
RESEARCH ARTICLE

A New Extension of the Binomial Error Model
for Responses to Items of Varying Difficulty
in Educational Testing and Attitude Surveys
James A. Wiley1, John Levi Martin2*, Stephen J. Herschkorn3, Jason Bond4

1 Department of Family and Community Medicine and Institute for Health Policy Studies, School of Medicine,
University of California San Francisco, San Francisco, California, United States of America, 2 Sociology
Department, University of Chicago, Chicago, Illinois, United States of America, 3 Department of
Mathematics, College of Staten Island, New York City, New York, United States of America, 4 Alcohol
Research Group, Emeryville, California, United States of America

* jlmartin@uchicago.edu

Abstract
We put forward a new item response model which is an extension of the binomial error

model first introduced by Keats and Lord. Like the binomial error model, the basic latent var-

iable can be interpreted as a probability of responding in a certain way to an arbitrarily speci-

fied item. For a set of dichotomous items, this model gives predictions that are similar to

other single parameter IRT models (such as the Rasch model) but has certain advantages

in more complex cases. The first is that in specifying a flexible two-parameter Beta distribu-

tion for the latent variable, it is easy to formulate models for randomized experiments in

which there is no reason to believe that either the latent variable or its distribution vary over

randomly composed experimental groups. Second, the elementary response function is

such that extensions to more complex cases (e.g., polychotomous responses, unfolding

scales) are straightforward. Third, the probability metric of the latent trait allows tractable

extensions to cover a wide variety of stochastic response processes.

Introduction
In this paper we introduce a class of item response models for the analysis of response distribu-
tions derived from survey data. The simplest item response function in this class is a generaliza-
tion of the binomial error model for ability testing of Keats and Lord [1]. Similar item response
functions were considered briefly by Lazarsfeld [2] and Coleman [3] but not implemented as
models for response data. The distinguishing characteristic of the approach taken here is that
the probability of an item response is written as a function of a latent variable that can also be
interpreted as a probability. The choice of a probability metric suggests the Beta density as a
natural choice to model the distribution of the latent variable. Furthermore, a response func-
tion formulated in this way is easy to modify to accommodate variations in the nature and
complexity of response tasks.
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We first introduce the extended binomial error (EBE) model as a generalization of the bino-
mial error model. We discuss issues of identifiability, estimation and fit, and give two examples,
one for a single sample, and another for data from two independent samples, noting the simi-
larities in fit between the extended binomial error and loglinear Rasch models. Finally, we
discuss extensions for polychotomous data and for modeling responses produced by non-
cumulative response functions.

The resulting class of models have special utility for the investigation of substantively
important questions about the nature of response (as opposed to scoring long tests), Further,
in contrast to the loglinear Rasch models that have been most influential in sociology due to
the work of Duncan [4] in particular, this approach allows us to make strong assertions about
the social distribution of the latent trait.

The Extended Binomial Error Model

Introducing item difficulty into the binomial error model for dichotomous
responses
The binomial error model for test scores was introduced by Keats and Lord [1] [5] as a strong
true score theory for dichotomous test items of more or less equal difficulty. This model is
based on the assumption that the conditional distribution of the observed score given the true
score (conceived as a theoretical “proportion correct”measure) is binomial, with the true score
playing the role of the constant probability of a correct answer inM independent trials where
M is the number of items. With no additional specifications, Keats and Lord were able to show
that the firstMmoments of the true score distribution can be determined from the moments
of the observed score distribution. Furthermore, they showed [6] that a linear regression of
true on observed score implies and is implied by a negative hypergeometric distribution of the
observed scores. They also proved that a two-parameter Beta distribution for the true scores
implies a linear regression of true score on observed score and a negative hypergeometric dis-
tribution for the observed scores.

Of course, it is infrequent that we analyze a set of dichotomous items with the same levels of
difficulty (see also [7]); hence Keats and Lord indirectly incorporated variations in item diffi-
culties in their compound binomial model, which accordingly lost many of the most attractive
features of the binomial error model. Some other modifications of the binomial error assump-
tions have been proposed [8], but these are not often implemented as IRT models.

We propose to modify the binomial error model by direct incorporation of item-difficulty
parameters and by assuming a bounded proportion-like latent trait. The model assumptions
allow a compact expression for the probability of any observed response pattern in terms of
item-difficulty parameters and the parameters of the distribution of the latent trait, assumed to
be two-parameter Beta. This expression leads in turn to an algorithm for simultaneous ML esti-
mation of both sets of parameters. In contrast to a Rasch model, therefore, our estimation of
item parameters is not separable from the estimation of person parameters; the advantage of
specifying a flexible family of distributions like the Beta comes in the capacity to easily analyze
factorial experiments in which either the trait, or item hardnesses, or both may be affected by
treatments, as we show below.

A Generalization
Let x = [x1, x2,..,xM] be a response vector for a set ofM dichotomous items, coded so that xi = 1
implies completion of a task related to some underlying ability or acceptance of a statement
consistent with some hypothesized underlying attitude dimension and xi = 0 otherwise. (The 1/
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0 coding of responses is arbitrary but useful in writing down the probabilities associated with
complete response patterns.) Consider a latent variable y, where 0<y<1, and let the difficulty
of the ith item be ki (ki>0 for all i). We propose the simple response function

Pr½xi ¼ 1jy� ¼ yki ð1Þ

The conditional probability of any set ofM responses under conditional independence is

Pr½xjy� ¼
Yn
i¼1

ðykiÞxið1� ykiÞð1�xiÞ ð2Þ

and the unconditional probability is

Pr½x� ¼
ð
Pr½xjy�φðyÞdy ð3Þ

where ϕ(y) is the density of y.
There are a number of advantages to constructing the model using the form of Eq 1, as the

latent trait may be interpreted as the probability of answering standardized (ki = 1) item in a
positive direction. However, a complication arises for the interpretation of standard errors of
the k parameters given that they must be strictly non-negative. As is the case for other models
with necessarily non-negative parameters (such as models for variances), the standard errors
cannot be interpreted symmetrically; indeed, in cases of very poor fit, standard errors may
imply that the true population value might quite plausibly be negative. When the model fits
well, these issues are minor, but it makes sense to carry out statistical tests on the equivalence
of k parameters not by comparison of standard errors, but by the comparison of chi-squares of
nested models constraining or not constraining parameters to be equal. If the use of confidence
intervals is required, one can rewrite the item response function as a double-exponential whose
argument is the difference between an unbounded latent variable ξ and an unbounded item dif-
ficulty parameter χi, where ξ = -log[-log(y)] and χi = log(ki), ξ, -1< ξ, χi <+1. Thus we can
write

Pr½xi ¼ 1jx� ¼ exp½�ðexpð�ðx� wiÞÞ�: ð4Þ

We note, however, that in contrast to a Rasch model, Eq 4 does not imply equiprobability
when ξ = χi; instead, Pr[xi = 1|ξ] = .5 when (ξ-χi) = -.3665. Given that Eq 1 has the more intui-
tive relation to a probability statement, we prefer this for the development of a family of models
for stochastic response.

The choice of a probability metric suggests the Beta density as a natural choice to model the
distribution of the latent variable, as it, like a probability, is defined for the interval [0,1]. Thus
we propose:

φðyÞ ¼ Gðaþ bÞ
GðaÞGðbÞ y

ða�1Þð1� yÞðb�1Þ ð5Þ

where a, b>0, 0<y<1, and Γ is the complete gamma function. (We note that such a specifica-
tion was suggested but not implemented by Lazarsfeld [2].) Note that E[y] = a/(a+b); V[y] =
ab/[(a+b)2(a+b+1)]. For ki = k for all i, this leads to the binomial error model with a Beta den-
sity for the latent trait, sometimes called the beta-binomial model [7].

It can be shown that given this density, for any k>0,

E½yk� ¼ Gðaþ bÞGðaþ kÞ
GðaÞGðaþ bþ kÞ ð6Þ
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Thus, for example, the unconditional probability of the unit response vector x = [1,1,1,. . .,1] is
simply

Pr½1; 1; . . .; 1� ¼ E½Pr½1; 1; . . .; 1j y�� ¼ E y

XM
i¼1

ki

2
664

3
775 ¼

Gðaþ bÞGðaþ
XM
i¼1

kiÞ

GðaÞGðaþ bþ
XM
i¼1

kiÞ
ð7Þ

More generally, any Pr[x] may be written as a function of gamma functions whose arguments
are the sums of the distribution parameters a and b and/or item difficulties ki.

Representation of the Unconditional Response Probabilities
Let Pr[x] represent the unconditional probability of a response. For any x, let I(x) = {i: xi = 0}
and C(x) = {i: xi = 1}. Let A be any subset of I(x), including the null set Ø and let |A| be the
number of elements in A. Given these definitions, we show in Appendix A that

Pr½x� ¼ Pr½x1; x2; . . .; xM� ¼
X
A�IðxÞ

ð�1ÞjAjE
Y

i2A[CðxÞ
Pr½xi ¼ 1jy�

" #
ð8Þ

with

E
Y

i2A[CðxÞ
Pr½xi ¼ 1jy�

" #
¼

Gðaþ bÞGðaþ
X

i2A[CðxÞ
kiÞ

GðaÞGðaþ bþ
X

i2A[CðxÞ
kiÞ

ð9Þ

for the EBE model. These equations are useful for constructing joint item response functions in
programming routines for ML estimation.

Initial estimates for the model parameters may be obtained from bivariate cross-classifica-
tions. Given the resulting table from any such cross-classification of the ith and jth items, and
fixing one of the two relevant item parameters (say ki) = 1, the other three parameters kj, a and
b can be estimated from the three degrees of freedom in the 2×2 table. Repeating thisM-1
times for all cross classifications of the ith item with all other items produces a complete vector
of starting values. (We give the details in Appendix B.) We then use the Polak and Ribière [9]
version of the Fletcher and Reeves conjugate gradient method [10] to find maximum likelihood
estimates; we also use the Nelder and Mead [11] simplex methods to check that there are no
preferable solutions in the area of the start values. In no case did we find that our maximum
was local only.

Scores and Score Variances from the Posterior Distribution of y given x
The posterior density of y given x is defined as

h½yjx� ¼ Pr½xjy�φðyÞð1
0

Pr½xjy�φðyÞdy
¼ Pr½xjy�φðyÞ

Pr½x� : ð10Þ
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Accordingly, the expectation of the trait score associated with a manifest response vector is just

E½yjx� ¼
ð1
0

h½yjx�ydy ¼

ð1
0

Pr½xjy�yφðyÞdy

Pr½x� : ð11Þ

We shall regard E[y|x] as an estimate of the person score corresponding to the response vector x.
The variance of the posterior distribution serves as a measure of the precision of E[y|x] as a repre-
sentation of the person score and can be calculated from the relation V[y|x] = E[y2|x]-[E[y|x]]2.
As discussed in Appendix A, there is a form for the score of any x that is similar to Eqs 8 and 9.

Local Identifiability
Eq 8 is locally identifiable if the Jacobian matrix of the transformation from model parameters
to response probabilities has full column rank for a given vector of parameter values [12]. Our
numerical explorations suggest that this model, without the imposition of any additional con-
straints, is locally identifiable for plausible regions of the parameter space. Nevertheless, the
imposition of normalizations of the form ki = 1 for some i, providing an item-specific metric of
the latent variable, produces more stable full-information maximum likelihood estimates than
the unconstrained model. This is the result of the following interesting circumstance: the
power of a Beta-distributed random variable is a random variable that is nearly—but not quite
—distributed as Beta variable. The choice of i to fix is arbitrary in the following senses: a) the
fit of the model to data is virtually independent of this choice and b) ML estimates of item
parameters for all normalizations are related in a simple way. This last point deserves a brief
elaboration.

Suppose for some set of data the model is normalized with respect to the hth item and that
ML estimates are written as ki

h, and ah, bh with ki
h = 1 if i = h. Let ki

h and ah, bh be the ML esti-
mates for normalization with respect to item h so that ki

h = 1 if i = h. To a close approximation,
ki
j = ki

h / kj
h. We also note that the special case in which the b parameter is set a priori to 1 is

underidentified and requires an arbitrary constraint on one item parameter or, equivalently, on
the a distribution parameter. With this constraint, there are simple closed form solutions for
the ratios of item parameters to the single distributional parameter. For this case, Eq 6 simpli-
fies to

Pr½xi ¼ 1� ¼ E½yki � ¼ a
aþ ki

ð12Þ

and hence

ki
a
¼ ½1� Pr½xi ¼ 1��

Pr½xi ¼ 1� : ð13Þ

Thus the ratio of any item hardness to the single distribution parameter can be recreated sim-
ply as a ratio of failures to successes at the marginals.

Illustrative Analyses of Dichotomous Responses

Issues of Fit
We go on to apply this model to sets of dichotomous items, making comparisons to results
obtained with the Rasch model [13] for the simplest cases. The overall fit of the model can be
assessed using the likelihood ratio chi-square, which can also be used to test nested models we
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shall introduce below. But for comparison of non-nested models, we use the model selection
criterion of Raftery’s BIC [14], which is equal to L2—df�ln(N), where L2 is the likelihood ratio
chi-square, df represents the degrees of freedom, and N the number of persons in the sample.
(The saturated model has a BIC of 0, any model with a negative BIC is preferred to the satu-
rated model, and the model with the lowest BIC is preferred.) As recently emphasized by
Weakliem [15], BIC is not without its drawbacks, and more rigorous implementations of
Bayesian logic are now tractable [16]. However, the chief practical drawback of BIC seems to
be its overly conservative nature, as it prefers more parsimonious models, and given the temp-
tation to over-fit data sets, we think that BIC serves well as a general criterion for model com-
parison in which many models are fit to the same data set.

The Single Group Case
We begin by re-analyzing the classic Army data presented by Stouffer [17] and analyzed using
a Rasch model by Duncan [4] and Kelderman [18]. The data are to be found in Table 1. We
present the model that results when we constrain k4 = 1; the likelihood chi-square is 17.42,
with 10 degrees of freedom (p = .066). Raftery’s BIC for this model is –51.66. By contrast, the
Rasch model implemented by Duncan had a likelihood ratio chi-square of 10.93 at 8 degrees of
freedom, (p = .206) leading to a BIC of –44.33. In sum, the loglinear Rasch model has a closer
fit but uses up more degrees of freedom; while deviations from the extended binomial error are
marginally significant according classical criteria, the more parsimonious model is preferred
according to the Bayesian criterion.

Most importantly, the two models agree closely as to the positions of the different items. We
find a correlation> .99 between the natural log of the extended binomial error model’s item
parameters and those of the Rasch model. (Here we use results from a conditional maximum
likelihood fit. Duncan’s item parameters are quite different, which we assume to be a mistake,
since the order of parameter hardnesses differs not only from our Rasch analyses, but from the
marginal distribution of the items. Kelderman did not report item parameters.) Inspection of
the estimated scores (Table 2) from the extended binomial error (Eq 11) model shows that

Table 1. Stouffer’s Army Data.

Item A Item B Item C Item D Frequency

0 0 0 0 229

0 0 0 1 199

0 0 1 0 52

0 0 1 1 96

0 1 0 0 25

0 1 0 1 60

0 1 1 0 16

0 1 1 1 69

1 0 0 0 16

1 0 0 1 45

1 0 1 0 8

1 0 1 1 55

1 1 0 0 10

1 1 0 1 42

1 1 1 0 3

1 1 1 1 75

doi:10.1371/journal.pone.0141981.t001
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while there are clear score differences between patterns with the same Rasch raw score (the
number of “positive” responses), the ranking of respondents with respect to posterior scores is
roughly the same as the ranking with respect to raw scores. The differences between posterior
expected value scores over response patterns are small compared to the posterior standard
deviations for each pattern; this is to be expected given that the number of items is small.

In this case and most others we have investigated the log linear version of the Rasch and
extended binomial error models lead to similar conclusions, though latter tends to be more
parsimonious and the former to fit somewhat better, as it hasM-2 more free parameters. Nev-
ertheless, the two need not agree. Numerical investigations demonstrate the existence of cases
in which response distributions generated by the extended binomial error model parameters fit
the Rasch model well (as judged by goodness-of-fit measures) but produced estimates of log-
linear trait distribution parameters that violate the moment inequalities conditions of Cressie
and Holland [19].

In sum, the EBE behaves similarly to the Rasch model; given an implementation involving
greater distributional flexibility (the loglinear version) the Rasch model will naturally fit some-
what better at the cost of more parameters. There are, however, data that are fit by one model
and not by the other. Most importantly, the probability-like metric of the latent trait allows for
extensions that may be of great interest when we wish to examine the mechanisms of response
processes (as opposed to scoring long tests). We go on to examine several such extensions,
starting with models for independent groups under experimental conditions.

The Multiple Group Case
The multiple group extension of the extended binomial error model permits investigation of
issues related to item bias and, under certain conditions, study of group differences in the dis-
tribution of the latent trait. Let g = 1,. . .,G index groups which may be formed by partitioning a
single random sample, sampling from diverse populations, or by random assignment of differ-
ent item formats. To allow for differences in item and distribution parameters over these
groups, we may rewrite Eqs 4 and 5 as follows:

Pr½xig ¼ 1jy; kig � ¼ ykig ð14Þ

φgðyÞ ¼
Gðag þ bgÞ
GðagÞGðbgÞ

yðag�1Þð1� yÞðbg�1Þ ð15Þ

To illustrate, we take data from a national telephone survey of Italian adults 18–69 years old
that was conducted in April and May, 1994 [20]. The survey was part of a study of regional and
ethnic prejudice in Italy and included a series of items dealing with stereotypical beliefs about

Table 2. Results of Fit to Army Data.

Parameter Value Standard Error

k1 4.0879 .3124

k2 3.4005 .2534

k3 2.5674 .1875

k4 1.0000* -------

a 3.0223 .3350

b 1.7173 .1623

* = fixed; Log-likelihood chi-square = 17.422; df = 10; p = .066.

doi:10.1371/journal.pone.0141981.t002
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Africans and East Europeans living in Italy. Each respondent was assigned at random to a set
of questions targeted at one of three immigrant groups: a) North Africans, such as Moroccans,
Tunisians, or Algerians (probability = .25); b) Africans from regions of Central Africa, such as
Senegal and Somalia (probability = .25); and c) Eastern Europeans, such as Poles, Albanians, or
Slavs (probability = .5). For each target group, the respondent was presented with a statement
incorporating a positive or negative adjective pertaining to the group, e.g.: “do you agree that
most of them are complainers? (they try to make others feel sorry for them)”. The interviewer
then asked respondents “Do you agree strongly, agree somewhat, disagree somewhat, or dis-
agree strongly with this description?”

For our example, we selected responses to items incorporating four negative adjectives
which roughly translate into “selfish”, “slackers”, “violent”, and “complainers”, combined the
North and Central African target groups into a single target group (based on similarity of the
marginal distributions), and dichotomized the responses into “Agree” (coded 1) and “Dis-
agree” (coded 0). The response distribution for N = 2001 respondents in the 1994 survey is
shown in Table 3.

As an exercise, we can use these data to determine whether the responses are consistent
with the hypothesis of an underlying trait of prejudice or hostility to minorities, and if so, if
Africans and Eastern Europeans are perceived identically. If there are differences in the percep-
tion of Africans and Eastern Europeans, we can determine whether there is still a single trait of
“prejudice” with perhaps different thresholds for attributing negative characteristics to Afri-
cans and Eastern Europeans, or whether there seem to be different latent traits involved when
it comes to judging members of the two target groups.

Table 4 presents fit statistics for selected models for these data. The first model corresponds
to Eqs 14 and 15, only adding the constraint k3g = 1 for g = 1,2 (the reason the third item is cho-
sen will become clear below). This model fits quite well, generating a likelihood ratio chi-square
of 15.93 with 20 degrees of freedom (p = .721). Models 2 and 3 impose substantively important
constraints. Model 2 sets kig = ki for all i; it is a test of identical item meanings (semantic invari-
ance) that allows the choice of target group to evoke different traits (e.g., degree of hostility to
Africans or degree of hostility to Eastern Europeans). This sort of model might be used to
examine item bias across two non-experimental groups; if this model failed to fit one could
attempt to see if there were particular items that had different hardnesses across groups.

Given that our groups are the results of experimental treatments, however, we may instead
begin by assuming identity of the distribution of the latent trait. Model 3 sets ag = a and bg = b;
given the normalization k3g = 1 for g = 1,2 this is equivalent to saying that there is only one
trait of overall prejudice, but the items (except for the third) can have different hardnesses
depending on the target group.

Given model 1, model 2 must clearly be rejected as the difference in chi-square is significant
(10.31 at 3 df, p = .016). Given model 1, however, loss of fit due to the constraints associated
with model 3 is insignificant (chi-square of .62 at 2 df, p = .733). (The results here are not inde-
pendent of the choice of item that is fixed; setting k3g = 1 for g = 1, 2 resulted in the lowest chi-
square for model 3 and was hence also used for models 1 and 2.) Further, model 4 demon-
strates that the location of item 2 can also be equated for the two groups (the chi-square differ-
ence of 2.01 between models 3 and 4 is insignificant at 1 df with p = .156), although models 5
and 6 demonstrate that this is not true of items 1 and 4. Inspection of the item parameters dem-
onstrates that the item locations are more spread out on the underlying continuum when the
target group is Africans than when the target is Europeans. Such a result is consistent with the
interpretation that there is a single trait of out-group hostility among the respondents, but that
Italians have a more differentiated stereotype of Africans than they do of Eastern Europeans.
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Other Extensions

Generalization To Ordered Polychotomies
The generalization of the extended binomial error model to ordered polychotomies relies on a
standard threshold parameterization for ordered categories that was developed in an IRT con-
text by Edwards and Thurstone [21] and also for regression analysis of ordered categories (see,
for example, [22–24]). Let j = 1,. . ., J represent the a priori order of the response categories for
the ith item where j = 1 is “low” and j = J is “high”. We denote the hardness of each of these
response categories as ki,j, where ki,1<ki,2< . . ..< ki,J-1. By analogy with Eq 1 for dichotomous
responses, we write the probability of that a response fall into category j or higher as

Pr½xi � jjy� ¼ yki;j : ð16Þ

For a fixed y value, the probabilities thus defined diminish as j increases. Given this definition,
the probabilities of the intermediate response categories are calculated as differences between
the probabilities associated with adjacent dichotomizations. This then implies that the model

Table 3. 1994 Italian Survey: Stereotype Data (Sniderman, et al., 1995).

Item 1 Item 2 Item 3 Item 4 Immigrants are African Immigrants are East European

0 0 0 0 342 361

0 0 0 1 164 129

0 0 1 0 35 32

0 0 1 1 44 47

0 1 0 0 53 41

0 1 0 1 60 51

0 1 1 0 18 20

0 1 1 1 51 38

1 0 0 0 35 45

1 0 0 1 39 47

1 0 1 0 9 20

1 0 1 1 28 27

1 1 0 0 11 10

1 1 0 1 39 36

1 1 1 0 13 17

1 1 1 1 66 73

Totals 1007 994

doi:10.1371/journal.pone.0141981.t003

Table 4. Results of Fitting Models to Italian Data.

Model Parameters Constrained To Be Identical Across Groups Likelihood Ratio Chi-Sq df Probability

1 k3* 15.93 20 .721

2 k1, k2, k3*, k4 26.24 23 .290

3 k3*, a, b 16.55 22 .788

4 k2, k3*, a, b 18.56 23 .726

5 k2, k3*, k4, a, b 21.49 24 .610

6 k1, k2, k3*, k4, a, b 27.61 25 .326

* = fixed parameter

doi:10.1371/journal.pone.0141981.t004
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for ordered categories can be written as follows:

Pr½xi ¼ jjy� ¼ yki;j � yki;jþ1 ð17Þ
where we set the second term to zero for j = J.

The model given as Eq 17 has a number of welcome features. First, the probability function
for any category j is single-peaked; if we denote its maximum y�j then (j< k), (y�j < y�k); y�1
= 0 and y�J = 1. Finally, because this is a threshold model, it satisfies the two principles Jansen
and Roskam [25] called the joining assumption (the probability of an aggregated response cate-
gory is the sum of the probabilities of its constituent, usually adjacent, response categories) and
ξ-equivalence (the latent traits embedded in aggregated and disaggregated versions of the item
response functions are identical or are related by an admissable transformation). In contrast,
the most methodologically tractable generalizations to the polychotomous case in the Rasch
model (the rating scale and partial credit models and their relatives [26]) do not satisfy these
criteria which means that a model that fits the polychotomous data may not fit dichotomous or
otherwise collapsed data [27–30]. (The graded response model [31] does satisfy the collapsing
conditions but is somewhat more complex.)

An Illustration of the Model for Ordered Polychotomies
To illustrate the application of the polychotomous model to social data, we use a small example
drawn from the 2000 U.S. National Alcohol Survey, a cross-sectional national probability
household survey on alcohol use and problems [32]. Table 5 shows the response distribution
pertaining to a cross-classification of two 4-category items dealing with reasons for abstention
from alcohol in a sample of 547 women aged 18–29. They were asked “how important to you
are each of the following reasons for abstaining from alcohol beverages or being careful about
how much you drink.” The two reasons represented in Table 6 are “drinking is bad for your

Table 5. National Alcohol Survey Data.

Item 1 Item 2 Frequency

1 1 9

1 2 3

1 3 7

1 4 1

2 1 4

2 2 3

2 3 7

2 4 6

3 1 15

3 2 19

3 3 65

3 4 51

4 1 15

4 2 14

4 3 80

4 4 248

Totals 547

Response categories: 1 ‘Not a reason’, 2 ‘Not an Important Reason’, 3 ‘Somewhat Important Reason’, 4

‘Very Important.’ Item 1: “Drinking is bad for your health”; item 2: “Drinking can get you sick.”

doi:10.1371/journal.pone.0141981.t005
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health” and “drinking can get you sick” and the response categories for both reasons are “not a
reason at all,” “not an important reason,” “somewhat important” and “very important.” In this
illustration, the category response functions are written so that high values are associated with
responses indicating the reasons stated are important for decisions to abstain or to be careful
about drinking. Thus yk1,1 is the conditional probability, given y, that a respondent will regard
the “drinking is bad for your health” as “an important reason” for abstaining or being careful
about drinking.

Table 6 shows the parameter estimates and standard errors for fitting the extended binomial
error model for ordered polychotomies to these data. As judged by the likelihood ratio chi-
squared value (12.78, 8df), the fit of the model to these data is acceptable. The beta distribution
generated by a = 1.112 and b = 0.598 is skewed toward high values of y implying that the
majority of respondents consider both reasons for abstinence to be important. A comparison
of the category threshold parameters indicates that “bad for your health” is considered a more
compelling reason for abstinence than “getting sick” among the young adult women in the
national sample.

Single-Peaked Response Functions
This threshold formulation can also be adapted to model response processes in which subjects
are more likely to give a positive response to some item if that item’s location is near their own
on the latent trait. Following the method of Andrich and Luo [33–36], each item is turned into
a trichotomy, with two failure regions (the item is too far above the subject for her to answer in
a positive direction and the item is too far below her), with the intermediate leading to a posi-
tive response. However, there is an alternative approach that is sufficiently flexible to handle a
variety of empirical cases.

Here we approximate the response function in question for some set of such dichotomous
items as follows:

Pr½xi ¼ 1jy; ki� ¼ aiy
kið1� ykiÞ ð18Þ

which is a unimodal function achieving its maximum when yki = .5, which is equivalent to ξ =
χi in an unbounded metric if we again define χɩ = log(ki), and ξ = -log[-2log(y)]. The leading αi
may be considered akin to a discriminating ability parameter for cumulative models, or it may
be considered an overall normalization factor if constrained αi = α for all i; it may also be fixed
in advance, such that (for example) the predicted probability of a positive response is 1 when ξ

Table 6. Results of Fitting Models to Data in Table 5.

Parameter Estimate Standard Error

k1,1 1.000* –

k1,2 0.132 0.021

k1,3 0.062 0.014

k2,1 1.565 0.177

k2,2 0.301 0.042

k2,3 0.141 0.025

a 1.112 0.194

b 0.598 0.097

*fixed; Log-likelihood ratio chi-squared value = 12.78; df = 8; p>0.173

doi:10.1371/journal.pone.0141981.t006
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= χi. Again, there is a parsimonious representation of the unconditional probability of any vec-
tor x for any set of parameter values h = (a,b,α1, . . . αM, k1,. . .,kM) (see Appendix A).

Conclusion
In sociology the loglinear Rasch model has become the most widely known and used IRT
model in sociology [37–41]. There are two reasons for this popularity. First, Duncan [4] argued
that its indifference to the distribution of the latent trait made it a better scientific instrument
than the covariance-based methods that dominate social modeling. Second, the Rasch model’s
parameters turned out to be estimable with a very simple loglinear approach [18, 42]. This
approach treats the distribution of the latent variable as a set of nuisance parameters—the total
score preserves all useful information in grading respondents, and the item hardnesses can be
estimated without further investigation of the distribution of the latent trait.

But preserving a metric representation of the trait aids the investigation of the response pro-
cess. While other IRT models, including the Rasch model, can be adapted in this way, the model
presented here allows for a wide-range of substantively important extensions to be modeled
rather simply, due to the combination of a) a latent trait that can be interpreted as a probability,
b) a simple family of response functions that can model dichotomous, ordered polychotomous,
and unfolding-type responses, and c) a flexible two-parameter Beta distribution for the latent
trait. Such a family of models can be particularly useful in the analysis of experiments that
involve changes in wording, response formats, and item order.

Appendix A
A compact representation of the predicted response probabilities for any value of the parame-
ters can be derived from the exclusion-inclusion theorem (see, e.g., [43], 72f). Let the vector h
= (a,b,k1,. . .,kM) represent the model parameters and Pr[x|h] the unconditional probability of
a response for a given h. For any x, let I(x) = {i: xi = 0} and C(x) = {i: xi = 1). Let A be any subset
of I(x), including the null setØ and let |A| be the number of elements in A. Now since the
responses to each item are assumed to be independent conditional on the value of the latent
trait, we can write Pr[x|h] in product form, where the expectation is taken with respect to the
distribution of the latent trait:

Pr½xjh� ¼ Pr½x1; x2; . . .; xN � ¼ E½Pr½x1; x2; . . .; xN jy�� ¼ E
YN
i¼1

Pr½xijy�
" #

¼ E
Y
i2CðxÞ

Pr½xi ¼ 1jy�
Y
i2IðxÞ

ð1� Pr½xi ¼ 1jy�Þ
" #

¼ E
Y
i2CðxÞ

Pr½xi ¼ 1jy�
X
A�IðxÞ

ð�1ÞjAj
Y
i2A

Pr½xi ¼ 1jy�
" #

¼ E
X
A�IðxÞ

ð�1ÞjAj
Y

i2A[CðxÞ
Pr½xi ¼ 1jy�

" #
¼
X
A�IðxÞ

ð�1ÞjAjE
Y

i2A[CðxÞ
Pr½xi ¼ 1jy�

" #
ðA:1Þ

This representation is valid for all latent trait models for dichotomous responses that assume
conditional independence. For the extended binomial error model, we make the following
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substitution:

E
Y

i2A[CðxÞ
Pr½xi ¼ 1jy�

" #
¼

Gðaþ bÞGðaþ
X

i2A[CðxÞ
kiÞ

GðaÞGðaþ bþ
X

i2A[CðxÞ
kiÞ

ðA:2Þ

The response pattern score and score variance can be expressed similarly. Written in terms
of the model parameters, the score E[y|x] is given as:

E½yjx� ¼

X
A�IðxÞ

ð�1ÞjAj
Gðaþ bÞGðaþ 1þ

X
i2A[CðxÞ

kiÞ

GðaÞGðaþ bþ 1þ
X

i2A[CðxÞ
kiÞ

X
A�IðxÞ

ð�1ÞjAj
Gðaþ bÞGðaþ

X
i2A[CðxÞ

kiÞ

GðaÞGðaþ bþ
X

i2A[CðxÞ
kiÞ

: ðA:3Þ

Finally, there is a parsimonious representation of the unconditional probability of any vec-
tor x for any set of parameter values in the unfolding-type model of Eq 19. With I(x) and C(x)
defined as above, and A any subset of I(x), let B be any subset of the union of this A with C(x),
and let |B| be the number of elements in B. Then it can be shown that

P½xjh� ¼
X
A�IðxÞ

ð�1ÞjAj
Y

i2A[CðxÞ
ai

 ! X
B�fA[CðxÞg

ð�1ÞjBjE y

X
i2A[CðxÞ

kiþ
X
i2B

ki

 !2
6664

3
7775

8>>><
>>>:

9>>>=
>>>;

ðA:4Þ

For the expectation involving y we make the following substitution

E y

X
i2A[CðxÞ

kiþ
X
i2B

ki

 !2
6664

3
7775 ¼

Gðaþ bÞGðaþ
X

i2A[CðxÞ
ki þ

X
i2B

kiÞ

GðaÞGðaþ bþ
X

i2A[CðxÞ
ki þ

X
i2B

kiÞ
ðA:5Þ

and algorithms related to those discussed above can be used to obtain simultaneous estimates
of score and distribution parameters.

Appendix B
The cross-classification of responses pertaining to any two items i and j generates a 2 by 2 table
of population proportions. Consider three summary measures that are sufficient to reconstruct
the marginal and interior probabilities of this table: Pr[xi = 1, xj = 1], Pr[xi = 1], and Pr[xj = 1].
(Note that here, Pr[] indicates observed probabilities.) Under the model represented by Eqs 1
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and 5, these have following structure:

Pr xi ¼ 1; xj ¼ 1
h i

¼ E ykiþkj
� � ¼ Gðaþ bÞGðaþ ki þ kjÞ

GðaÞGðaþ bþ ki þ kjÞ
ðB:1Þ

Pr xi ¼ 1½ � ¼ E½yki � ¼ Gðaþ bÞGðaþ kiÞ
GðaÞGðaþ bþ kiÞ

ðB:2Þ

Pr½xj ¼ 1� ¼ E½ykj � ¼ Gðaþ bÞGðaþ kjÞ
GðaÞGðaþ bþ kjÞ

ðB:3Þ

These equations cannot be solved uniquely to obtain a,b, ki, and kj. However, if we set ki = 1
(in effect, normalizing the model by setting y = Pr[xi = 1|y]) and use Γ(s+1) = sΓ(s), we get

Pr xi ¼ 1; xj ¼ 1
h i

¼ Gðaþ bÞðaþ kjÞGðaþ kjÞ
GðaÞðaþ bþ kjÞGðaþ bþ kjÞ

ðB:4Þ

Pr½xi ¼ 1� ¼ Gðaþ bÞaGðaÞ
GðaÞðaþ bÞGðaþ bÞ ¼

a
ðaþ bÞ ðB:5Þ

It follows that

Pr xi ¼ 1; xj ¼ 1
h i
Pr xj ¼ 1
h i ¼ aþ kj

aþ bþ kj
ðB:6Þ

and with manipulation we get

kj
aþ b

¼ Sj ðB:7Þ

where

Sj ¼
Pr xi ¼ 1; xj ¼ 1
h i

� Pr xi ¼ 1½ �Pr½ xj ¼ 1�
Pr½ xj ¼ 1� � Pr xi ¼ 1; xj ¼ 1

h i ðB:8Þ

for all i and j. Thus, for each item other than the ith, its cross-classification with xi gives us its
ratio to a + b.

To construct an initial estimate of a + b, which we will denote Θ for brevity, we take advan-
tage of the fact that from Eq B.3,

Pr xj ¼ 1
h i

¼
GðYÞG Y Pr½ xi ¼ 1� þ Sj

� �� �
GðYðPr½ xi ¼ 1�ÞÞG YðSj þ 1Þ

� � ðB:9Þ

and hence

Pr½ xj ¼ 1� � GðYÞGðYðPr½ xi ¼ 1� þ SjÞÞ
GðYðPr½ xi ¼ 1�ÞÞGðYðSj þ 1ÞÞ ¼ 0 ðB:10Þ

For admissible values of Pr[xi = 1], Pr[xj = 1], and Sj, Eq B.10 has a single positive root Θ.
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When the model describes the data perfectly, theM-1 equations corresponding to each j (j 6¼ i)
should yield the same root. For actual data, we average our derived values ofΘ. We then substi-
tute this value in Eq B.7 to get initial values of kj, j 6¼ i. Our starting estimate of the parameter a
can be recovered from the product of (a + b) and Pr[xi = 1] (given that, by construction,
ki = 1), and that of b from b = Θ—a.
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