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A B S T R A C T   

This study looked at the application of multiple bulk stable isotope ratio analysis to accurately 
authenticate organic rice and counteract organic fraud within the expanding global organic 
market. Variations of δ13C, δ15N, δ18O, and δ34S in organic, pesticide-free, and conventional rice 
were assessed across different milling states (brown, milled, and bran). Individual stable isotope 
ratio alone such as δ15N demonstrated limited capacity to correctly differentiate organic, 
pesticide-free, and conventional rice. A support vector machine model—incorporating δ13C, δ15N, 
δ18O, and δ34S in milled rice—yielded overall predictability (95%) in distinguishing organic, 
pesticide-free, and conventional rice, where δ18O emerged as the pivotal variable based on the 
feature weights in the SVM model. These findings suggest the potential of multi-isotope and 
advanced statistical approaches in combating organic fraud and ensuring authenticity in the food 
supply chain.   

1. Introduction 

The European Union (EU) delineates organic production as an environmentally sustainable agricultural system that prioritizes 
animal welfare and encompasses all facets of the food supply chain. Organic farming practices within the EU encompass crop rotation 
and impose prohibitions on genetically modified organisms, chemical pesticides, and synthetic fertilizers [1]. Consequently, organic 
products are often perceived as possessing superior quality, enhanced health benefits, greater safety, and an eco-friendlier profile. 
Accordingly, consumers are often willing to pay a premium price for organic products [2,3]. 

In 2020, the global organic market was valued at over 120 billion euros with the United States contributing 49.5 billion euros and 
constituting 41% of the global market. Successive rankings were held by Germany, France, and China contributing 15.0 (12.5%), 12.7 
(10.6%), and 10.2 billion euros (8.5%), respectively [4]. As the global market continues to expand, organic fraud continues to escalate 
with losses amounting to nearly USD 3.7 trillion in 2014 [5]. Recently, organic grain fraud has been reported in the United States 
where non-organic or conventionally produced products were sold as organic, resulting in financial losses of $71 and $46 million in 
South Dakota (2020) and Minnesota (2022), respectively [6]. Consequently, the need for accurate organic authentication to counteract 
fraud or the mislabeling of non-organic products as organic has become paramount across all phases of the food supply chain, 
encompassing production, trade, and sale [2,7,8]. 
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Bulk stable isotope ratio (SIR) analysis is a promising tool for discerning organic authenticity in various produce categories. This 
technique has been effectively applied to differentiate vegetables [3,7,9], fruits [10,11], and cereals [12–15], either as a supple-
mentary or alternative approach to pesticide residue screening. The SIR methodology primarily capitalizes on the discernible isotopic 
value disparities between applied fertilizers and the isotopic fractionation inherent in different production modes. Furthermore, the 
efficacy of bulk SIR-multielement analysis and compound-specific isotope analysis has been enhanced to refine the power of organic 
authenticity discrimination, particularly in cereals and vegetables cultivated using legume-based green manure [16–18]. 

To distinguish organic rice from conventional counterparts, the δ15Nbulk threshold of >3 ‰ was proposed in Japan [14]. 
Furthermore, a four-year field trial study conducted in China [2] demonstrated that organic rice could be accurately differentiated 

Table 1 
Detailed information of organic (OR), pesticide-free (PFR), and conventional rice (CR) samples examined in this study.  

Typea Producer Cultivar Sample 
collection 

Rice producing region 
(Latitude, ◦N/ 
Longitude, ◦E) 

Ecofriendly 
certification 
number 

Ecofriendly 
certification body 

Pesticide residue 
(mg⋅kg− 1, dry weight 
base)b 

Rep, 
n 

kg/ 
rep     

Organic 
Rice (OR) 

OR1 Mixed 3 4 kg Jeonnam Muan 
(35◦21′/126◦23′) 

14600053 Seongnong Corp. nd 

OR2 Mixed 3 1 kg Jeonbuk Namwon 
(35◦26′/127◦25′) 

14100236 Jirisan certification 
Corp. 

nd 

OR3 Mixed 3 2 kg Republic of Korea, 
(non-specified) 

11600006 Korea organic 
certification Corp. 

nd 

OR4 Mixed 3 2 kg Gyeongnam 
Sancheong (35◦46′/ 
127◦54′) 

17600323 Yenong Corp. nd 

OR5 Mixed 3 2 kg Gyeongnam Yeongam 
(35◦12′/126◦36′) 

15101810 Enviroment-friendly 
certification center 
Corp. 

nd 

OR6 Mixed 3 2 kg Gyeongbuk Uljin 
(37◦12′/129◦24′) 

12600398 Global Agricultral 
Foods Certification 

nd 

OR7 Mixed 3 4 kg Jeonnam Shinan 
(35◦01′/125◦43′) 

10600612 Korea organic 
certification Corp. 

nd 

Pesticide-free 
Rice (PFR) 

PFR1 Mixed 3 2 kg Gyeonggi Yeoncheon 
(38◦06′/126◦59′) 

10303895 Korea organic 
certification Corp. 

nd 

PFR2 Mixed 3 4 kg Jeonnam Shinan 
(35◦01′/125◦43′) 

12600359 Global Agricultral 
Foods Certification 
Corp. 

nd 

PFR3 Mixed 3 2 kg Jeonnam Shinan 
(35◦01′/125◦43′) 

16600339 Eco-Leaders 
Certification Co., Ltd. 

nd 

PFR4 Mixed 3 2 kg Chungbuk Goesan 
(37◦10′/127◦50′) 

12600007 Konkuk ECO 
Certification Agency 
Corp. 

nd 

PFR5 Mixed 3 2 kg Gyeonggi Yeoncheon 
(38◦06′/126◦59′) 

10306099 Korea organic 
certification Corp. 

nd 

PFR6 Mixed 3 4 kg Republic of Korea, 
(non-specified) 

10600640 Green Eco-Friendly 
Corp. 

nd 

PFR7 Mixed 3 2 kg Jeonbuk Sunchang 
(35◦25′/127◦05′) 

14302083 Jirisan certification 
Corp. 

nd 

Conventional 
rice (CR) 

CR1 Mixed 3 2 kg Republic of Korea, 
(non-specified) 

– – Hexaconazole (0.008) 
Thiacloprid (0.009) 

CR2 Mixed 3 2 kg Republic of Korea, 
(non-specified) 

– – Ferimzone (0.022) 
Hexaconazole (0.017) 
Tricyclazole (0.048) 

CR3 Mixed 3 2 kg Republic of Korea, 
(non-specified) 

– – Tricyclazole (0.06) 

CR4 Mixed 3 4 kg Republic of Korea, 
(non-specified) 

– – nd 

CR5 Mixed 3 2 kg Republic of Korea, 
(non-specified) 

– – nd 

CR6 Mixed 3 2 kg Republic of Korea, 
(non-specified) 

– – Ferimzone (0.012) 
Propiconazole (0.008) 

CR7 Mixed 3 2 kg Republic of Korea, 
(non-specified) 

– – nd  

a OR is defined the rice cultivated with none of organosynthetic pesticides and chemical fertilizers, while PFR is the rice produced with maximum a 
third of the recommended level of chemical fertilizers, but none of organosynthetic pesticides in South Korea (Chung et al., 2017). 

b In this study, OR and PFR samples as the state of a brown rice were certified by a pesticide residues test at an inspection body that specializes in 
certification and comprises manpower and facilities, appointed by the National Agricultural Products Quality Management Service in Korea.The 
Korea maximum residue limit (MRL, mg⋅kg− 1) of the pesticides detected in rice samples are ferimzone (2.0 mg kg− 1), hexaconazole (0.3 mg kg− 1), 
thiacloprid (0.1 mg kg− 1), tricyclazole (0.7 mg kg− 1), and propiconazole (0.7 mg kg− 1), respectively (MFDS, 2023). 
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from both green and conventional rice with 100% accuracy using bulk SIR (δ13C, δ15N) and multielement analyses. However, the 
discrimination accuracy between green and conventional rice was observed to be 85.33%, notably with variations in δ13C and δ15N in 
rice predominantly influenced by interannual fluctuations rather than specific fertilizer practices aligned with production modes. 
Additionally, a previous model study [12] centered on bulk %C, %N, δ13C, and δ15N in milled rice available in retail markets in Korea, 
proposed a δ15Nbulk threshold exceeding 5‰ for distinguishing organic from conventional rice. This model achieved an overall ac-
curacy of approximately 83%, albeit with an approximate 85% misclassification rate of pesticide-free rice as conventional or organic 
rice. 

Rice, a staple supporting over half of the global population, plays a pivotal role by providing essential energy and nutrients. 
Notably, brown rice—in comparison to milled rice—has a higher nutritional content, encompassing proteins, lipids, and minerals. This 
variance in nutrient composition can consequently yield differences in bulk SIRs within rice grains due to the milling process. Against 
this backdrop, our current study investigated bulk SIR (δ13C, δ15N, δ18O, δ34S) variations across organic (OR), pesticide-free (PFR), and 
conventional rice (CR) grains contingent upon the milling state (brown and milled rice and rice bran). Our objective extended to 
enhancing the efficacy of the organic authenticity model for OR, PFR, and CR concerning milling processes, predicated on the analysis 
of multiple bulk SIRs. Furthermore, we evaluated the potential and limitations of pesticide residue screening in OR, PFR, and CR 
samples as a tool for assessing organic authenticity, in conjunction with a bulk SIR-based discrimination model. 

2. Materials and methods 

2.1. Rice samples 

The classification of ecofriendly rice in Korea is based on whether chemical/synthetic fertilizers and pesticides are used during the 
rice cultivation period. Ecofriendly authentication, such as that used for OR or PFR, was certified based on documented history as well 
as pesticide residue analysis by an official inspection body approved by the National Agricultural Products Quality Management 
Service [19]. Grown in 2021, the rice samples (OR, PFR, and CR), as a form of brown rice, were obtained from seven certified eco-
friendly or conventional rice producers or retail markets in South Korea (Table 1), with each sample composed of triplicates (≥1 
kg/replicate). In total, 63 brown rice samples (n = 21 per OR, PFR, and CR) were lyophilized at ≤70 ◦C for 2 days and were polished to 
prepare milled rice (degree of milling >10) and bran samples. Thereafter, each brown rice, milled rice, and bran samples were pul-
verized to ≤400 μm for bulk δ13C, δ15N, δ18O, and δ34S analyses. 

2.2. Pesticide residue screening test 

Based on the Ministry of Food and Drug safety Notification No. 2021–27 (2021.3.25) in Korea, a total of 548 types of pesticide 
residues were examined in each OR, PFR, and CR pooled sample by LC-MS/MS (273 residues) and GC-MS/MS (275 residues). Detailed 
analytical conditions including multiple reaction monitoring information of pesticides examined here are available in the Supple-
mentary Tables S1–S4. The instrument detection limits for LC-MS/MS and GC-MS/MS were 0.5 and 5 μg L− 1, respectively. The re-
covery of five pesticide residue types detected in this study are shown in the range of 96.0–109.8% at a concentration of 50 μg kg− 1 

(Table S5), and the representative multiple reaction monitoring ion chromatograms of pesticide residues detected in CR samples are 
available in Supplementary Fig. S1. 

2.3. δ13C and δ15N analysis 

δ13C and δ15N measurements in the samples were performed using an Elementar Vario EL Cube elemental analyzer interfaced with 
an Elementar VisION isotope ratio mass spectrometer (IRMS, Elementar Analysensysteme GmbH, Langenselbold, Germany). Initially, 
4.5 mg of rice powder was encapsulated in a tin capsule (3.5 × 17 mm; IVA Analysentechinik e. K., Dusseldorf, Germany). The 
encapsulated samples were then combusted at 950 ◦C in a reactor packed with chromium oxide and silvered copper oxide, and oxygen 
was introduced to ensure complete combustion. After combustion, residual oxygen and nitrogen oxides were removed by passing the 
samples over reduced copper at 650 ◦C, and water was trapped by magnesium perchlorate and phosphorous pentoxide. An aliquot of 
CO2 and N2 separated from the samples was directed to the IRMS for measurement [20,21]. 

Quality control (QC: amaranth flour and keratin) and assurance materials (QA: nylon, chitin, alfalfa flour, glutamic acid, enriched 
alanine, and caffeine) were calibrated against international reference materials (i.e., IAEA-600, USGS40, USGS41, USGS42, USGS43, 
USGS61, USGS64, USGS65), which were directly traceable to the primary isotopic reference materials (i.e., Vienna Pee Dee Belemnite 
for δ13C and Air for δ15N). The provisional isotopic values of the sample peaks were initially calculated against a pure CO2 or N2 
reference gas. Subsequently, in-house reference materials (nylon powder, chitin, and alfalfa flour) were used to adjust isotopic values 
for changes in linearity and instrumental drift. Finally, the measurements were scale-normalized to the primary reference materials 
using in-house reference materials (glutamic acid, enriched alanine, and caffeine). The final sample values were calculated as: 

δ,‰= [(Runknown − Rstandard) /Rstandard], (1)  

where Runknown and Rstandard are the stable isotope ratio (i.e., 13C/12C, 15N/14N) of the sample and the primary isotopic reference 
materials, respectively [22]. 

Based on several replicate measurements (n ≥ 6) of the QC/QA materials, the precision (± mean standard deviation (SD)) was 
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determined to be ±0.09 ‰ for δ13C and ±0.08 ‰ for δ15N, and the mean absolute accuracy was within ±0.06 ‰ for δ13C and ±0.07 ‰ 
for δ15N. The limit of quantification (LOQ), based on peak area, was 100 μg C for δ13C and 20 μg N for δ15N. 

2.4. δ18O analysis 

δ18O measurements in the samples were carried out using an Elementar vario PYRO cube elemental analyzer interfaced with an 
Elementar VisION IRMS. Rice powder (0.2 mg) was encapsulated in a silver capsule (3.5 × 5.0 mm; Elemental Microanalysis, Oke-
hampton, UK) and thermally decomposed to CO in a glassy carbon reactor filled with glassy carbon, graphite felt, and lamp black at 
1450 ◦C. CO was then isolated from interfering N2 by an adsorption trap, heated to release CO for analysis. An aliquot of the analyte gas 
was then directed to the IRMS for measurement [20,21]. 

Provisional values for the samples and references were established based on reference gas peaks introduced to the IRMS with each 
sample. Thereafter, drift correction, scale normalization, and linearity correction of these values were performed using QC (e.g., nylon, 
alanine, IAEA-600, and USGS-35) and QA (e.g., cellulose and chitin) reference materials. All in-house reference materials were 
calibrated against international reference materials (i.e., IAEA-V9, IAEA-600, USGS-42, USGS-43, and USGS-35). The final delta (δ) 
value, δ18O, was expressed relative to VSMOW. Based on several replicate measurements (n ≥ 8) of the QC/QA materials, the precision 
and accuracy for δ18O were determined to be ±0.36 ‰ (± mean SD) and within ±0.13 ‰ (mean absolute accuracy), respectively. The 
LOQ was 50 μg O for δ18O. 

2.5. δ34S analysis 

δ34S measurements in the samples were conducted using an Elementar vario ISOTOPE cube elemental analyzer (Elementar Ana-
lysensysteme GmbH, Langenselbold, Germany) interfaced with an Elementar PrecisION IRMS (Cheadle Hulme, Cheadle, England). The 
sample (20 mg) was placed in a tin capsule (9 × 10 mm; Costech Analytical Technologies Inc., Valencia, CA, USA) for δ34S analysis and 
then at 1150 ◦C in a reactor packed with tungsten oxide. Subsequently, the sample gases were reduced with elemental copper at 880 ◦C 
and passed through a buffering reactor filled with quartz chips held at 900 ◦C. SO2 and CO2 were then separated by adsorption col-
umns, the SO2 adsorption trap was heated, and the sample SO2 passed directly to the IRMS for measurement [20,21]. 

Sample and reference provisional values were established based on reference gas peaks introduced to the IRMS with each sample. 
These values underwent further, including drift/linearity corrections and scale normalization, using QC (e.g., hair and Mahi-Mahi 
muscle) and QA (e.g., taurine, whale baleen and cysteine) reference materials. 

All in-house reference materials were calibrated against internationally recognized reference materials (i.e., IAEA-S-1, IAEA-S-2, 
IAEA-S-3, NBS-127, IAEA-SO-5, and IAEA-SO-6). The final delta (δ) value, δ34S, was expressed relative to VCDT, an international 
primary reference material. The precision and accuracy for the δ34S measurement were ±0.54 ‰ (± mean SD) and within ±0.44 ‰ 
(mean absolute accuracy), respectively, and the LOQ was 10 μg O for δ34S. 

2.6. Statistical analysis 

Each OR, PFR, and CR group was composed of 21 replicates in this study, then a total of 63 rice samples were used to all statistical 
analysis and create discriminating models. All measured data were initially subjected to statistical analysis using the general linear 
model in the statistical analysis program SAS (version 9.2; SAS Institute Inc., Cary, NC, USA). The least significant difference test at a 
probability level of 0.05 was conducted and the results presented as mean ± SD. 

Additionally, the same data were utilized for linear discriminant analysis (LDA) to construct a classification and predictive model 
for OR and PFR authentication against CR using IBM SPSS statistics version 28. For grouping variables of equal size (OR, PFR, and CR) 
or unequal size (ecofriendly and CR), all independent factors (δ13C, δ15N, δ18O, and δ34S) were subjected to LDA using Wilks’ lambda. 
Further, cases with no user- or system-missing values for any predictor variable were used. A binary-classifier model (ecofriendly vs 
CR) was assessed by calculating the cutting score, sensitivity, and specificity through a receiver operating characteristic (ROC) curve 
analysis at a probability level of 0.05 using SPSS. Furthermore, cross-validation using the leave-one-out method was performed to 
evaluate the accuracy of the discrimination model developed here. 

Finally, a support vector machine (SVM) with a radial kernel trick was employed to enhance the performance of the discrimination 
model for OR and PFR against CR using the high-dimensional isotopic data obtained here [20,23]. The parameters of radial basis kernel 
were set as gamma (0.25, 1/number of independent variables), degree (3), and coeffecient (0). The additional parameters were set as 
epsilon (0.1) and nu (0.5), and also cases with missing values were excluded to create models in this study. 

3. Results and discussion 

3.1. Pesticide residue screening in OR, PFR, and CR 

Table 1 shows pesticide residue screening results in OR, PFR, and CR samples as a form of brown rice. None of the pesticide residues 
were detected in all OR and PFR measured here. Four CR samples detected five pesticide residue types such as ferimzone (≤0.022 mg 
kg− 1), hexaconazole (≤0.017 mg kg− 1), propiconazole (0.008 mg kg− 1), thiacloprid (0.009 mg kg− 1), and tricyclazole (≤0.06 mg 
kg− 1) (Table 1, Fig. S1); however, all were present at below the Korean maximum residue limit allowed for rice [24]. Notably, the 
propiconazole detected is usually applied as an insecticide over rice cultivation periods, and ferimzone, hexaconazole, thiacloprid, and 
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tricyclazole are used as fungicides [24]. As a result, pesticide residue screening, a common and popular organic certification tool, was 
effectively able to discriminate ecofriendly rice (OR and PFR) from CR; however, it is not suitable for discrimination between OR and 
PFR as a standalone. Therefore, here, multiple bulk SIR analyses combined with chemometric models were conducted in OR, PFR, and 
CR to examine the potential for detecting organic fraud or avoiding mislabeling of pesticide-free as organic and/or conventional 
counterparts. 

3.2. δ13C variation in OR, PFR, and CR depending on rice milling state 

The mean δ13C value ranged from − 30.09 to − 27.42 ‰ across different rice types and milling states (Table 2). Rice bran exhibited 
lower δ13C values in comparison to both brown and milled rice samples (Fig. S2a). Notably, the δ13C values were significantly different 
only among milled rice samples of OR, PFR, and CR, rendering them inadequate for discriminating the OR and PFR authenticity in 
brown rice and rice bran samples (Table 2). The primary factor leading to bulk δ13C differences in plants is the type of photosynthesis, 
such as C3, C4, or CAM plants. Furthermore, abiotic (e.g., temperature, drought, fertilization regime, light intensity, soil moisture) and 
genetic factors that influence photosynthesis also affect bulk δ13C characteristics [25,26]. 

Bulk δ13C values alone are not significant when differentiating production modes (organic vs conventional) in rice [15], barley 
[27], tomato [28], and wheat/vegetables [7]. Furthermore, despite the statistical difference in δ13C between production modes, its 
narrow range often poses challenges in determining a correct organic authenticity [29]. In general, in comparison to conventional rice 
paddy fields, organic rice paddy fields can be much lower in δ13C due to isotopic fractionation resulting from microbial decomposition 
of applied organic fertilizers such as manure and compost [2,15]. However, in a recent four-year field trial study [2], δ13C values of 
organic, green, and conventional rice were largely affected by genotype and interannual climate variations (temperature, precipita-
tion, and light intensity), rather than production modes linked to fertilization regimes. Another study [12] also concluded that there 
were no statistically significant differences in the mean δ13C (~− 27.0 ‰) of milled rice grains among production modes (OR, PFR, and 
CR) over a five-year study at the retail market level. Notably, the five-year-annual δ13C variation (~0.8 ‰) across all rice samples was 
considerably larger than that attributed to production modes (≤0.1 ‰). 

Here, the δ13C range (− 28.04 to − 27.42‰) observed in brown and milled rice samples was comparable to that from the four-year 
field trial (− 29.0 to − 26.0 ‰) [2] and the five-year retail market level (− 27.5 to − 26.7‰) studies [12]. Particularly, the lower δ13C 
values in rice bran could be linked to variations in constituents based on plant parts—higher lignin or lipid content may result in lower 
δ13C values. Interestingly, our current study indicated that the mean δ13C in milled rice could serve to differentiate production modes, 
with a maximum difference of 0.58 ‰ (ΔPFR-CR). Nevertheless, this difference remained smaller than the previously reported inter-
annual δ13C variations of ~1.7 ‰ (from paddy fields) and ~0.8 ‰ (from the retail market), suggesting that it is insufficient as a sole 
indicator of organic authenticity. 

3.3. δ15N variation in OR, PFR, and CR depending on rice milling state 

Taking into consideration the milling state (brown and milled rice and rice bran), it was observed that OR exhibited higher δ15N 
values in comparison to CR, while no significant difference was found between OR and PFR (p < 0.05, Table 2). Furthermore, as shown 
in Fig. S2b, δ15N did not show a significant correlation with the milling state. However, a previous study noted that unpolished rice 
grain (ranging from 5.3 to 7.1 ‰) exhibited slightly higher δ15N values than polished rice grain (ranging from 4.6 to 6.1 ‰), contingent 
upon the use of synthetic or organic fertilizers [30]. Notably, due to the distinct δ15N ranges of fertilizers used in conventional and 
organic farming, δ15N is often regarded as the most promising isotope fingerprint for identifying the production mode [31]. Chem-
ical/synthetic fertilizers used in conventional farming exhibit δ15N ranges of − 3.9 to 5.7 ‰, whereas organic fertilizers show a wider 
δ15N range of 2.5–45.2 ‰. However, the use of legume-based green manure in organic farming poses challenges in differentiating 
organic authenticity from conventional counterparts, as its δ15N value is as low as 0 ‰, akin to the δ15N range of chemical fertilizers. 

In the four-year field trial study [2], organic rice exhibited a δ15N range of 4.5–6.2 ‰, conventional rice showed a δ15N range of 

Table 2 
Variation in bulk δ13C, δ15N, δ18O, and δ34S of rice samples as a function of the milling state (brown, polished, bran) and rice type (CR, OR, PFR).   

Type, n = 21 per each δ13C, ‰ δ15N, ‰ δ18O, ‰ δ34S, ‰ 

Brown rice CR − 28.04 ± 0.45ns 4.38 ± 0.49b 22.10 ± 0.66b − 8.84 ± 3.47a 

OR − 27.98 ± 0.21 5.17 ± 0.94a 22.94 ± 0.72a − 12.92 ± 1.90c 

PFR − 27.92 ± 0.35 4.90 ± 0.85a 22.45 ± 0.63b − 11.09 ± 1.98b 

LSD0.05, for brown rice 0.22 0.48 0.42 1.58 
Milled rice CR − 28.00 ± 0.45c 4.49 ± 0.55b 22.15 ± 0.75b − 16.78 ± 2.22b 

OR − 27.69 ± 0.17b 5.29 ± 0.96a 22.84 ± 0.64a − 16.37 ± 2.85b 

PFR − 27.42 ± 0.32a 4.79 ± 0.89ab 22.40 ± 0.60b − 13.08 ± 2.53a 

LSD0.05, for polished rice 0.21 0.50 0.41 1.57 
Rice bran CR − 30.03 ± 0.60ns 4.27 ± 0.46b 20.66 ± 0.88b − 8.73 ± 1.88b 

OR − 30.09 ± 0.24 5.12 ± 0.82a 21.12 ± 0.51a − 5.95 ± 2.90a 

PFR − 29.81 ± 0.45 4.84 ± 0.83a 21.16 ± 0.51a − 6.02 ± 1.13a 

LSD0.05, for rice bran 0.28 0.45 0.42 1.36 

a–c Values with different lower-case superscripts differed statistically (p < 0.05) as a function of rice types. The results are expressed in the form of a 
mean (± standard deviation, n = 21). ns: non-significant. 
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Fig. 1. Linear discriminant analysis (LDA)-based discriminative model of OR, PFR, and CR samples using bulk δ13C, δ15N, δ18O, and δ34S values as a 
function of the milling state (refer to Tables S6–S8 together). 
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3.0–4.8 ‰, and green rice showed an intermediate δ15N range between OR and CR (3.9–5.3 ‰). The impact on δ15N values in rice grain 
followed the order of interannual climate > fertilization practice > genotype over this four-year study in China. Consequently, the use 
of δ15N as a sole isotope marker is often problematic when differentiating organic authenticity. Furthermore, in the five-year retail 
market study in Korea [12], the mean δ15N in OR ranged from 5.4 to 6.6 ‰, relatively higher than that of 3.8–4.8 ‰ in CR. Notably, the 
overlapping δ15N range in PFR (4.8–6.5 ‰) added to the challenges of differentiating OR from PFR. A recent study [13] established a 
case for a threshold δ15N value widely employed by major European importers. In vegetables, δ15N > 5 ‰ was confirmed as a reliable 
indicator of proper organic practices with a high degree of confidence, whereas δ15N < 2 ‰ should not be considered indicative of 
organic practices. The middle zone (2–5 ‰) was suggested as requiring confirmation of refined organic authenticity through tracking 
mechanisms by official regulation bodies. 

In our current study, ~65% of OR samples (41/63), ~37% of PFR samples (23/63), and ~11% of CR samples (7/63) exhibited δ15N 
values > 5 ‰, irrespective of the milling state (data not shown). It indicated that applying the δ15N criterion previously suggested was 
potentially misclassified OR of 35% as either PFR or CR samples. Furthermore, CR of ~11% as well as PFR of ~37% were possibly 
misclassified as OR. Therefore, unlike the aforementioned studies, the δ15N criterion alone (>5 ‰) exhibited rather insufficient for 
determining rice organic authenticity. To overcome the limitations of using bulk δ15N for organic authenticity, SIRA—combined with 
multi-element analysis such as K, Ca, and Mg—has been shown to improve accuracy by 100% for distinguishing organic from green or 
conventional rice [2]. Additionally, compound-specific isotope analysis [16,17] has enabled the classification of organic wheat 
(including animal and green manure vs conventional) as well as more refined rice classifications (OR, PFR, and CR). 

3.4. δ18O and δ34S variations in OR, PFR, and CR depending on rice milling state 

The mean δ18O ranged from 20.66 to 22.94 ‰ across all samples measured. Notably, OR consistently displayed higher values 
compared to CR and PFR (p < 0.05, Table 2). Akin to δ13C, δ18O values exhibited significantly lower values in rice bran compared to 
brown and milled rice (Fig. S2c). The mean δ34S ranged from − 16.78 to − 5.95 ‰ across different rice types and milling states, with rice 
bran typically featuring higher values than brown or milled rice (Table 2, Fig. S2d). However, despite statistical significance (p < 0.05), 
δ34S values in OR, PFR, and CR did not show a discernible trend (Table 2). Notably, owing to the substantial influence of geographical 
and climatic factors on bulk δ18O and δ34S in plants, these markers are typically more suited for distinguishing the geographical origin 
of foods rather than discerning production modes. Bulk δ18O is not efficacious in discerning production modes in rice [15], barley [27], 
and field-grown vegetables [3,7].; however, organic or conventional production modes could potentially impact δ18O values thorough 

Fig. 2. Binary classifier models for rice ecofriendly authentication based on LDA. The cutting scores were derived from receiver operating char-
acteristic (ROC) curves using the discriminant scores resulting from the LDA. Binary models based on the (a) brown rice state, (b) milled rice state, 
and (c) rice bran state (refer to Tables S9–S11 together). (For interpretation of the references to colour in this figure legend, the reader is referred to 
the Web version of this article.) 
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intricate metabolic processes such as respiration, soil-plant water uptake, and transpiration driven by varying cultivation practices (e. 
g., plant density and growth rate) [7,13]. In a previous study, bulk δ18O in lipids significantly distinguished between wheat production 
modes in Germany, revealing higher δ18O values in organic wheat [13]. Our findings here similarly indicated significantly higher bulk 
δ18O in OR compared to CR, regardless of rice milling states (brown, milled, or bran). Nonetheless, this marker did not prove useful in 
distinguishing PFR from OR or CR. 

Moreover, different sulfate fertilizers applied in organic or conventional farming might also influence bulk δ34S values in soil and 
plants [31,32]. Generally, organic S and elemental S (S◦) are used in organic farming, while synthetic/manufactured sulfate fertilizers 
and S◦ are used in conventional farming practices, thereby potentially enabling distinguishing between production modes. However, 
regrettably, bulk δ34S did not effectively discern different production modes in wheat [13] and vegetables [3,7]. Our results similarly 
demonstrated no distinct differences and patterns in bulk δ34S for discerning amongst rice production modes. Consequently, bulk δ18O 
and δ34S exhibited limited discernment ability as isotope markers for distinguishing rice production modes (OR, PFR, CR), regardless of 
the rice milling state. 

3.5. Evaluation of OR, PFR, and CR discrimination ability using LDA and SVM 

Fig. 1 presents the LDA models of OR, PFR, and CR using bulk δ13C, δ15N, δ18O, and δ34S values, contingent upon the milling state. 
Notably, the discriminant model based on milled rice exhibited superior classification accuracy for both original (82.5%) and cross- 
validated tests (76.2%) when compared to models utilizing brown rice or rice bran (Tables S6–S8). In particular, models based on 
brown rice showed poor classification accuracy of <60%, due to the misclassification of PFR as OR (33.3%) or CR (28.6%). The first 
two canonical discriminant functions of the models using milled rice showed an eigenvalue of 1.179 and Wilks’ lambda of 0.346 (p <
0.001), indicative of the relatively good discriminatory capability of the LDA model for OR, PFR, and CR groups (Fig. 1b). According to 
standardized coefficients, in the 1st function, δ13C (0.941) and δ34S (0.650) emerged as crucial variables for predicting the groups (OR, 
PFR, CR), whereas δ15N (0.623) and δ18O (0.640) played significant roles in predicting the groups within the 2nd function. 

The binary classifier models (ecofriendly vs CR) enhanced the classification/prediction accuracy for brown and milled rice and rice 
bran (Fig. 2). The eigenvalue (0.741) and Wilks’ lambda (0.574, p < 0.001) indicated a notable discriminatory ability of the function 
within the binary classifier model (Fig. 2b). Consequently, the binary classifier model based on milled rice exhibited superior clas-
sification accuracy for both original (87.3%) and cross-validated tests (82.5%) in comparison to other models (Fig. 2). This model 
incurred a 7% misclassification of ecofriendly rice as CR in the original set; however, it erroneously predicted 14% of the ecofriendly 
rice as CR in the cross-validated set (Tables S9–S11). According to standardized coefficients, δ13C (0.806), δ15N (0.634), and δ34S 
(0.438) emerged as the most pivotal variables for predicting the groups (ecofriendly vs CR) in the binary classifier model (Fig. 2b). 
Additionally, through ROC analysis, the cutting score value (− 0.477), sensitivity (85.7%), and specificity (85.7%) were calculated for 
the milled rice-based binary classification model (Fig. 2b–Table 3). 

Furthermore, in comparison to the LDA discrimination models (Fig. 1), the SVM exhibited improved overall predictability for OR, 
PFR, and CR authentication in milled rice (95.2%), brown rice (85.5%), and rice bran (93.1%) (Table 4). SVM is commonly employed 
to ascertain optimal predictability by determining a hyperplane that facilitates vector separation based on their respective classes [33]. 
In the SVM model of milled rice, the feature weight (− 1.951) for δ18O was relatively higher compared to δ13C (− 6.063), δ15N 
(− 3.866), and δ34S (− 6.956), and it meant that the independent variable (δ18O) emerged as the most important variable for predicting 
OR, PFR, and CR authentication in milled rice, as indicated by SVM analysis. In general, multivariate statistical tests prove highly 
effective in discerning production modes by minimizing or eliminating sources of variability such as geographical origin, genotype, 
and year of production for the measured variables. Various (un)supervised-multivariate statistical approaches, such as principal 
component, canonical correlation, discrimination, and/or cluster analysis, have been employed to differentiate crop production modes 
[31]. 

A recent study [12] employed a SVM model based on variables such as %C, %N, δ13C, and δ15N in milled rice, resulting in an overall 
predictability of ~65% by SVM, with a notable misclassification rate of ~85% for PFR, inaccurately classified as CR or OR. Addi-
tionally, a PLS-DA model using stable isotopes (δ13C and δ15N) and multielement data from a four-year field trial study displayed an 
overall discrimination accuracy of ~82% for organic, green, and conventional rice. However, this model also showed a poor 

Table 3 
Area under the curve, sensitivity, specificity, and cutting score determined by the receiver operating characteristic (ROC) curves for ecofriendly 
authentication (ecofriendly vs conventional) according to the rice milling state.    

Area Under the Curve      

Test Result Variable(s):    

Classification Referenced figure Area Std. Errora Asymptotic Sig.b Asymptotic 95% Confidence 
Interval 

Calculated by ROC curve 

Lower Bound Upper Bound Sensitivity Specificity Cutting score 

Brown rice Fig. 2a 0.868 0.044 0.000 0.781 0.954 75.6% 76.2% − 0.247 
Milled rice Fig. 2b 0.904 0.046 0.000 0.814 0.993 85.7% 85.7% − 0.477 
Rice bran Fig. 2c 0.907 0.041 0.000 0.827 0.988 86.5% 85.7% − 0.227  

a Under the nonparametric assumption. 
b Null hypothesis: true area = 0.5. 
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differentiation accuracy of 58.3% for green rice, indicating that ~42% was misclassified as organic or conventional rice. Binary 
classification models substantially improved accuracy, achieving rates of 85.33–100% for each pair of classes [2]. 

Here, a SVM model was developed utilizing bulk δ13C, δ15N, δ18O, and δ34S in milled rice and demonstrated a notably higher 
predictability of ~95% for OR, PFR, and CR groups. Intriguingly, unlike the aforementioned models, the SVM model based on these 
four bulk isotope variables significantly ameliorated the misclassification rate between CR and PFR, leading to an accurate predict-
ability of 100% per each group. However, among the four variables employed here, the correlation between production mode and δ18O 
or δ34S remains unclear. Consequently, further investigation, involving controlled long-term field studies or extensive sample analyses, 
is imperative to establish robust and reliable methods for organic authentication. 

4. Conclusion 

In summary, as per the growing global demand for organic products, the importance of accurate organic authentication cannot be 
overstated for maintaining consumer trust and ensuring a fair marketplace. This study describes the potential of multiple bulk SIR 
analyses to enhance the authenticity determination of OR, PFR, and CR across milling states. Pesticide residue screening was able to 
discriminate ecofriendly rice from conventional counterparts; however, it does not differentiate between OR and PFR. Furthermore, 
δ13C, δ15N, δ18O, and δ34S standalone use was insufficient for accurate organic authentication. Nevertheless, in the case of milled rice, a 
combination of these isotopes led to enhanced distinguishability, with the SVM model achieving 95 % predictability for differentiating 
between OR, PFR, and CR. Despite some challenges like interannual fluctuations and overlapping isotopic values between production 
modes, our findings contribute to the ongoing efforts to establish reliable methods to combat organic fraud within the global food 
supply chain. 
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stable isotope ratio SIR 
standard deviation SD 
support vector machine SVM 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.heliyon.2024.e26725. 

Table 4 
Confusion matrix of rice type classification using the supporting vector machine (SVM) manner.  

Predicted CRa, n = 21 OR, n = 21 PFR, n = 21 Total, n = 63 

Actual % predictability 
Milled rice 100.0 85.7 100.0 95.2 
Brown rice 90.5 85.0 81.0 85.5 
Rice bran 100.0 90.5 87.5 93.1  

a Conventional rice (CR), organic rice (OR), pesticide-free rice (PFR). 
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