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Glioblastoma multiforme is a serious and life-threatening tumor of central nervous system, characterized by aggressive behavior,
poor prognosis, and low survival rate. Despite of the availability of aggressive antitumor therapeutic regimen for glioblastoma
(radiotherapy followed by chemotherapeutic dose), recovery rate, and patients’ survival ratio is attributed to the lack of
selectivity of therapeutic drugs and less advancement in cancer therapeutics over last decade. Moreover, tools employed in
conventional diagnosis of glioblastoma are more invasive and painful, making the process excruciating for the patients. These
challenges urge for the need of novel biomarkers for diagnosis, prognosis, and prediction purpose with less invasiveness and
more patient compliance. This article will explore the genetic biomarkers isocitrate dehydrogenase mutation, MGMT
mutations, and EGFR that can be deployed as an analytical tool in diagnosis of disease and prognosis of a therapeutic course.
The review also highlights the importance of employing novel microRNAs as prognostic biomarkers. Recent clinical
advancements to treat GBM and to prevent relapse of the disease are also discussed in this article in the hope of finding a
robust and effective method to treat GBM.

1. Introduction

Glioblastoma multiforme (GBM) is the grade IV malignant
tumor of the neural stem cells, which is specified on the basis

of its hostile nature that emerges from histopathological dif-
ferences and genomic variations among the patients [1–3].
GBM is the most frequently occurring primary brain tumor
in older people. It comprises almost 50% of neuroglial
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tumors and 12-15% of intracranial tumors. Patients suffer-
ing from GBM experiences poor diagnosis and have less
chances of survival (2-5%) [4, 5]. The ultimate treatment
of GBM is the surgical removal of tumor, accompanied by
chemotherapy and radiotherapy. Even after the aggressive
treatment, relapse may occur in some patients due to the
molecular diversity of disease. To overcome this, a large
number of molecular, diagnostic, predictive, and prognostic
biomarkers have been identified by researchers. These bio-
markers are collected by taking fluids from the patient’s
body or biopsy and are examined by polymerase chain reac-
tion along with other investigation techniques [6]. Some of
these biomarkers include mutation of isocitrate dehydroge-
nase, methylation of O6-methylguanine-DNA methyltrans-
ferase, amplification of epidermal growth factor receptor
vIII, and omission of 1p19q. Some microRNAs especially
miR-10b and miR-21 are also used as prognostic biomark-
ers. These biomarkers play an integral role in the develop-
ment of anti-GBM therapies such as vaccines, drug
conjugates utilizing antibodies, and growth factor receptor’s
inhibitors. The most advanced biomarkers are the inhibitors
of immune checkpoints. The investigation of current and
novel biomarkers leads to the successful treatment of
GBM [7].

2. Genetic Hallmarks of GBM
(Glioblastoma Multiforme)

Types and molecular subtypes: GBM are of two main types,
primary and secondary GBM. Primary glioblastoma occurs
without any pre-existing disease and is commonly developed
in older people. It is asymptomatic before being malignant
but becomes symptomatic right after attaining malignancy.
Primary glioblastoma accounts for 90% of total GBM cases
around the world. It has poor diagnosis as compared to sec-
ondary GBM. This subclass of GBM is characterized by muta-
tion in phosphatase and tension homolog (PTEN), loss of
heterozygosity (LOH) 10q, and epidermal growth factor

receptor (EGFR) amplification [8]. Secondary GBM accounts
for the 5% of total GBM worldly cases, mainly affecting young
people. The main biomarker that contributes towards the pro-
gression of secondary GBM is the alterations in tumor protein
53. On the basis of Verhaak classification, GBM consist of
some distinct subclasses named as proneural, classical, neural,
and mesenchymal subclass (Figure 1) [9].

In proneural subclass, IDHq alteration and mutation in
platelet-derived growth factor receptor alpha (PDGFRA) is
observed, whereas neural GBM subtype is characterized by
over expression of EGFR, removal of CDKN2A, and alter-
ation in TP53. Over expression of MET genes and chitinase
3-like genes are seen in mesenchymal subclass [9]. The last
amplification of EGFR and LOH is observed in classical sub-
types [10]. The following diagram summarizes the GBM
subtypes along with their genetic aberrations.

Neural, mesenchymal, and classical subtypes are similar
on the basis of diagnosis, whereas proneural subtype shows
differential prognosis and commonly found in younger peo-
ple with high survival rate [9]. The reason is that proneural
subclass is majorly associated with secondary glioblastomas
(85%) having IDH1 gene mutations, whereas other three
subclasses are linked to primary glioblastomas showing less
(5%) or no alteration in IDHI gene [11].

3. Epigenetic Alterations Associated with
Glioblastoma Multiforme

A variety of methods and tests are utilized for collecting infor-
mation about different classes of genomic biomarkers in
GBM. The accuracy of these tests and methods will eventually
lead to the correct diagnosis and treatment of the disease [12].

3.1. Methylation Signature in GBM. The main molecular
biomarkers in the GBM are PDGFRA, IDH, O6-methylgua-
nine-DNA methyltransferase (MGMT), EGFR, p16INK4A,
NF1, and VEGF. The ultimate goal of studying these

Proneural: mutation at 
IDH1, TP53 LOH, over 
expression at 4q12, mutated
PDGFRA, and low 
amplification of chromosome
7 with LOH chromosome 10

Mesenchymal: alteration
in NF1, TP53, PTEN, 
Deletions at17q11.2,
expression of MET and 
CH13L1 marker, and over 
activation of NFkB 
pathway

Neural: neuron markers
include (GABRA 1, 
SLC12A5, NEFL, and
SYT1)

Classical: amplification of
chromosome 7 with LOH
chromosome 10, enhanced 
EGFR (97%), removal of 
CDKN2A, enhanced 
markers of notch and sonic
hedgehog pathway, longest
survival rate with 
appropriate treatment

Figure 1: Molecular biomarkers of GBM associated with Verhaak subtype classification of GBM.
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genomic biomarkers is to establish the possible methods for
the reversal of tumor progression and disease treatment [10].

The following Table 1 explains the summarized form of
genomic biomarkers of glioblastoma multiforme along with
their importance.

3.1.1. Alteration and Intensification of EGFR, IGFR-1, and
FGFR1 (RTK Signaling Pathway). Enhancement or alter-
ations of PDGFRA, EGFR, insulin-like growth factor recep-
tor (IGFR-1), and basic fibroblast growth factor receptor 1
(FGFR1) accounts for 80% of the primary glioblastoma

[13]. These proteins are linked together structurally and gen-
erate an intricate network of signals that controls many cel-
lular mechanisms. RTK signaling pathway uses two major
pathways; PI3K/AKT/mTOR pathway that regulates cell
cycle and inhibit programmed cell death and RAS/RAF/
MAPK pathway that is mainly involved in cellular move-
ment, multiplication, and segregation [13]. Tumor suppres-
sor gene (PTEN) negatively regulates the PI3k pathway
[14]. Removal of PTEN gene occurring in almost 36% of
GBM and it causes over expression of P13K pathway that
leads to the development of chemoresistance [15].

Table 1: Summarized form of molecular biomarkers of glioblastoma multiforme.

Molecular
biomarker

Importance
Source and
examination

Functional significance Regulation and prevalence rate

Endothelial
growth factor
receptor (EGFR)

Prognostic
biomarker

Source: biopsy of
GBM tissue.

Augmentation and mutation of EGFR alter
tumorous cells of GBM through RTK/
RAS/PI3K, SOX9, or FOXG1 pathways.

Amplification of EGFR.

Examination: analysis
of transfected cells or
polymerase chain

reaction

EGFRvIII (altered form of EGFR) is
found along with wild-type EGFR.

Commonly present in primary and
classical subtype of GBM (40-50%)

Isocitrate
dehydrogenase
(IDH)

Prognostic
biomarker

Source: biopsy of
GBM tissue. Alteration of IDH produces

oncometabolite, 2-hydroxyglutarate (2-
HG), which leads to the hypermethylation
of DNA. As a result tumor genesis occurs.

Alteration of IDH1 and IDH2 in
diffuse brain gliomas.

Examination: analysis
of transfected cells or
polymerase chain

reaction

Generally present in secondary GBM
(85%) and in proneural subtype of

GBM.

Tumor protein
p53

Prognostic
biomarker

Source: biopsy of
GBM tissue

Increase tumor genesis by controlling
isoprenoid or mavelonate pathway.
Inactivated and degraded by MDM2.

Upregulation.

Alteration in Tp53 gene is mainly
present in secondary glioblastomas
(90%) and in proneural subtype

(67%) of GBM.

Methyl guanine
methylene
transferase

Predictive
and

prognostic
biomarker

Source: biopsy by
taking sample of non-
necrotic GBM tissue

MGMT promoter after methylation gives
improved prognostic results by using

combination therapy (chemotherapy with
TMZ adjuvant and radiotherapy) as
compared to nonmethylated MGMT

promoter.

Upregulation

Examination: SYBR
green technology and

PCR with
pyrosequencing

Present in both primary (64%) and
secondary GBM (25%).

Loss of
heterozygosity
10q

Prognostic
biomarker

Source: biopsy by
taking sample GBM

tissue
It causes removal of tumor suppressor
genes such as Tp53, NF1, and PTEN.

Upregulation

Examination:
magnification by PCR
and consumption of

microsatellites

It comprises major portion of GBM
(70%) and mainly present in primary

GBM (LOH10q23)

Circulating
tumor cells

Prognostic
biomarker

Source: body fluids
such as blood It helps to differentiate different molecular

subclasses of GBM.

Upregulation

Examination:
telomerase assay.

It accounts for major portion of
GBM (70%)

Platelet-derived
growth factor
receptor alpha
(PDGFRA)

Prognostic
biomarker

Source: biopsy by
taking sample GBM

tissue Augmentation and alteration of PDGFRA
contribute towards the GBM treatment

Found in secondary GBM and in
proneural subtype of GBMExamination:

polymerase chain
reaction

3Journal of Oncology



Local amplification, dislocation, and alteration of endo-
thelial growth factor receptor is the most commonly occur-
ring genetic aberrations in GBM. It accounts for 57% of
the total GBM [16]. Augmentation of EGFR is mainly pres-
ent in classical subtype of GBM [17].

EGFR gene regulates the EGFR and generates a genetic
code particularly for a tyrosine kinase receptor. EGFR is
mutated by the alteration of histone protein present on its
gene enhancer, positioned at chromosome 7p12 [18]. This
alteration causes reduction of exon 2 and 7 and leads to
the formation of EGFRvIII that lacks extracellular ligand
binding site (Figure 2).

Amplification and alteration of EGFR are plentiful in
necrotic GBM samples so they are considered as a prognos-
tic biomarker of GBM [19].

EGFR regulates the ligand-dependent signaling, whereas
EGFRvIII is not able to bind itself with a ligand and shows
less activity as compared to EGFR. As a result, EGFR can
cross-phosphorylate with EGFRvIII in the presence of EGF
[20, 21]. Patients with no EGFRvIII mutation live longer
(survival rate 1.4 years) as compared to those having EGFR-
vIII mutation (survival rate 0.8 years) [18].

Latest research suggests that the amplification of EGFR
as a prognostic biomarker is not compatible to some
extent. A lot of reports are available that indicate its neg-
ative impact on overall survival rate of patients, some
reports show positive effect on OS rate and some shows
no relation at all [22–25]. Mutation and amplification of
EGFR in GBM may limit the efficiency of EGFR targeting
drugs such as small molecule inhibitors and immunother-
apy [15, 26]. Although rate of EGFR gene amplification is
high but due to these contradictory results, clinical trials
are not performed on EGFR inhibitors (erlotinib and gefi-
tinib) [27, 28].

3.1.2. Methylation of MGMT (O6-Methylguanine-DNA
Methyltransferase) Promoter. MGMT (O6-methylguanine-
DNA methyltransferase) is known as a DNA repair enzyme

because it shifts the methyl group placed at O6 position of
guanine to its cystine parts and conserves the destroyed gua-
nine nucleotides. The site of location of MGMT gene is
10q26.3 on chromosome with a length of 300,437 bp [29,
30], (Figure 3). Epigenetic alteration controls the expression
of MGMT gene.

It prevents necrosis, G: C→A: T [31] genetic alterations
and carcinogenesis induced by alkylating agent. MGMT
gene eliminates the alkylating agent by encoding DNA
repair protein. As a result, chemoresistance occurs. Methyl-
ation of CpG site of MGMT promoter diminishes MGMT
expression, thus, reduces repairement of DNA and allows
more penetration of alkyl groups [32–34]. As a result, alkyl-
ating agents become more powerful in patients with hyper-
methylation of MGMT promoter. Methylation of MGMT
promoter is more commonly seen in secondary glioblasto-
mas as compared to primary glioblastomas [35, 36]. Recent
research suggests that methylation of MGMT promoter
enhances the overall survival (OS) and progression-free sur-
vival (PFS) in patients having alkylating agents [31, 37].
Thus, it acts as a prognostic biomarker of GBM and esti-
mates the overall responsiveness of patient towards alkylat-
ing agent.

In addition, the two latest clinical trials, the RTOG 0525
and the Nordic trial (NOA-08), suggest that methylation of
MGMT promoter also helps to distinguish the response of
older GBM patients for chemotherapy with alkylating agent
and radiotherapy. It has been observed that the patients with
tumor with methylated MGMT promoter have better sur-
vival rate when treated with combination therapy (radiation
therapy along with chemotherapy with TMZ) as compared
to those having unmethylated MGMT promoter tumor
[38–40]. Therefore, testing of MGMT promoter methylation
is done in older GBM patient before the initiation of any
treatment. Methylation of MGMT promoter also improves
the PFS and OS in patients having intermittent GBM, hence,
it is considered as a predictive biomarker for the selection of
treatment strategy.

Ligand binding site

Tyrosine 
phosphorylation site

ATP binding site

Removal of amino
acids 6-273

Inclusion of glycine 
residue 

Extracellular domain

Trans-membrane domain

Cellular domain

EGFR EGFRvIII

Figure 2: Endothelial growth factor receptor and its mutated form.
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3.1.3. Isocitrate Dehydrogenase. Isocitrate dehydrogenase
comprises of two metabolic enzymes: Isocitrate dehydroge-
nase 1 (found in cytosol and peroxisome) and Isocitrate
dehydrogenase 2 (found in mitochondrial site) that are pro-
grammed by two IDH genes, IDH1, and IDH2. Enzymes of
IDH are mainly responsible for catalyzing oxidative carbox-
ylation of isocitrate to produce alpha-ketoglutarate. As a
result of this catalysis, NADPH is produced in the kreb or
citric acid cycle [41, 42]. Alteration in IDH genes promote
the conversion of alpha-ketoglutarate in to 2-
hydroxyglutarate which is an oncometabolite [43, 44]. 2-
HG causes the hyper methylation of DNA promoter known
as glioma-CpG island methylator phenotype (G-CIMP) and
promotes tumorigenesis [45]. In GBM, IDH gene mutation
is commonly found at the 132 chromosomal residue in
IDH1 and at 172 residue in IDH2 (Figure 4).

IDH protein mutation is uncommon in primary GBM
(5%) and it is mainly present in secondary GBM (73-85%)
[46, 47]. Recent research suggests that mutation in IDH gene
also leads to the development of other genomic deformities
like removal of 1p/19q chromosome or alteration in TP53
gene and is found to be present along with amplification of
EGFR and removal of chromosome 10 [11]. Furthermore,
it causes mutation in other genes such as mTOR gene and
ATM gene that is closely linked with the progression of
GBM [48].

As in GBM patients, IDH protein mutation is associated
with improved PFS (progression-free survival) and OS
(overall survival) rate so this aberration is considered as
one of the most important molecular prognostic biomarker
of GBM [49]. It also encourages the production of new che-
motherapeutic agents that inhibits IDH protein mutation
and shows highest clinical efficiency [50].

3.1.4. CD44. CD44 is a transmembrane glycoprotein mole-
cule that is involved in cell division, programed cell death,
and new blood vessel formation.

CD44 expression plays significant role in invasion and
metastasis of glioma cells and higher levels of CD44 in
patients act as a glioblastoma cancer stem cell marker. Can-
cer stem cells are glioma initiating cells (GICs) or progenitor
cells that can initiate proliferation of the cells at secondary
sites after metastasis of primary glioma cells [51].

Glioblastoma cancer cells show increased resistance to
radiation and overexpression of genes Sox2, Nanog, Id1,
and Oct4. CD44 induces upregulation of genes that are
involved in tumor modulation. This modulation is initiated
by binding of osteopontin ligand with the extracellular part
of CD44. CD44 also functions as a receptor site for hyal-
uronic acid (HA) in glioblastoma patients. HA binding of
CD44 results in stimulation of downstream cascade of path-
ways, activation of growth pathways, and under expression
of tumor suppressor mechanism. In almost 60% of the
patients with glioblastoma, CD44-associated EGFR receptor
upregulation is involved that result in increased adhesion of
tumor cells to cellular base lines and invasion to neighboring
normal cells. CD44 also upregulates the mediators (Akt and
Erk 1/2 kinase) of EGF pathways (Figure 5) [52].

CD44 expression is associated with increased prolifera-
tion of the cells, which in turn is due to stimulation of
growth pathways (AKT and EGFR), by suppression of
tumor suppressor genes, increased resistance to chemother-
apy, and invasion of tumor cells to normal healthy cells.

There exists a relationship between CD44 overexpres-
sion and tumor grade. CD44 is overexpressed in mesenchy-
mal subtype of glioblastoma. RFX1 is a regulatory
transcription factor that downregulates the proto-
oncogene. RFX1 performs its function by binding with ecto-
domain of CD44 and downregulates CD44 expression

10p15
10p14

10p13

MGMT 10q26.3

10p12

10q25

3′ATG 15′

EnhancerPromoter
Exon 1

CpG island

Figure 3: Location of MGMT gene on chromosome and CpG island in MGMT gene.

Catalytic site

Catalytic siteMitochondrial
ligand site

IDH1

IDH2

IDH1-R132

IDH2-R172

IDH2-R140

Figure 4: Site of mutation in IDH1 gene is R-132 and in IDH2 gene
is R-172.
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resulting in reduced phosphorylation of Erk and Akt, thus
have negative effect on glioblastoma progression and inva-
sion [53].

CD44 is also associated with downregulation of Lats1/2
apoptotic pathway that results in increased tumor metastasis
and resistance to drug therapy. CD44 induces resistance to
chemotherapy most probably by suppressing apoptotic
response. A trial showed that depletion of CD44 make glio-
blastoma cells susceptible to chemotherapy and overexpres-
sion of CD44 make more colonies of glioma cells even after
chemotherapeutic dose.

One of the therapeutic approaches to treat overexpressed
CD44 tumor cells can be the downregulation of CD44 mol-
ecule by targeting with antisense vector or monoclonal anti-
bodies. Treatment with monoclonal antibodies also has a
positive impact on the sensitivity to chemotherapeutic
agents resulting in a decrease invasion and metastasis of
tumor cells (Figure 6) [54].

Binding of stimulants to CD44 results in activation of
intracellular cascade, activation of growth regulation path-
ways, and suppression of tumor suppressor pathways that
results in increased cell division, resistance against chemo-
therapeutic agents, and invasion of glioma cells to normal
healthy cells.

3.1.5. Tumor Protein Tp53 Inactivation. Tumor protein p53
is a transcription factor, a tumor suppressor that is located
on chromosome 17p13.1 encoding for 393 amino acids
(Figure 7).

Tp53 has domains like DNA binding domain, transacti-
vation domain, proline rich site, and oligo domain. It has19,
149 nitrogenous base pairs with 11 axons.

Tp53 in glioblastoma: under normal circumstances,
Tp53 suppresses tumor activity by modulating the expres-
sion of genes involved in cell cycle, division and differentia-
tion of the cells, and apoptosis. Activity of p53 is controlled
and well-checked by MDM4 and MDM2. In both p53 and
MDM2, MDM4 functions through negative feedback mech-
anism. Though mutation in IDH1 and MGMT are better
markers for glioblastoma than p53, however p53 can act as
genetic marker for glioblastoma [55].

According to cancer genome atlas (TCGA, 2013), dereg-
ulation of ARF-MDM2-p53 pathway occurs in glioblastoma.
Any mutation in Tp53 is linked with progression of glioblas-
toma. ARF facilitates the degradation of MDM2 and upregu-
lates expression of tissue inhibitor of metalloproteinase-3
(TIMP3). Its inactivation leads to increased proliferation of
the cancer cells, invasion, and immortality of the tumor cells.
In almost 60% of glioblastoma cases, p53 inactivation is

CD44 and
glioblastoma 

Decreased survival

Increased invasion
(through HA binding)

Increased proliferation 

Increased chemo-
resistance 

Induction of growth
pathways

(AKT, EGFR) 

Suppression of tumor
suppressors 

Suppression of stress
pathways

Figure 5: CD44 role in glioblastoma.

CD44
Hyaluronic

acid 

Intracellular signaling 

AKT Erk pathway EGFR activation RFX1
suppression 

Cell proliferation, chemo-resistance and invasion 

Figure 6: Mechanism of CD44 induced tumor progression.
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caused by the deletion of CDKN2A/ARF locus. ARF deletion
leads to increased expression of tectonic family member 1
(TCTN1) protein that results in increased promotion of glio-
blastoma [17].

Over expression of MDM2 and MDM4 results in inactiva-
tion of p53 that in turn results in the loss of p53 activities, a
reduction in DNA repair, and decreased cell death and cell dif-
ferentiation.MDM4-induced p53 inactivation is more common
in classic glioblastoma. Tp53 mutations are present in both
types of glioblastoma, primary and secondary glioblastoma.

Genetic aberration associated with TP53/MDM2/
p14ARF pathway accounts for 87% of cases of glioblas-
toma, over expression of MDM2 induces GBM in 14%
patients, 49% GBM roots out from p14ARF homozygous
deletion, and Tp53 mutation results in 35% of glioblas-
toma cases [56].

Therapeutic approaches for p53 inactivation-induced glio-
blastoma: though variety of genetic therapies have been
employed for treating glioblastoma, but these treatment pro-
vides inadequacy due to resistance to chemotherapeutic agents,
loss of selectivity, and recurrence of the disease. Inactivation of
p53 in glioblastoma provides a way to specific and selective
treatment of glioblastoma. Researches have beenmade for years
to design oncolytic viruses to treat GBM. Approaches are being
employed to treat p53 inactivation-induced glioblastoma
include interference with the interaction of p53 and MDM2 to
sensitize tumor cells against chemotherapy.

Another approach that can be employed is p53 plasmid-
mediated transfection that inhibits and arrests the cell cycle
in G1 or Go phase is preventing the entry of cells into syn-
thesis phase, thus, no replication of DNA and no new cells
formation occurs. Its example oral nutlin-3, a promising
molecule when tested on animal models, showed striking
results with increased survival rate in mice. Clinical trials
for its use in humans are under research.

3.1.6. Loss of Heterozygosity of Chromosome 10. Loss of Het-
erozygosity of chromosome is normally present in all types
of GBM. It promotes the uncontrolled division of tumorous

cells by affecting the tumor suppressor genes [57]. In glio-
blastoma multiforme, LOH mainly affect 10, 9p, 19q, 22,
and 17p; whereas, LOH19q and LOH1p chromosomal
regions are considered as predictors of oligodendrocyte neo-
plasms [58]. LOH of chromosomal region 10q more partic-
ularly 10q23 comprises a major portion of GBM (70% of all
the types) but mainly present in primary glioblastoma mul-
tiforme [59].

On the basis of results obtained from different studies,
LOH chromosome 10 is considered as a diagnostic bio-
marker for primary and secondary GBM: whereas,
LOH10q25-qter in particular is used only for the diagnosis
of secondary GBM [60]. The tumor suppressor genes that
are affected by LOH10q are TP53, PTEN, and NF1. PTEN
gene is responsible for inhibiting PIP3 that reduces cellular
multiplication and causes programmed cell death. PTEN
gene after being affected by LOH10q modulates the PI3k
pathway and promotes cellular multiplication [13].

3.1.7. Circulating Tumor Cells. Tumor cells that detach from
their primary attachment site, move to the adjacent cells,
and travel through the bloodstream to reach distant areas
where they divide and survive, thus forming new colony
(other than primary attachment site) are called circulating
tumor cells. In glioblastoma, circulating tumor cells (CTCs)
spread the disease to the neighboring cells. Thomas Ash-
worth for the first time in 1869, witness the presence of
CTCs in blood stream [61].

The National Comprehensive Cancer Network made
grading of biomarkers based on the extent of their role in
diagnosis and prognosis. Circulating tumor cells either they
are alone cells, extracellular vesicles, or in the form of circu-
lating clusters are graded as promising biomarkers in glio-
blastoma [62].

CTCs serve as prognostic markers for glioblastoma and
have a prevalence of greater than 75% in GBM. CTCs have
direct correlation with tumor progression, recurrence, and
type of GBM. Levels of circulating tumor cells decrease after
treatment as compared to their level prior to the treatment

Proline
rich DNA binding domain Oligo

Transition 
NES NES

C-Terminal N-Terminal

Figure 7: Mapping of Tp53 on chromosome 17p13. Structure and location of chromosomes and the distribution of protein domains on
chromosomal site.
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indicating their role as a prognostic marker [63]. CTCs can
be analyzed by telomerase assay. CTCs are present in the
blood of cancer patients, where they can be easily detected
in blood sample through liquid biopsy or blood test. The
employment of CTCs as a diagnostic marker for glioblas-
toma is of significant importance as it eliminates the need
of conventional tumor biopsy processes. Conventional
biopsy processes are more invasive in nature with only one
snapshot. While use of CTCs “liquid biopsy” provides infor-
mation about all solid tumors and are less invasive and less
painful even after several repeats [64], (Figure 8). Recent
studies highlight the importance of CTCs in genetic profiling
of cancer patients to drug sensitivity.

As a diagnostic tool, presence of CTCs in blood indicates
tumor and an increase in CTCs with the passage of time
shows disease progression. Number of CTCs in blood sam-
ple reflects therapy effectiveness. After chemotherapy, CTCS
serve as prognostic marker, unchanged number of CTCs
after chemotherapy shows therapy resistance, and a
decreased CTC count is an indication of success of therapy.
Table 2 represents the advantages and disadvantages associ-
ated with CTCs.

(1) Glioma-Derived Exosomes. Extracellular vehicles (EVs),
containing protein, lipids, DNA, mRNA, and noncoding
RNAs, bud from the cell surface and are involved in the
transfer of biomolecules bound to membrane to the neigh-
boring cells or extracellular fluids. A range of characteristic
pathological features of EVs plays a pivotal role in the malig-
nant progression of GBM. As nanoscale vesicles with the
natural ability to cross the blood-brain barrier (BBB) [65],
tumor-derived exosomes are key mediators in mediating
intercellular communication between metastatic cancer cells
and brain stromal cells to complete brain metastasis coloni-
zation [66, 67], as well as inducing epithelial mesenchymal

transition (EMT) in neoplastic epithelial cells and conferring
them intravasation and migration ability [65, 67]. In addi-
tion, tumor-derived exosomes contribute to premetastatic
milieu creation, tumor development, progression, immune
evasion, angiogenesis, antiapoptotic signaling, and treatment
resistance throughout their bioactive cargo [68]. They can be
used to modify the microenvironment of the primary tumor
and make targeted organs suitable for tumor progression.
Examples include promoting ECM remodeling, facilitating
the cancer-associated phenotype transformation of fibro-
blasts, and increasing the neural distribution of the tumor
microenvironment [69]. Among these, it is worth mention-
ing that tumor-derived exosomes facilitate the formation of
an immunosuppressive tumor microenvironment, where
they can assist tumor cells to evade immunity by reducing
immunogenicity, inducing suppressor cells, modulating
antigen presentation, and secreting immunosuppressive fac-
tors [70]. Furthermore, the toxic potential of GBM-derived
exosomes to primary neurons is one of the important factors
explaining the perineural edema and cognitive decline in
GBM patients [71]. There are four types of EVs, exosomes,
membrane particles, microvesicles, and apoptotic vesicles.
The role of exosomes as therapeutic target and drug delivery
system in the diagnosis and progression of glioma has been
well explored. In the diagnosis of gliomas, the mRNA,
miRNA, protein, and DNA are beneficial. The disease detec-
tion and progression can be performed by tumor-specific
RNA in the serum exosomes. The mutant 1DH1 transcript
was detected in exosomes isolated form CSF of glioma
patient. Moreover, the p65 genes and the dynamin 3
(DNM3) genes were found to be upregulated in the exo-
somes derived from patient shaving primary and recurrent
GBM providing the evidence of these specific transcripts as
potential diagnostic marker for GBM. A high level of miR-
21, miR-222, and miR-124-3p were observed in the serum

Applications of circulating biomarkers 
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Prognosis and
diagnosis

Assessment of 
treatment
mutation

Assessment of disease
monitoring and treatment 

response

Primary tumor
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Figure 8: Tumor shed their cells (circulating tumor DNA, extracellular vesicles, and circulating tumor DNA) into the blood stream. These
markers can be used in liquid biopsy for management of the disease (disease diagnosis, screening, and prognosis).
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exosomes of high grade glioma patients. The miR-574-3p,
miR-320, and RNU6-1 levels were also isolated from
serum exosome of GBM patients and healthy ones with
RNU6-1 having diagnostic potential of GBM. miR-301a
levels provide the pathological status of the glioma and
its levels are markedly increased in the isolated exosomes
form GBM individuals [72]. The circRNA has also shown
important role in the diagnosis of GBM derived from the
exosomes. These include circSMARCA5 and circHIRK2
[73]. In protein content, EGFR, EGFRVIII, podoplanin,
and IDH1 showed protein expressed in the exosomes.
About 133 protein in the exosomes from glioblastomas
were detected in a study suggesting these proteins can
serve as markers to create techniques to diagnose disease
[72, 74]. The mutations in gene IDH1 in the exosomes
of patient suggested the role of DNA detection in GBM.
The therapeutic potential of cell-derived exosomes have
also been explored. The human umbilical cord-derived
mesenchymal stem cells exosomes have partial antitumor
activity. Exosomes derived from NK cell have also shown
antitumor role. The chemical modification and genetic
engineering of exosomes could improve the therapy
against GBM. The exosomes have also role in drug and
gene delivery due to its inability to trigger immune
responses and are considered as innovative delivery sys-
tem. The transfer of curcumin and doxorubicin through
exosomes has also been studied. The miRNA delivery of
exosomes is also a promising GBM therapy target [72].

3.2. microRNA. microRNAs are noncoding, short length
RNA molecules that show their effect in the development
and spread of tumor. miRNAs play their role through mod-
ulation of tumor suppression and activation genes. Many
studies have focused in miRNA-targeted therapy to be uti-
lized in cancer treatment. The miRNA mimetic and anti-
miRNA agents have been developed for this purpose. The
differential expression analysis have also helped in this
regard in the identification of miRNAs having potential role
in GBM development [75]. In one study, a Connectivity
Map (CMap) method was employed to determine the
miRNA-based therapeutic agents for GBM treatment. About
10 differentially expressed miRNA were identified sowing

association with eight GBM-associated genes. These genes
include RB1, PRKCB, CALM3, CDK6, CAMK2G, NRAS,
PDGFRA, and CAMK2B. These genes may participate in
the development of GBM [76]. In another study, the associ-
ation of malignant types tumors with the neurological disor-
ders were studied, identifying the association of Alzheimer’s
disease (AD) with that of glioblastoma. The study identified
potential specific miRNAs that have shown to be deregulated
in both diseases. In GBM, miR-7 and miR-93 have shown
downregulation in glioblastoma along with miR-128 and
miR-139. In AD, the downregulation of miR-29c was
observed which can serve as a biomarker or therapeutic
agent in AD. The downregulation of this microRNA has also
been observed in GBM [77]. This provides the important
function of miRNA as potential oncogenes and tumor sup-
pressors that can serve as prognostic biomarkers and thera-
peutic targets in GBM [75]. Table 3 shows the summary of
miRNAs employed as biomarkers.

miRNA’s samples are gathered from body fluids (blood,
CSF, or urine) to employ these samples as markers of GBM.
This technique is a less invasive approach towards gathering
biomarkers. miRNA provides more than 90% accurate
results when employed as diagnostic biomarker [78].

miR-21: miR-21 expresses itself in GBM where it acts as
a modulator of tumor suppressor genes, RECK, FasL, and
PDCD4. A decrease in miR-21 or its inhibition increases
the rate of cell death and decreases division of the tumor
cells. Moreover, miR-1 plays its role in upregulation of can-
cer stem cells [79].

miR-10b: miR-10b is highly expressed in most subtypes
of GBM. miR-10b acts as a valuable prognostic biomarker
of glioblastoma. miR-10b induces tumor by splicing MBNL
and RSRC1 genes, by inhibition of Bcl-2, and causes
increased cell proliferation [80]. It induces resistance to che-
motherapy by activating AKT pathway [81].

miR-15b: mir-15b performs its role as prognostic bio-
marker by halting cell cycle and by inhibiting proliferation
of the cells.

miR-137: miR-137 induces suppressor effects same like
miR-15b. It negatively regulates target gene (GLIPR-1) as
miR-137 promoter is excessively methylated in glioblastoma.
Other miRNAs that play their role in modulating

Table 2: Advantages and disadvantages of CTCs as biomarkers.

Pros and cons of tumor cells as biomarkers

Circulating tumor cells
Provides information at DNA, RNA, or
translated form of DNA (protein) level

Rarity (CTCs are less in number)

Can perform functional assay Presents challenging isolation technique

Circulating tumor DNA

ctDNA has better correlation with
the stage of the disease

ctDNA has short half life

ctDNA number in blood is more than CTCs
It is shed into the blood mostly by

apoptotic or necrotic cells

Exosomes
Exosomes are easy to detect

They lack specificity, exosomes are not only
removed by tumor cells but by all body cells

They can carry DNA, RNA, and proteins Exosomes may get contaminated during isolation process
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chemoresistance include miR-127, miR-603, miR-181d, and
miR-648. To effectively use miRNA as a therapeutic choice,
nanoparticles and liposomes are being employed in past
decades [82].

3.3. lnRNA. During transcription of human genome about
less than 3% of all transcribed genes are protein coding,
with 70% of human genome transcription majority of the
noncoding transcripts of various sizes are produced. These
are the noncoding RNAs (ncRNA) and are categorized
into two main categories the long ncRNAs and the small
ncRNAs. The lncRNAs have a wide phenotypic impact
having essential role in regulation of transcription, subcel-
lular localization, and epigenetic remodeling. Recently, evi-
dences have suggested prognostic and therapeutic
implications of lncRNAs in GBM and is an evolving field.
Several lncRNAs have shown regulation of glioma tumors
originating with tumor initiation and progression [84, 85].
Table 4 enlists the lncRNAs employed as therapeutic
markers.

3.4. circRNA. circRNA is formed through back-splicing from
premiRNA as a result of protein-coding genes. These are
noncoding RNA with covalently closed RNA molecule. Evi-
dences have shown the involvement of circRNA in the regu-
lation of gene expression. Because of their closed loop
structure, they have longer half lines and are naturally resis-
tant to degradation. However, circRNAs are mostly
expressed at low levels. Their role in tumor progression
has also been studied and have shown to be directly trans-
lated into proteins regulating protein functions. The dysreg-
ulation of circRNA expression levels is also associated with
several pathological conditions including gliomas and
GBM. One of the circRNA identified include the cir-
cSMARCA5. It is a tumor suppressor circRNA. The expres-
sion of circSMARCA5 is downregulated in GBM tissue. The

mutation of GAUGAA RNA motif that is involved in its
interaction with SRSF1 causes a significant decrease in the
binding between SRSF1 and circSMARCA5 leading to
decreased GBM cell migration and angiogenic potential
[111]. Another important circRNA identified is the
circLGMN, which is significantly upregulated in high grade
glioma. This circRNA have shown regulation of mammalian
legumain (LGMN) promoting GBM malignancy [73]. How-
ever, further studies are required on circRNAs as only few
circRNAs have been studied.

4. Imaging of Biomarkers

To date, there is no approved imaging biomarker there, but
researches are in process to develop advanced functional
techniques for imaging biomarkers. These techniques
include weighted magnetic resonance imaging, positron
emission tomography, MR spectroscopy, and dynamic sus-
ceptibility weighted-contrast enhanced perfusion imag-
ing [112].

These techniques will help in deciding personalized
treatment for patients after successful molecular diagnosis
of the disease. In a study, the level of 2-hydroxy glutarate
when checked by mass spectroscopy showed an increase in
its concentration, indicating direct correlation with IDH1
and IDH2 that in turn indicates the presence of the
tumor [113].

The biomarkers for EGFR amplification may include
increased cerebral blood volume, lower values of ADC, and
a decrease in the ratio of necrotic tissues to contrast enhanc-
ing tissue. Positron emission tomography can be employed
as a potential tool for imaging biomarkers. One of the
advancement being made in the PET technology is F-FDG
ligand use, but it has limitations to not detect small tumors
because of an increased glucose intake by brain tumor cells.
Other ligands that are under assessment for last decade

Table 3: Summary of microRNAs being employed as biomarkers.

Biomarkers Source
Importance of
biomarker

Prevalence in
glioblastoma and

regulation
Functional importance Reference

miR-21
Body fluids (blood,
CSF, and urine)

Analytical and
prognostic
biomarker

Upregulation of
miR-21 occurs

Modulation of certain genes for
glioblastoma cells proliferation

[79]

miR-10b
Body fluids (blood,
CSF, and urine)

Analytical and
prognostic
biomarker

Upregulation of
miR-10b occurs

Induces Bcl-2 pathway inhibition and
excessive proliferation of tumor cells

[81]

miR-181d
Body fluids (blood,
CSF, and urine)

Analytical and
prognostic
biomarker

Downregulation of
miR-181d occurs

miR-181d has inverse correlation with
MGMT expression

[82]

miR-137
Body fluids (blood,
CSF, and urine)

Analytical and
prognostic
biomarker

miR-137 is
downregulated

miR-137 has negative regulation effect on
its gene target GLIPR-1

[82]

miR-15b
Body fluids (blood,
CSF, and urine)

Analytical and
prognostic
biomarker

MiR-15b is
downregulated

miR-15b inhibits cell cycle progression
in normal cells while in GBM, it is
downregulated, hence inducing

cell cycle progression

[83]
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include amino acids having radioactive materials, methio-
nine having radioactive carbon at position 11 (11C-MET),
3,4-dihydroxy-6-18F-fluoro- L-phenylalanine (18F-FDOPA),
18F-flouroethyl tyrosine (18F-FET), and 18-F
fluoromisonidazole.

11C-MET was found effective in elevating the survival
rates in glioma patients when trialed by Baek et al. F-
FDOPA finds its role as a differentiating biomarker as
it can differentiate between low and high grade gli-
oma [112].

4.1. Summary. Genes participate in signaling pathways of the
cells and are associated with division of the cells, pro-
grammed cell deaths, and blood vessel formation for newly
formed cells. Hsu et al. mentioned ten genes associated with
GBM (glioblastoma multiform) in his work. These genes act
as potential biomarkers for identifying glioma in the
patients’ prognosis and determine the molecular subtype of
glioma in individuals [114].

Genetic changes linked with tumor include alterations in
isocratic dehydrogenase (IDH), changes in epidermal

Table 4: lncRNA as therapeutic targets in glioblastomas.

LncRNA Importance of biomarker Functional importance Reference

CASC7
Reduces glioma formation and

progression
Acts by reducing the wnt/b-catenin activity, thereby reducing the glioma

formation and progression
[86]

CASC9
Promotes glioma formation and

progression
This lncRNA along with miR-519d and STAT3 promotes the glioma

formation and progression by forming a positive feedback loop
[87]

AGAP2-
AS1

Promotes glioma formation and
progression

This lncRNA also acts by activating wnt/b-catenin pathway resulting in
glioma formation

[88]

NEAT1
Promotes glioma formation and

progression
Interacts with polycomb repressive complex subunit EZH2 thought he wnt/

b-catenin pathway causes tumor formation and tumirogenesis
[89]

LINC01426
Promotes glioma formation and

progression
Initiates the glioma initiation by acting through P13K/Akt signaling pathway [90]

PART1 Tumor suppressor lncRNA
Downregulating the PTEN/Akt signaling pathway through

sponging miR-190a-3p
[91]

LINC01446 Promotes tumor progression Acts through miR-489-3p/TPT1 axis [92]

MNX1-AS1
Promotes glioblastoma

progression
Acts by inhibiting miR-4443 [93]

DCST1-AS1 Promotes proliferation of tumor Acts by decreasing mir-29b levels through methylation [94]

AC016405.3 Tumor suppressor Causes TET2 modulation by acting as molecular sponge for miR-19a-5p. [95]

HOTAIRM1 Promotes tumor malignancy
Facilitates interaction of long-range chromatin interactions with HOXA

genes resulting in increased transcription
[96]

HOXB13-
AS1

Promotes tumor progression Regulates HOX gene transcription [97]

LINC00467 Promotes tumor progression Decreases the tumor suppressor p53 by interacting with DNMT1 [98]

HIFiA-AS2 Promotes mesenchymal tumors Maintains mesenchymal GSCs in hypoxic niches [84]

H19 Promotes glioma invasion Promotes glioma invasion in HIF-1a dependent manner [99]

LINC01494 Promotes tumor migration Titrate wit miR-122-5p causing increased CCNG1 expression [100]

ATB Promotes glioma cell invasion Acts through NF-κb and MAPK signaling pathways. [101]

GAS5
Suppress tumor invasion and

survival
Targets GSTM3 expression [102]

Lnc-TALC
Promotes resistance to TMZ and

tumor recurrence
Regulates the c-met pathway and promotes the O6-methylguanine-DNA

methyltransferase (MGMT) expression
[103]

MALAT1
Promotes TMZ resistance and

invasion
Acts by restoring p53 activity and expression [104]

ADAMTs9-
AS2

Promotes TMZ resistance Changes the ubiquitination mediated by FUS/MDM2 [105]

TP73-AS1
Promotes TMZ resistance and

metabolism in GSCs
Regulates the GSC/therapy resistance marker ALDH1A1 [106]

NCK1-AS1 Increases TMZ resistance Acts through disinhibition of TRIM24 [107]

HMMR-
AS1

Causes radiation resistance,
tumor progression, and invasion

Acts by targeting ATM, RAD51, and BMI1 [108]

TALNEC2
Causes radiation resistance and
promotes tumor progression

Regulates growth and stemness in glioma stem cells [109]

PCAT1 Increase sensitivity to radiation Acts by modifying HMGB1 [110]
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growth factor receptor, platelet-derived growth factor recep-
tor changes, aberrant epigenetic changes, and loss of hetero-
zygosity of 1p/19q [49] (Table 5).

5. Conclusion and Future Directions

Glioblastoma is a devastating disease, detection of which at
early stages is important for better prognosis and increased
life span of life. Conventional methods employed to date
are mostly invasive and painful for the patients. Aggressive-
ness of these conventional invasive methods for diagnosis
and prognosis of tumor calls for a dire need of less invasive,
patient compliant, and reliable methods to diagnose the dis-
ease. The present study reviewed molecular and genetic bio-
markers that can be employed for GBM cells, the study
enlisted biomarkers that are of clinical use and also revealed
the availability of just few biomarkers in last decade with
promising results even after extensive research in GBM field.
This condition indicates the aggressive nature of GBM cells
and a need of extensive in this field. Endothelial growth fac-
tor receptor (EGFR), isocitrate dehydrogenase (IDH), tumor
protein p53, loss of heterozygosity 10q, platelet-derived
growth factor receptor alpha (PDGFRA), and circulating
tumor cells acts as prognostic biomarkers where the concen-
tration of these biomarkers act as disease progression or the
success of therapy.

Though discovery of biomarkers and their employment
in diagnosis and treatment is a tiring and strenuous journey,
but the research would have to be done to find efficient tech-
niques to combat the disease. This article would open the
door to novel ideas for discovery of novel biomarkers and
would provide a new insight to better incorporate already
existing biomarkers for clinical use as there is urgent need
to use the already known biomarkers in clinical practice

based on patient specific biology. Moreover, biomarkers
driven therapies, diagnosis, and prognosis would bring
improvement in tumor’s patient management and recovery.
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