE2 receptor [56].

Diversity and flexibility of the Spike glycoprotein is charac-

teristic of coronaviruses beyond SARS-CoV. The lack of a

clear ACE2 receptor binding motif (RBM) in the horseshoe

Bat-SL-CoV Spike, and the inability to use hACE2 as a

receptor, led to an early hypothesis that the human-SCoV

emerged from Bat-SL-CoV following a recombination

event, perhaps with a NL63-like CoV, as NL63 also uses

ACE2 as a receptor. Such a recombination event would

have allowed direct acquisition of an ACE2 binding motif

and the resulting cross-species transmission [35]. Alterna-

tively, SARS-CoV used batACE2 for docking and entry

and introduction into human/civet populations selected for

mutations that enhanced interaction with the civet or

humanACE2 receptor. The recently published crystal

structure of NL63-CoV complexed with the ACE2 re-

ceptor shows no structural homology with the SARS-

CoV RBM or the core RBD (Figure 3) [71��,72]. This

suggests that convergent evolution, rather than recombi-

nation-mediated transfer, lead to the common use of ACE2

by NL63 and SARS-CoV [72].

Early data suggested that the RBD of SARS-CoV and

perhaps HCoV-NL63 were derived by recombination

processes, rather than mutation driven evolution. While

these ideas remain highly speculative, these data

suggested that the S glycoprotein RBDs and/or fusion

cores of CoVs may be interchangeable between distant

strains. In support of this hypothesis, the consensus bat

SARS-like genome HKU3 was replication competent, but

was not sufficient for sequential rounds of infection,

presumably because of the lack of appropriate receptors

for docking and entry. The insertion of the SARS RBD

into the HKU3 Spike allowed for the production of

progeny virus that grew to high titer in ACE2-expressing

DBT cells, and was capable of replicating in human

airway epithelial cells and mouse lungs, although it grew

with reduced efficiency in the latter [29]. Thus, under

certain conditions, recombination processes can result in

bat CoV host shifting. Further, the bat-SARS-like coro-

navirus with the SARS RBD was capable of replicating in

mouse lungs, although with greatly reduced efficiency. It

is notable that attempts to isolate CoV from bats have

repeatedly failed, limiting our ability to study adaptive

mechanisms or pathogenesis of CoV in host species, but

that synthetic biology provides alternative sources of

these viruses. The construction of a synthetic bat SAR-

S-like coronavirus provided strong evidence that the

interspecies movement of coronaviruses, specifically
Current Opinion in Virology 2011, 1:624–634
SARS-like coronaviruses, resides strongly in the RBD

[29]. While previous studies had indicated that small

changes in the Spike glycoprotein could alter host speci-

ficity of coronaviruses, the sufficiency of a discrete RBD

change in the context of a divergent 30 kb genome

demonstrates the RBD is a minimum determinant of

species tropism. Further, it suggests a potential mechan-

ism of host range expansion, suggesting both recombina-

tion and single substitution events allow for infection of

novel hosts. Determining receptor specificities for these

novel bat coronaviruses offer considerable opportunity to

enrich our understanding of coronavirus–receptor inter-

actions, identify new receptors that coronaviruses use for

docking and entry, and provide novel models for studying

the ease and mechanism of cross-species transmission.

Conclusions
Fundamental insights into the molecular mechanisms

and pathways that govern virus cross-species transmission

are central to protecting global health. Coronaviruses

readily traffic between host species and the Spike glyco-

protein is the most extensively characterized viral deter-

minant of host range expansion. Binding of the

coronavirus Spike to the host receptor is the minimum

determinant of infectivity and species specificity, and

many recent studies have demonstrated the ability of S

RBD to mutate and engage ortholog receptors or escape

antibody neutralization [61,63��]. We need to know more

about the breath of novel coronavirus receptors that are

used in nature and the mechanisms governing ortholog

receptor recognition. Importantly, the coronavirus RBD

interface is a robust iterative model for predicting struc-

ture–function relationships between mutation-driven

host range expansion, virus–receptor interactions, and

antibody binding and neutralization. The SARS S-RBD

model captures highly regulated variables that recapitu-

late real-life biological processes critical for coronavirus

cross-species transmission and host immune response

(Figure 4). The SARS RBD–receptor–neutralizing anti-

body interface provides considerable opportunity for pre-

dicting and studying the role of mutations in cross-species

transmission and immunity. In addition, recent work has

also expanded our appreciation of how intragenic recom-

bination may influence coronavirus host range, as evi-

denced by targeted recombination, recombination

between different bat coronaviruses, and identification

of the RBD as a minimum determinant of host range

expansion [29,39�]. While the precise ancestor and route

of emergence for SARS-CoV remains unidentified, exten-

sive sampling and phylogenetic studies of bat CoVs has

raised the possibility that the epidemic strain may have

jumped directly to humans before jumping to civets.

Thus, future coronavirus epidemics may be more fre-

quent than appreciated as compared with a two-step

emergence model that required an intermediate host.

Additionally, while it remains unclear whether recombi-

nation and/or mutation of Spike mediated the emergence
www.sciencedirect.com



SARS-CoV and emergent coronaviruses Bolles, Donaldson and Baric 631

Figure 4
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Experimental evolution at the SARS S glycoprotein RBD–ligand interface. The SARS RBD is heterogeneous and includes defined sequence variation at

specific residues that engage the ACE2 receptor from different species (Parts 1 and 2). Bioinformatics can be used to predict and then test the impact

of targeted mutations on variant virus–receptor interactions. Iterative rounds of mutation driven selection are also possible using recombinant viruses

encoding targeted mutations and variant ACE2 receptors for docking and entry. The model allows a deep structural understanding of the potential

pathways and molecular mechanisms that govern cross-species transmission and pathogenesis. The biological impact of host shifting on antigenicity

can be predicted using structural models of antibody–RBD interfaces, and then studied using a panel of well characterized human and mouse

monoclonal antibodies targeting the different SARS-CoV RBD domains (Part 3). In parallel, neutralizing monoclonal antibodies can be used to select for

escape mutations (Part 4), allowing for iterative rounds of prediction and testing on how these mutations impact host range and ACE2 recognition.
of SARS, both mechanisms can readily impact corona-

virus host range. Future studies are needed to clarify the

potential roles of host proteases or antibody mediated

selection in cross-species transmission, and to clarify

whether modulation of RNA proof-reading activity could

impact viral adaptation to a novel host. Further, structural

and mathematical modeling tools offer novel predictive

capabilities that, when integrated with experimental stu-

dies, will assist in predicting the ease of cross-species

transmission, the mechanisms of emergence, and contrib-

ute to improvements in therapeutic design.
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