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Obesity is a major global public health problem. Understanding how energy

homeostasis is regulated, and can become dysregulated, is crucial for develop-

ing new treatments for obesity. Detailed recording of individual behaviour and

new imaging modalities offer the prospect of medically relevant models of

energy homeostasis that are both understandable and individually predictive.

The profusion of data from these sources has led to an interest in applying

machine learning techniques to gain insight from these large, relatively

unstructured datasets. We review both physiological models and machine

learning results across a diverse range of applications in energy homeostasis,

and highlight how modelling and machine learning can work together to

improve predictive ability. We collect quantitative details in a comprehensive

mathematical supplement. We also discuss the prospects of forecasting homeo-

static behaviour and stress the importance of characterizing stochasticity

within and between individuals in order to provide practical, tailored forecasts

and guidance to combat the spread of obesity.
1. Introduction
The growing crises of obesity and metabolic syndrome can be viewed as failures

of energy homeostasis: our regulatory systems are poorly adapted to deal with the

availability of appetizing high-calorie foods. Although the trend of increasing

bodyweight has been continuing for decades, in recent years new data sources

have become available that may transform the way we research and treat obesity.

Examples of these data sources include wearable technology such as activity

monitors and continuous glucose measuring devices, activity and food logging

apps as well as an impressive range of technologies for monitoring neuronal

activity in vivo. Although these technologies differ substantially in their sophisti-

cation and intended uses, they share one key feature: the production of orders of

magnitude more quantitative data than previous techniques. For instance, a glu-

cose monitoring device may collect a measurement every 5 min, generating

hundreds of data points per day compared to two or three measurements taken

daily by a typical diabetic. Connected food and activity logging apps can leverage

large databases to report detailed information about the nutritional contents

of a meal given only a barcode, and can generate energy expenditure figures

personalized to a user’s weight, age and gender. Two-photon imaging can give

exquisitely detailed information into how the firing of specific neuronal popu-

lations drives feeding behaviour, generating many parallel time series of

neuronal firing [1].

This explosion of data creates opportunities, but only if the relatively unstruc-

tured data can be parsed for understanding and prediction. A traditional

approach to large amounts of quantitative data has been to fit a tailored
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Table 1. Summary of review contents. This review covers diverse but connected (figure 1) aspects of energy homeostasis. This table is intended to serve as a
quick overview and guide to the phenomena and models we discuss.

physiological problem methods data sources section
electronic supplementary
material sections

Endocrine mechanisms (§2)

endocrine regulation of blood

glucose

differential

equations

plasma metabolite and hormone

concentrations

2.1 (S2.1 – S2.4)

blood glucose dynamics after

eating

differential

equations

stomach fullness and circulating

metabolites

2.1 (S2.5 – S2.7)

inter-individual variation in

glucostasis

machine learning patient-specific behavioural data

(e.g. sleep duration), metabolites

2.2 (S2.8 – S2.10), box 1

emergence of diabetes and leptin

resistance

multiscale

modelling

circulating metabolites, pancreatic b cell

mass

2.3 (S2.11 – S2.14)

Body composition (§3)

changes in body weight and

composition

differential

equations

average food intake, body weight and

composition

3.1 (S3.1 – S3.7), box 2

effect of macronutrient intake on

growth and development

differential

equations

growth curves, body composition

measurements, energy intake/

expenditure

3.2 (S3.8)

Feeding behaviour (§4)

food intake within a meal control theory feeding time series 4.1 (S4.1)

endocrine regulation of food

intake

differential

equations

food intake, circulating hormone

concentrations

4.1 (S4.2, S4.3)

food intake planning control theory feeding time series 4.1 (S4.5, S4.6)

learning the rules governing

behaviour

machine learning feeding time series, neuronal activity 4.2 (S4.7, S4.8)
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mathematical model, either derived empirically or using a

physiological understanding of the system involved. In recent

years, advances in machine learning have opened up a new

way of understanding these datasets. This review covers both

model-based and machine learning approaches to understand-

ing energy homeostasis, as well as developments on the cutting

edge, where models are being integrated into machine learn-

ing tools to further improve prediction. One of the key

sources of innovation thus far has been research into under-

standing and control of glucostasis, spurred by the desire to

engineer an artificial pancreas. This review, therefore, looks

first at the progress made modelling on our understanding

of glucostasis because the state of the art is more advanced

in this field and the techniques employed can serve as a

model for use elsewhere.

We also discuss the need for personalization in models,

particularly if they are to be used to guide behavioural interven-

tions. Given the wide inter-individual variation in glucose

response following a meal [1], it is highly likely that inter-

individual variation plays a significant role in other homeostatic

processes. If we fail to account for this, models intended to

optimize treatments will perform sub-optimally or fail as they

are poorly adapted to the individual being treated. For this

reason, we discuss approaches to model personalization

throughout the review by either reviewing successful examples,

or suggesting pathways towards individualizing current

models table 1 (box 1 and box 2).
2. The biology of energy homeostasis
2.1. Regulation of glucose and fatty acid metabolism
In this section, we provide a brief overview of the most impor-

tant elements of human metabolism to provide context

and motivation for the models that follow (§2). This is a short

overview of a deep and extensively studied area, and readers

are directed to other resources for more detail [8]. Energy

homeostasis at the level of metabolic fluxes is primarily

governed by endocrine mechanisms. These can store surplus

circulating metabolites in tissues when supply exceeds

demand, or mobilize stored energy during times of need, for

instance, during exercise. Long-term energy storage is accom-

plished by fats, whereas short-term requirements are typically

satisfied by carbohydrates. Glycogen can be used more rapidly,

whereas triacylglycerol must be metabolized into fatty acids

before it can be used. There are multiple depots of both fat

and carbohydrate in the body; the most important fat stores

are in adipose tissue, skeletal muscle and the liver [9]. The

majority of stored fat is held as triacylglycerols; however,

these are unsuitable for transport in the blood as they are

almost insoluble in water. Thus, they must be converted into

a simpler form (non-esterified fatty acids) in order to be trans-

ported). The metabolic fluxes involved in fat storage have

received relatively little mathematical study. Carbohydrate

fluxes, on the other hand, have been extensively modelled, in

part due to interest in understanding the causes and
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Figure 1. New data sources need new modelling techniques to maximize their predictive ability. In particular, we can now work towards understanding the roles of
inter-individual variation and stochasticity because of the finer temporal resolution allowed by personal omics devices (a). These can be fed into traditional phys-
iological models, summarized in (b), to understand how observed feeding behaviour affects internal state, for example, blood glucose or endocrine levels. The state
of the art across the literature is summarized here: each model in this review contains a subset of these entities and connections. Lines with arrowheads indicate
positive effects, bar ends denote negative effects and circular ends can be positive or negative. Glucostatic models (red lines, §2) investigate the dynamics of glucose,
insulin and pancreatic b cells in response to glucose infusion. Endocrine models (blue lines, §2) are a relatively recent development, and model how endocrine
mechanisms mediate energy intake and expenditure. Energy balance models (green lines, §3) consider the distribution of calories within the body, but do not
typically predict intake or expenditure. The link between physiological state and behaviour is often considered through the perspective of control theory (§4),
although stochastic control policies (represented by the dashed line) have not received sufficient attention, leading to poor predictive ability.
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progression of diabetes. Glycogen is the primary carbohydrate

store in mammals, with the major glycogen depots found in the

liver and skeletal muscle [8]. Glycogen can be converted into

glucose and then transported via the bloodstream when

energy requirements increase, a process which is promoted by

glucagon. The storage of excess glucose as glycogen is pro-

moted by insulin when energy supply exceeds demand, for

instance, following a meal. Insulin is also a key regulator of

fat storage, as it promotes fat storage in adipose tissue and sup-

presses its mobilization. The importance of insulin in metabolic

control makes it an important object of study, and it has

received a great deal of mathematical attention (§2).

These feedback loops can break down, however. One key

way that this can happen is the development of resistance to

insulin or leptin. Insulin resistance is the failure of insulin

secretion to lead to the deposition of circulating glucose,

which may occur due to a variety of causes [10], with the

accumulation of fatty acids in cells being an important

cause linking increases in adiposity and the development

of diabetes. Failure of insulin action means that circulating

glucose remains high, stimulating the secretion of more

insulin. This has the potential to lead to damage to the pan-

creatic b cells responsible for insulin secretion, as we discuss

in §2.
2.2. Endocrine, interoceptive and neuronal regulation
of satiety

In addition to being a key player in the regulation of metabolic

fluxes, insulin also has a strong effect on feeding behaviour

via receptors in the hypothalamus [11]. This brain area is a

powerful regulator of feeding behaviour, and integrates other

endocrine signals such as leptin. Leptin is released from adi-

pose tissue, and acts to suppress food intake. Integration of

endocrine signals is accomplished via neurons in the arcuate

nucleus. Similarly to insulin resistance, leptin resistance can

also occur via a number of pathways, but is broadly defined

as the failure of raised leptin levels to decrease food intake

[12]. One key mechanism is alteration of leptin receptor signal-

ling [13], decreasing the effect of leptin once it reaches the brain,

particularly in the arcuate nucleus. Leptin resistance can also

occur via a decrease in the ability of leptin to cross the blood–

brain barrier [14]. In this case, although leptin concentration

in the periphery is high, less of this leptin can have its effect

in the brain. Both of these effects have been considered by a

model of leptin resistance as discussed in §3. Two of the most

important populations are those expressing agouti-related pep-

tide (AGRP) and those that express pro-opiomelanocortin

(POMC). The balance between AGRP and POMC activity



Box 1. Combining machine learning and model-based techniques for large datasets.

Machine learning is a broad label that is applied to a range of statistical prediction techniques, often using large quantities of

data and relatively flexible predictive models. In a machine learning problem we typically have one or more outcomes we

want to predict, as well as a set of data associated with each outcome. A concrete example for this might be predicting

blood glucose level 30 min after a meal. Available data might include blood glucose levels at 5 min intervals preceding

the meal, meal size and macronutrient composition. Each of these corresponds to some numerical value, so we intend to pre-

dict a single unknown variable (future glucose concentration) with a vector of measurements (past glucose levels, meal data).

The known data are referred to as features or explanatory variables. Typically, we would then choose a statistical model with

some unknown parameters u, which we train on data where we know both the explanatory variables and the ‘predicted’ vari-

able. Training corresponds to finding the values of u that best explain the known data. For instance, in linear regression, this

means finding the slope and intercept. The ‘trained’ model can now be used to predict future outcomes for which we only

know the explanatory variables. A problem very similar to the example given above was solved recently using boosted

decision trees [1], which are in effect an extremely large bank of yes/no questions regarding the data, leading to accurate

predictions and the ability to tailor diets to individuals based on personal information such as microbiome sequencing.

In the blood glucose prediction example above, only untransformed data were used. An important technique in machine

learning is generating new features that will increase the accuracy of our predictions. This is known as feature engineering.

This review presents a wide array of techniques for transforming one set of observations into another. Decades of biological

experience are contained within these models, which can obtain hard to measure quantities from easily observable ones, for

instance, converting meal data into expected blood glucose and insulin concentrations. This wealth of biological knowledge

has yet to be put to significant use for making predictions, but could have a huge impact; it is likely that apparently unpre-

dictable behaviour may be driven by underlying explanatory variables (figure 4) that we simply cannot determine from

easily observable data. Feature engineering using models, for instance those presented in this review, could allow access

to these otherwise hidden explanatory variables in an interpretable way. We have not discussed the specifics of individual

models in this box, and instead refer the interested reader to the supplement for details of models in this paper, or to the

many excellent textbooks available [2–5].
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leads to stimulation or suppression of food intake. Other signals

from the body are also integrated in the brain to control feeding:

the gut–brain axis modulates feeding via endocrine mechan-

isms such as ghrelin and cholecystokinin and through direct

neural signals, for instance, of gut distension [15]. Gut disten-

sion and other interoceptive cues also affect other brain areas

including the parabrachial nucleus [16]. The powerful control

loop between endocrine signalling altering food intake and in

turn being altered by the results of feeding makes this an

appealing target for modelling, but the complexity of the

system presents a substantial challenge. Progress on this

problem is collected in §4. Experimental evidence has also

suggested a major role for learning and reward in the control

of food intake [17], and that AGRP neurons transmit a teaching

signal [18]. This has yet to be explored mathematically,

although a ready-made framework is available in the form of

reinforcement learning, which we discuss in §4. This brief intro-

duction to neural and endocrine control has only covered the

basics of a rapidly expanding field, which has been extensively

reviewed elsewhere [15,19,20].
3. Models of endocrine feedback provide a
physiological basis for understanding energy
homeostasis

Mathematical models of glucostasis have a long history, and

were originally devised to model the response to the intravenous

glucose tolerance test and produce a measure of insulin sensi-

tivity. Glucostatic models largely use ordinary differential

equations (ODEs) with multiple compartments representing

different parts of the body. In these, the rate of flow from one

compartment to another (for example, of glucose from the

stomach contents to the blood) is given by a set of equations.
Solving these gives time courses for the compartments, for

instance, blood glucose over time.

There has been a long-running attempt to create an artificial

pancreas for type 1 diabetics [21,22]. This is an inherently

model-driven exercise: to deliver a bolus of the insulin at the

correct time, the artificial pancreas must have some idea of

how this will affect blood glucose in the future, leading to a

continued interest in models of glucostasis relevant to more

realistic situations than the intravenous glucose tolerance test.

These efforts have begun to show fruit, leading to a simulation

model approved for preclinical testing of insulin delivery

algorithms [23,24] and closed-loop insulin pumps now being

brought to market.

In what will become a recurring theme, the main challenge

in taking this technology further is that of variation. There are

several components of variation: inter-individual, predictable

inter-event (e.g. due to diurnal changes), random variation

(where no cause can be identified) and measurement error.

A source of variation can be a member of several of these cat-

egories simultaneously, for instance, different individuals

appear to have different circadian variation in insulin sensi-

tivity [25]. Quantifying these sources of variation is a key

requirement to make prediction of glucose variation as accurate

as possible on an individual basis.
3.1. Pancreatic secretion of insulin in response to a
glucose challenge has been accurately modelled

Insulin has a well characterized, and critical, role in the regu-

lation of glucose homeostasis, and has been extensively

studied both physiologically and mathematically. The short

timescale of insulin action in response to a meal has made it

an ideal candidate for mathematical modelling, as it allows

the predictions of a model to be easily tested in controlled
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conditions. In response to elevated blood glucose, insulin is

secreted from the b cells in the pancreas to modulate glucose

levels, energy storage and appetitive behaviour [26,27]. Insulin

is key to glucostasis—the maintenance of blood glucose at a

certain level. At its most basic, this can be modelled by a set

of coupled differential equations expressing insulin levels as

a function of insulin secretion and clearance, and glucose

levels as a function of glucose arrival and glucose clearance

(due to both insulin-dependent and insulin-independent pro-

cesses) [28,29] (electronic supplementary material, S2.1, S2.2).

The balance between these two functions will define a stable

equilibrium point to which the system will return following

a perturbation, as would follow ingestion of a meal.

A thorough review of glucostatic models has been carried

out by Pattaranit & van den Berg [30], who consider develop-

ments from this simple two-variable ordinary differential

equation (ODE) model to more complex models incorporating

delays and extensions to take into account additional metabolic

and endocrine components such as glucagon and non-

esterized fatty acids. Incorporating delays captures the time

necessary for secretion of additional insulin in response to

elevated glucose and the time taken for it to effect glucose

clearance, and has been analysed by a number of researchers

[31–33] (electronic supplementary material, S2.3). Further-

more, the original minimal model does not model glucose

before it has entered the bloodstream and after its exit; these

terms are simply treated as a source and a sink, respectively:

glucose outside of the circulation is ignored. To study the

onset of obesity it is necessary to keep track of the clearance

of glucose in ways pertinent to the generation and growth of

adipose tissue. A model of this kind was developed by Roy &

Parker by considering the creation of non-esterified fatty acids

[34] (electronic supplementary material, S2.4). Given the impor-

tant role non-esterified fatty acids play in metabolism (see §1),

more development of this model may be useful.

Models of glucostasis in response to a bolus of glucose are

useful for understanding the response to intravenous glucose

tolerance tests, but insufficient for understanding glucostasis

in response to meals. To consider this more realistic situation

we need an understanding of how meals are processed by

the digestive tract and lead to glucose arrival into the blood-

stream. Several models of the digestive system have been

formulated, typically in the form of multiple-compartment

ODEs where the compartments represent parts of the stomach.

The most commonly used model is a multiple-compartment

nonlinear ODE model [35,36] (electronic supplementary

material, S2.5), although other models have been suggested

[37,38] (electronic supplementary material, S2.6 and S2.7).

Given the substantial degree of stable inter-individual

variation in gastric emptying [39], and the effect of meal

composition [40,41] a model that allows for prediction of

gastric emptying rate for an arbitrary meal or individual will

be an important component of personalized approaches to

combating obesity and diabetes.
3.1.1. Statistics and machine learning in glucostasis
Applications of machine learning to problems in energy homeo-

stasis are most advanced in the modelling of glucostasis, which

we review in this subsection. Attempts to control glucostasis

have largely been driven by the goal of engineering an artificial

pancreas and managing its insulin delivery to aid with the man-

agement of type 1 diabetes mellitus. Until recently, most
approaches were based on using physiological models similar

to those outlined above to predict the future course of blood glu-

cose and choose insulin delivery times that minimized the risk of

hypo- or hyperglycaemic events. Prediction of blood glucose

outside of controlled laboratory conditions is complicated by

the fact that multiple complex systems are working simul-

taneously to control blood glucose, which is, in turn, being

perturbed by the absorption of glucose from the digestive

tract. Experimental data to calibrate these models have been

derived by use of tracer techniques and deconvolution in

order to determine time-courses for each model variable [21].

This allows for models of each system to be validated and

parametrized independently, but is time-consuming and exper-

imentally challenging. This presents issues for individualization

as inter-individual variation must be accounted for by tracer

measurements and parameter fitting for each patient. Further-

more, sources of dynamic but predictable intra-individual

variation, such as sleep quality [42,43], digestive tract emptying

rate [39,44] and time of day [45], lead to an unmanageable

growth of experimental measurements. One resolution to this

issue is to exploit our knowledge of how these external, easily

observed factors affect glucostasis by incorporating them as

explanatory factors in a mixed effects model. This approach to

individualization has been applied in the context of intravenous

and oral glucose tolerance test data with several demographic

variables including age, height, weight and sex [46,47].

There is currently a great diversity of machine learning

methods (see box 2) in use, both aimed specifically at indivi-

dualization [48] and at wider applications in diabetes

research [49]. Models of this type typically take in important

explanatory variables that affect glucose homeostasis but are

easily available, such as historic glucose data from continuous

glucose monitors, feeding data and exercise information. Con-

ventionally, these would be used directly in one or more of the

deterministic models described to predict future blood glucose

concentrations and allow an artificial pancreas to release insu-

lin accordingly. Alternative approaches (as described in [48])

are to either learn to predict future blood glucose values from

the observed data directly, or to derive new time data

from the observed data using deterministic models and then

learn to predict using both the original and model-derived

data. This last approach, known as feature engineering, can

increase predictive accuracy [50,51]. There is a wide diversity

of predictive models in use, including neural networks (elec-

tronic supplementary material, S2.8), time-series models

(electronic supplementary material, S2.9) and random forests

(electronic supplementary material, S2.10). The majority of

models evaluated aim to predict blood glucose concentration

on timescales of minutes or hours, and are evaluated with

least-squares error against the true data. Given the range

of models and similar predictive goals, a very useful project

would be to compare predictive performance of each model

on a single dataset, as it is currently unclear how the perform-

ance of these models compares. Model evaluations like

this have been extremely successful in driving progress

in computer vision, for instance, the popular annual

ImageNet competition, and a similar blood glucose prediction

competition could advance the state of the art dramatically. If

pre-existing datasets could be pooled this would also overcome

the relatively small sample sizes in much of the work to date,

and reduce the barrier to entry for researchers without the abil-

ity to collect clinical data. Although this would increase the

diversity of populations in the dataset, this is a challenge that
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Figure 2. (a) Dynamical systems models of glucostasis illustrate the importance of considering both short- and long-term behaviour. The schematic on the left
illustrates the interplay between short-term glucostasis due to the action of insulin and the long-term effect of elevated glucose on the b cells in the pancreas.
Initially, the glucose/insulin system is at a fixed point: glucose and insulin concentrations are stable. After receiving a glucose spike, for instance following a meal,
the system evolves towards a new set point at a higher glucose concentration. Glucose levels above a certain level lead to pancreatic b cell death (shaded region)
and the amount of time the system spends in this region, as well as the amount glucose levels exceed the threshold, determine the level of b cell damage. This
damage reduces insulin secretion, which in turn moves the fixed point to a new value. The degree to which this movement occurs in a single cycle has been
exaggerated to increase the clarity of the figure. (b) A similar model of leptin resistance, in which leptin receptor density depends nonlinearly on leptin concen-
tration, also shows a rich phenomenology. As the effect of leptin concentration on food intake and the rate at which excess leptin concentration causes receptor
desensitization are varied (as can happen when exposed to more palatable food and during ageing, respectively), the steady state of the system can vary sharply. A
mouse with initial low body fat will return to a healthy steady state, whereas an obese one will return to obesity following a perturbation.
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these algorithms will have to meet when deployed in real

clinical usage.
3.1.2. Multiscale models of endocrine systems predict aetiology
of regulatory disorders

The models of insulin-mediated glucose homeostasis dis-

cussed in the previous subsections treat the ability of the

body to secrete insulin from the b cells of the pancreas in

response to glucose levels as fixed. However, in reality a

damaged pancreas may be less able to secrete insulin in

order to match the demands placed upon it by elevated glucose

levels, leading to a higher steady-state blood glucose concen-

tration. Blood glucose may also have a nonlinear effect on

pancreatic b cell mass, with moderately elevated levels leading

to b cell proliferation and highly elevated levels resulting in

loss of b cells due to apoptosis [52,53]. The interplay of the

short timescale insulin–glucose system with the long timescale

dynamics of pancreaticb cell mass has been investigated math-

ematically, which we summarize in figure 2a, with the results

suggesting multiple pathways to diabetes.

Topp et al. [54] were the first to couple insulin regula-

tion with b cell mass in a key early result (electronic

supplementary material, S2.11). By combining models of

insulin-mediated glucostasis [29,55] with a nonlinear model

of pancreatic b cell mass [56] they obtained results for the
dynamical structure of the composite system. The interplay

of the long-term changes in b cell mass and baseline glucose

concentration leads to complex and medically relevant

dynamics: for glucose concentrations below a certain

threshold, the system is attracted to a stable fixed point

where both glucose and pancreatic b cell mass are main-

tained at a healthy level. The system possesses a saddle

point, however, and upon moving past the saddle point on

the slow manifold, b cell mass tends towards zero, leading

to high levels of blood glucose. Further developments

[57,58] (electronic supplementary material, S2.12) led to a

multiscale model of glucose homeostasis that considers the

impact of glucose arrival patterns [59] (electronic supplemen-

tary material, S2.13). Spikes in glucose arrival are predicted to

lead to worse outcomes as they cause blood glucose levels to

spend more time at concentrations leading to b cell damage.

This illustrates the importance of considering glucose arrival,

and thus of modelling the gut (see above).

Finally, a recent model by Jacquier et al. [60] performs a

dynamical systems analysis of a model of progressive leptin

resistance coupled to the energy partition model of Hall

et al. (electronic supplementary material, S2.14), figure 2b.

This model is similar in character to the models of pancreatic

b cell dynamics described in this section; the receptor cell

population varies nonlinearly with leptin concentration,

meaning that at low concentrations the receptor population



Box 2. Dynamical systems and homeostasis.

In this review, we have made use of concepts from the theory of dynamical systems. In this box, we provide a brief qualitative

overview of terms used elsewhere in the article. A dynamical system is defined as a set of variables and functions that govern

how these variables change through time given the current value of each variable. The set of all possible values of all of the

variables is referred to as phase space, a point in phase space represents the state of a system, and the path that is taken by a

system through phase space is called its trajectory or flow. The number of variables that comprise the system is known as its

dimension; a one- or two-dimensional system can have its phase space represented as a diagram (known as a phase portrait)

as described in the examples below.

A system may possess points in phase space which a system will never leave once it has arrived at them; these are called

fixed points. For example, a ball rolling in a valley will eventually come to rest at the bottom of the valley, which is the fixed

point of the system. Similarly, a ball at rest on the flat top of a hill will, without perturbation, never roll down. These two

fixed situations illustrate two important kinds of fixed points: stable fixed points (the valley) and unstable fixed points

(the hill). More complicated systems can also possess limit cycles—fixed orbits in phase space. We expect that a perfect

homeostatic system should possess stable fixed points or limit cycles; this corresponds to our intuition that the system

will return to either a stable state or a stable oscillation (in systems in which, for example, circadian rhythms are important).

The stability of a system given by a set of equations can vary based on the parametrization of that series of equations. For

example, the generic form of a quadratic equation is given by ax2 þ bx þ c ¼ 0. In this equation a, b and c are the parameters

and x is the variable. A change in stability brought on by a change in parameter value is known as a bifurcation. Bifurcations

have already been encountered in endocrine modelling, for example, as described in §4.

In systems with multiple variables, there may be lines in phase space along which a particular variable does not change.

These are referred to as nullclines and are of great importance in determining the stability of a system. Variables may change

with different characteristic speeds in a system; for example, changes in insulin secretion take place on a much faster time-

scale than changes in adiposity. In such systems it can be useful to introduce the concept of fast and slow manifolds,

corresponding to the behaviour of the system on different timescales. One approach to multiscale systems is to split them

into multiple subsystems, each functioning on different timescales. The behaviour of one subsystem can manifest itself in

another subsystem through a change in parameter values. Dynamical systems theory thus offers many tools for the analysis

of time-evolving biological systems, and the interested reader is directed to excellent texts by Strogatz or Kaplan & Glass [6,7]

for a more detailed introduction.
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increases whereas at higher concentrations leptin receptors

die off, increasing food intake. The system can undergo a

bifurcation leading to the creation of a stable equilibrium at

a high level of adiposity and the destruction of the previous

healthy equilibrium.

It may be possible to combine multiscale models with

continuous glucose monitoring data to provide estimates of

the rate of progression towards diabetes in prediabetic or

otherwise high-risk patient groups. By using the continuous

glucose monitoring data to estimate insulin levels, and thus

pancreatic response to glucose load, measures of insulin sen-

sitivity and b cell function may be tracked over time. It has

already been shown that this information can be extracted

from intravenous and oral glucose tolerance test data by

using models outlined in this section [61]—given the

advances in both models and sensor technology since this

work was done it is highly likely that it can be adapted to

continuous glucose data, leading to more effective screening

and preventative action.
4. Body composition models have a vital role
to play in precision medicine

Once an animal has eaten, the energy provided by the chemical

bonds in the food cannot be destroyed, but must be used by the

organism, stored in new chemical bonds, or dissipated as heat.

This simple constraint has inspired models which equate the

energy flux into an organism from its food with the above

expenditures. In these models, the body is typically split into

multiple compartments representing different components

such as fat, non-fat tissue and circulating reserves (figure 3a)
and expenditure is taken to depend on energy intake and the

composition of these compartments. The dynamics of body

composition then depends on the partition of energy between

expenditure and storage in adipose tissue. Although our

understanding of the physiology of the system is sufficient to

specify different components of energy expenditure such as

specific dynamic action (i.e. the thermic effect of feeding),

basal metabolic rate and expenditure due to physical activity,

these models typically make no predictions about energy

intake from feeding. The final requirement for specifying

such a model is a set of laws characterizing how energy is

partitioned among the various compartments. Changes in

body composition typically occur over long timescales, so

energy partition models focus on long-term dynamics and

often do not model short-term behaviour. This can be accom-

plished in a rigorous mathematical way by a technique

known as separation of timescales, in which the short-term

behaviour is averaged out and integrated into the long-

term system (see box 2); however, this relies on a number of

assumptions that may not always be fulfilled. By mathemat-

ical analysis of these systems it is possible to determine how

they will behave in different circumstances, for instance, if

they will tend towards fixed body compositions, or whether

a wide range of compositions are possible. In the section

below, we review these energy partition models and their

properties.

4.1. The energy balance model predicts body mass and
composition changes over long timescales

A substantial number of energy partition models have

been formulated [62–67] (electronic supplementary material,



expenditure E(F, L)

fat mass F

fat-free mass L

F F F

L L L

energy partition
f (F, L)

stable fixed
point

1 2 3

stable
manifold

multiple
fixed
points

intake

Figure 3. Multiple-compartment models can have different stability properties depending on the rules governing energy partitioning and expenditure. These stab-
ility properties can lead to significant differences in physiological outcomes—at a stable fixed point any disturbance, such as a change in energy intake, will lead to
compensatory changes that return the system’s state to the fixed point. Multiple fixed points are similar, except that the system will reach differing fixed points
depending on its state, so potentially large nudges may be needed to move from one fixed point to another. The existence of two stable fixed points implies the
existence of an unstable fixed point. Finally, the system is stable at all points along a stable manifold, so small perturbations allow the system to be nudged to other
states on the manifold.
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S3.2–S3.7). The model that has been most extensively theoreti-

cally developed and experimentally verified has been

proposed by Guo & Hall for mice [68,69] and later applied to

humans [70]. This model considers energy intake due to carbo-

hydrates, fat and protein, and storage in fat mass, fat-free mass

and blood glucose. Over long timescales the system is taken to

be in average carbohydrate balance and glucose stores in the

blood are neglected, leaving a two-compartment model pre-

dicting the dynamics of fat and fat-free mass over weeks and

months. The law governing the partitioning of energy between

the two compartments is Forbes’ law [71,72] (electronic sup-

plementary material, S3.1), which states that the rate of

change of fat-free mass with respect to fat mass grows exponen-

tially with increasing adiposity. This quantifies our intuitive

understanding that, without significant muscle growth,

increases in weight are largely due to increased fat deposition,

and that initial body composition has a significant effect on the

final state. Forbes’ law has significant empirical justification for

adult humans under normal conditions but less so for infants

or for adults in situations where body composition changes sig-

nificantly for reasons other than weight loss (such as when

undergoing resistance training) or for other species.

The energy balance model (electronic supplementary

material, S3.2) has been verified against both human and

mouse data [68–70] and adapted to model the dynamics of

body composition in growing children [73]. The energy balance

model has also been applied in a public policy setting to evalu-

ate the impact of food wastage in the USA by providing an

estimate of the energy requirements of the population, allowing

food wastage to be calculated as the difference between esti-

mated food purchases and calorie requirements [74]. If given

data on food intake, the energy balance model agrees well

with experimental data on body weight and composition,
indicating that if it could be combined with a computational

model of food intake, the resulting model may be able to

accurately predict [62] long-term body composition dynamics.

An alternative approach is to derive results based on how

the components of energy homeostasis scale with body size.

Kozusko [67] considers a model of this kind with energy

expenditure varying as a linear function of body weight (elec-

tronic supplementary material, S3.6). Metabolic scaling with

body size has been widely investigated in ecology, with a

number of scaling relations suggested [75–77]. These scaling

relations form the basis of work by Antonetti [66] (electronic

supplementary material, S3.7) which considers the body-size

scaling of basal and activity-based energy expenditure. This

approach has the appealing property of being relatively

organism-independent, as some scaling laws have been

observed to hold over a wide size range. However, it

should be noted that scaling laws have been the subject of

some controversy and that inter-species scaling may obey a

different law to intra-species scaling [78,79].

4.2. Dynamic energy budget theory derives general
growth and scaling laws from simple assumptions

Dynamic energy budget (DEB) theory [80–82] (electronic sup-

plementary material, S3.8) is a general theory of growth and

maturation which respects stoichiometric constraints, i.e. the

conservation of total number of carbon, nitrogen and other

molecules. It is not designed with reference to any particular

organism, but instead to be able to match any organism

through changes of parameters in the model and possibly

extensions to the basic theory. In the basic formulation of

DEB theory the body is divided into three compartments, in

contrast to the two in the basic energy partition model. These
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compartments are denoted ‘reserve’, ‘maturity’ and ‘structure’,

and energy is allocated from intake to each compartment based

on a series of partitioning rules. These compartments do not

necessarily map directly to individual organs or components

of an organism, but rather represent the activities the organism

prioritizes expending energy on. Organisms grow by allocating

energy to maturity, after which they can then allocate energy to

reproduction if energy availability permits, leading to the gen-

eration of offspring. Each compartment entails costs both for

growth and maintenance, causing energetic costs to increase

with growth. The basic DEB theory model allows derivation

of a number of well-known results, such as Kleiber’s law of

metabolic scaling [76] and the growth law of von Bertalanffy

[83,84]. DEB theory offers a widely applicable framework for

predicting growth and development, while also respecting

fundamental stoichiometric constraints.

4.3. Many models of energy partition can be reduced
to two-compartment models which can be
analysed using dynamical systems theory

Energy partition models share a common structure, suggesting

that it is possible to analyse the properties of all such systems and

identify the key factors that determine their behaviour. Chow &

Hall [85] performed such an analysis on two-compartment

models, and identified that all such models must possess fixed

points, and that the nature of these fixed points (see box 1)

will be determined by the functional forms of energy expendi-

ture and the fraction of energy derived from fat (electronic

supplementary material, S3.9). Depending on the nature of

these two functions, for a given intake there may be a single

fixed point, a multitude of discrete fixed points, a continuum

or an unstable fixed point with a stable limit cycle around it,

as illustrated in figure 2b and detailed in box 1. These correspond

to very different physiological outcomes. In the first case, the

system will always attempt to defend a fixed body composition,

and any attempt to alter this will be fighting against the natural

dynamics of the body. In the second case, there is more hope—

it may be possible to move from a physiologically dangerous

fixed point to one which is less dangerous through a

perturbation of sufficient size. The third case is even more

optimistic—small perturbations may disturb the system’s state

along the continuum of fixed points, meaning that small,

gradual changes are possible. Finally, if a limit cycle exists

then weight will naturallyoscillate over time through a predeter-

mined pattern to which it will return after any small

perturbation. Chow & Hall find that the energy balance model

discussed previously possesses a continuum of fixed points if

there is no correlation between feeding behaviour over multiple

days. It is not clear what effect more complex stochasticity might

play on the behaviour of the system, as it has been found to have

surprising and complex effects in other dynamical systems

analyses, e.g. [86].

4.4. Individualizing energy balance models
Inter-individual variation in energy balance has received

considerable attention both theoretically and experimentally.

Energy intake and expenditure both vary substantially

between individuals, with basal metabolic rate [87], dietary

induced thermogenesis [88] and absorption of energy from

ingested foods [89,90] exhibiting the most variation. Inter-

individual variability in basal metabolic rate is particularly
important to consider as currently a substantial amount of vari-

ation cannot be predicted by known covariates such as body

weight and composition [87]. It is possible that hierarchical

modelling may resolve this issue in the same way as it has

been applied to glucostasis. A further source of variation that

has not been considered is the possibility that the partitioning

law in the Forbes model may vary between individuals: some

may be more predisposed to deposit energy as fat than others.

Although a simulator of the energy balance is available online

[91], it does not allow these parameters to be estimated from

data. Given the explosion of connected consumer devices

such as body composition measuring scales, food tracking

and exercise logging apps and heart rate enabled activity track-

ers, the data required for individualized energy expenditure

estimation is rapidly becoming available and easy to collect.

This personalization of energy balance data might allow for

more accurate calibration of required energy intake and expen-

diture, perhaps leading to more successful weight loss. On its

own this will not solve the obesity epidemic; however,

energy partition models have been used to compare predicted

weight loss under a calorie-restricted diet with the observed

weight loss [92]. Even accounting for variation within individ-

uals, these diets have dramatically less effect than they should.

A careful model-based study of possible causes identified fail-

ure to comply with low-calorie diets as the main reason they

fail. Clearly traditional low-calorie diets are hard to maintain.

However, it may be that by understanding determinants of

eating behaviour and satiety we can construct individualized

diet plans that maximize satiety while keeping energy intake

low. To do this requires short-term models of feeding

behaviour, which we discuss in the next section.
5. The importance of stochastic behavioural
models for precision health

As we have seen, it is possible to predict the effects of regulat-

ory dysfunction through modelling techniques, and in the near

future it may be possible to optimize the treatment of type 1

diabetes by using models to more accurately predict individual

blood glucose response to food or insulin administration.

These techniques may be applicable beyond type 1 diabetes,

however, for example in predicting deviations from planned

diets. To do this will require an understanding of behaviour

on short timescales, at the resolution of individual meals.

This is the scale at which diets fail: although low-calorie diets

can produce weight loss initially, their failure to produce suffi-

cient satiety leads to loss of diet adherence in the longer term.

The means by which food evokes satiety are complex; however,

good proxies for satiety levels are time until the next meal or

snack, and the calorie content of this feeding episode. Again,

the explosion of data from wearable devices and food logging

apps offers new opportunities to collect datasets orders of mag-

nitude larger in both duration and sample size than those used

previously in most studies of human feeding behaviour. Lever-

aging these data alongside pre-existing models and machine

learning techniques may allow for personalized diet plans

that maximize satiety at a given level of caloric intake. Some

plausible candidates for mechanisms by which this could

be accomplished include high-protein preloading prior to a

meal [41], altered nutrient composition [93] and improved

sleep quality [94] among many others. More speculatively, per-

sonalized predictive modelling could be used to support
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behavioural approaches to treating metabolic disease, for

example predicting when waning satiety or nadir blood glu-

cose is likely to result in increased hunger, allowing users to

ensure they have alternative activities or healthy snacks

available to avoid temptation. In this section, we discussed

models for regulation of feeding behaviour, emphasize the

importance of stochasticity and suggest ways forward for this

under-developed area of modelling.
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5.1. Control-theoretic models have succeeded at long
and very short timescales, but meal-level
behaviour has been neglected

The ideas of homeostasis and control are closely linked

and have been well-studied in mathematics and engineer-

ing. Norbert Wiener—a pioneer in the understanding of

homeostasis—was also deeply involved in problems of

machine control in the presence of uncertainty, particularly

through use of feedback mechanisms [95–97]. Feedback con-

trol relies on the integration of multiple signals, which

are then integrated to yield some behavioural output. Behav-

ioural control differs from most control mechanisms in that

control can only be exerted through discrete events such as

feeding, rather than in a continuously varying way, for

example through a continuous increase in insulin secretion.

This makes modelling control of ingestion at the level of

individual meals relatively challenging as many of the math-

ematical techniques of control theory are not applicable.

These techniques have some applications at higher or lower

time resolutions, such as in the control of feeding rate within

a meal or over a period of months. Davis & Levine formulated

a model in which feeding input is regulated by a control circuit

which incorporates a negative feedback loop reducing intake

when the gut fills in a manner similar to a proportional-inte-

gral controller (a control mechanism which adjusts the

strength of feedback based on the difference from some desired

value and the duration for which this difference has existed

[98]). This theory obtained good agreement with prior exper-

imental data [99] (electronic supplementary material, S4.1);

however, it only models ingestive behaviour in a single

feeding bout.

Control-theoretic models are a natural way to investigate

the thrifty gene hypothesis. At a longer timescale, more

standard differential equation models can again be applied by

averaging out feeding behaviour to a continuous arrival of

food. A model of leptin-mediated control of feeding behaviour

compared the set-point and settling-point hypotheses by using

different control architectures [100] (electronic supplementary

material, S4.2), showing that neither hypothesis can fully

explain energy homeostasis. Set point models fail to recapitu-

late diet-induced obesity, whereas settling point models fail in

low-calorie conditions. A model in which integral control

only activates below a threshold achieves better results, with

weight gain less tightly controlled than weight loss. This is ana-

logous to the ‘drifty gene’ model proposed by Speakman and

colleagues [101,102]. Jacquier et al. [103] propose a multisyste-

mic model incorporating ghrelin, glucose and leptin-mediated

control of feeding with the energy balance model from the pre-

vious section (electronic supplementary material, S4.3).

Although the idea of determining feeding behaviour from

underlying endocrine data is interesting, glucose and ghrelin

levels typically fluctuate largely in response to individual
meal bouts, which are averaged out in this model. This makes

the interpretation of changes in these endocrine time series

unclear, and they would seem to be more naturally included

in a short-term feeding model.

To our knowledge the only stochastic model of feeding

at the level of individual bouts is a model based on calorie

flows formulated by Booth & Toates [104,105] (electronic sup-

plementary material, S4.4). This model incorporates feeding

and energy expenditure, which has been tested against exper-

imental data [106]. One of the predictions of this model is that

gut filling is the feedback signal driving the multiple small

feeding bouts that are observed in mice and rats (rather

than, for example, a single long bout). Although this model

has had some success, it is only weakly stochastic and so gen-

erates trajectories that appear unnaturally regular. This limits

both its ability to predict meal timings and to quantify its

level of uncertainty about them. It is also quite complex,

with many internal variables, and provides no natural way

to infer parameters which govern behaviour—these must be

set by manual tuning.

Another approach to control problems is based on optimal-

ity: given a mathematical description of the dynamics of a

system, the constraints on how it can be controlled, and a

way of scoring the quality of a given control strategy (this

scoring is known as the cost function or fitness) the optimal

control can often be derived. This provides the best possible

strategy for that cost function. This approach was reviewed

by McFarland [107], who, with Sibly & McFarland [108],

applied it to a model of animal feeding and drinking (electronic

supplementary material, S4.5). A common criticism of optimal-

ity arguments is that the choice of cost function can appear

arbitrary, but can have a profound impact on the optimal

control policy selected. Despite this, in the context of energy

homeostasis, energy-balance based cost functions can be a

natural choice and have been used to predict nontrivial behav-

iour in other organisms [109]. Optimality arguments have been

useful in the study of other classes of behaviour, for example,

work by McNamara & Houston on fitness in relation to repro-

ductive ability at the end of a finite time window, with the

specific example of a bird which can choose to forage or per-

form nonforaging tasks which improve its reproductive

chances [110] (electronic supplementary material, S4.6).

5.2. Models of learning and reward exist, but have yet
to be applied to feeding behaviour

An appealing formalism, and one which incorporates the

stochasticity inherent in studying behaviour on a short time-

scale, is that of Markov Decision Processes. In a Markov

Decision Process agents possess a ‘stochastic policy’ which

governs how likely they are to pick a course of action given

their state. This policy can be well-adapted to the environment

if it leads to frequently selecting beneficial choices, where ‘ben-

eficial’ is defined by some reward function analogous to the

cost function in optimal control. A model of this type has

recently been formulated for working for brain stimulation

reward in rats where theory showed good agreement with

experimental data [111] (electronic supplementary material,

S4.7). Developing models of this type for feeding behaviour

presents challenges, however, as brain stimulation can be con-

sidered to always provide a constant level of reward whereas

the reward provided by feeding is almost certain to depend

on an animal’s nutritional state.
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Figure 4. Apparent stochasticity in inter-meal intervals is partially explained by stomach fullness: when the stomach is empty, feeding bouts are very likely to
commence. (a) Feeding bout data indicating time, duration and average feeding rate. Each meal is composed of multiple feeding bouts, and terminated with a
longer pause. Shaded areas indicate dark period (1800 – 0600). Data are from a male Wistar rat recovering from a fast, observed using an open-circuit comprehensive
laboratory animal monitoring system (CLAMS; Columbus Instruments, OH, USA). (b) Feeding data are converted to calculated stomach fullness by use of the model
for gastric emptying in [104]. Daytime feeding terminates at a lower level than feeding in the dark period (shaded area, as above), and stomach fullness reaches a
characteristic peak around midnight.
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Finally, a modern approach to understanding behaviour at

the neuronal level is through inverse reinforcement learning

[112]. In this approach, the system is modelled as a Markov

Decision Process with unknown reward function, which is

inferred through observing examples of the system’s behav-

iour. Once this reward function has been learnt, the model

can then be used to reproduce behaviour similar to that of

the system being modelled. This has been successfully applied

to thermotactic behaviour in Caenorhabditis elegans [113]

(electronic supplementary material, S4.8) and is likely to be

applicable to other homeostatic behaviours such as feeding.

Applying inverse reinforcement learning to neuronal firing

data from modern imaging techniques [114] could provide a

natural interpretation of the inferred reward function and

way to integrate results such as the negative valence of

AGRP neuronal activation [115]. Model-derived features

such as stomach filling could provide insights into how

peripheral signals are integrated in the brain to drive behav-

iour. However, interpreting models derived from inverse

reinforcement learning is challenging and is a current area

of research. A possible model-based way to understand neur-

onal firing data is through neuronal mass models. These are

simpler to construct, model, and interpret than stochastic

models of individual neurons, and consider neuronal acti-

vation at the population level. They have previously been

used to understand regulation of the sleep–wake cycle and

its response to perturbations [116] (electronic supplementary

material, S4.9). Using modern imaging techniques it may

be possible to fit neural mass models to population level

firing data (for example, [117]) to understand the effect of

endocrine drives on feeding.
5.3. Stochasticity at the level of meals is a
crucial missing link in understanding
homeostatic behaviour

In general behaviour comes about through the interplay of

multiple competing drives—for instance drives for food,

water and for sleep. As we have spent the majority of this

review showing, most regulatory phenomena are most natu-

rally modelled through continuously varying physiological

states, for example glucose/insulin levels and endocrine

responses, stomach filling and patterns of body composition.

In spite of this, behaviour is definitely not deterministic—rats

do not start and stop feeding like clockwork. Nevertheless,

we expect that the physiological state of the rat does exert a

strong influence on when rats switch between behavioural

states. This is backed up by data—when we applied a simple

stomach emptying model [104] to experimental data we

found a remarkable linkage between stomach fullness and

both meal initiation and termination (figure 4). Although the

feeding bouts appear random when considered on their own,

looking at stomach fullness alongside the feeding data shows

an important underlying structure, as well as patterns of

day/night variation.

The interrelation between a stochastically switching

behavioural state and a continuously varying deterministic

physiological state falls between two of the major paradigms

of stochastic processes. Markov chains model switching

between discrete states; however, these switches typically

happen at a constant rate and so fail to capture the dependence

on the physiological state. Stochastic differential equations
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model stochastic changes in continuous variables, but do not

offer any way to couple this to a discrete behavioural state.

An appealing alternative way to model homeostatic behav-

iour is through use of Piecewise Deterministic Markov

Processes, also known as stochastic hybrid models [118].

These are generalizations of Markov chains that provide

precisely the properties we want: a set of discrete states corre-

sponding to different behaviours, each of which leads to

different dynamics on a set of continuous variables corres-

ponding to the animal’s physiological state. An application of

Piecewise Deterministic Markov Processes to feeding behaviour

would be to consider a model with three states: feeding, short

pauses within a meal and long pauses which terminate a

meal. To capture the behaviour shown in figure 4 we would

expect that the length of a long pause be dependent on stomach

fullness, and the probability of entering a long pause should

grow as the stomach fills. This review has primarily considered

continuously varying physiological models; however, the form-

alism we have outlined here allows for a natural coupling of

these mechanistic models to models of behaviour.

A second approach to predicting feeding behaviour is

through machine learning tools. As we have seen, these have

had some success at predicting quantitative outcomes, for

example post-prandial glucose response and blood glucose.

The difference here is in the level of predictability of the data.

As can be seen in figure 4, although model-derived features

(in this case stomach fullness) are informative of feeding behav-

iour, there is still a substantial amount of variability. It may be

that this can be accounted for by enhancing the feature set, for

example by including movement and energy expenditure data,

however it is possible that behaviour is inherently less predict-

able than mechanistic responses such as glucostasis, in which

case a more detailed understanding of stochasticity may be

required, incorporating insights from the large behavioural

datasets arising from wearable devices and other personal

omics technologies.
6. Conclusion
We have brought together diverse areas of modelling in

energy homeostasis covering endocrine regulatory systems

with a specific emphasis on glucostasis, models of body
weight and composition over time, and models of behaviour

across multiple timescales. This review has been written to be

accessible to the non-mathematician, but we direct the inter-

ested reader to our extensive electronic supplementary

material where we outline the mathematical details of many

of the models we highlight. In each case it has become

clear that the advances needed to translate these models

into useful tools is individualization. Fortunately, the com-

prehensive datasets needed to do this are rapidly becoming

available through wearable technology and activity trackers.

Machine learning techniques offer an appealing way to

learn from this large quantity of data, however they can be

enhanced by leveraging the decades of physiological under-

standing represented in the mathematical models reviewed

in this article to engineer improved features that can lead to

better predictions

The key area for development is in short-term models of

feeding behaviour, with resolution of a single meal. By learning

from both data and prior experiment how to maximize satiety

without increasing calories it may be possible to provide indi-

vidualized diets that help prevent the failures of compliance

typically associated with long-term low-calorie diets. There

are technical challenges to overcome, particularly in individua-

lizing physiological models for feature engineering and

correctly understanding the type of stochasticity associated

with feeding behaviour. If these can be dealt with, the math-

ematical and machine learning models outlined in this

review may prove central to combating the growing obesity

epidemic by simply providing, in a dynamic and personalized

manner, the right information and guidance for people to make

healthier choices.
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