
One of the overarching goals in the treatment of blinding 
diseases is to determine the underlying pathological mecha-
nisms that lead to blindness. Mutations in genes encoding 
retinal trafficking proteins often manifest as blinding 
diseases, such as retinitis pigmentosa (RP). RP is a heteroge-
neous group of hereditary disorders that lead to the progres-
sive loss of retinal function. RP is the most common inherited 
disease leading to blindness, with a worldwide prevalence of 
1 in 3500 people; roughly 25% of these cases are autosomal 
dominant retinitis pigmentosa (ADRP) [1-3]. To date, more 
than 25 genes are known to cause ADRP, and over 1000 
mutations have been reported in these genes [4]. Transgenic 
mouse, rat and fly models of ADRP have been constructed 
based on human rhodopsin mutations, and in mice apoptotic 

cell death has been shown as the route of retinal degenera-
tion [2,5-7]. Symptoms include reduction in the peripheral 
visual field, leading to tunnel vision and total blindness. In 
patients, disease onset typically begins in the early teenage 
years, and severe visual impairment occurs between the ages 
of 45 and 60 [8]. Typically, mutations in the C-terminus of 
the rhodopsin gene cause an earlier onset time course of 
degeneration in patients [2]. One such mutation, Q344X, is 
a naturally occurring rhodopsin ADRP mutation that causes 
a truncation of the protein, effectively removing the traf-
ficking signal VAPA and leading to rhodopsin mislocalization 
and subsequent cellular apoptosis [2,9]. While it has been 
shown that mutations in genes encoding retinal trafficking 
proteins affect processes vital for cell function and overall 
homeostasis, the underlying pathological mechanisms remain 
largely unknown.

In recent years, more studies have investigated the 
genetic and environmental influences associated with the 
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onset and progression of retinal diseases, analyzing how these 
risk factors contribute to molecular alterations that ultimately 
lead to pathology [10-12]. Regulated gene expression is essen-
tial for proper cellular function and homeostasis. One method 
cells use to control gene expression is the structural altera-
tion of the chromatin complex consisting of DNA, RNA, and 
protein [13,14]. Mechanisms that cause modifications of chro-
matin structure without changing the nucleotide sequence are 
known as epigenetic mechanisms, which trigger alterations 
in gene expression [10,15-17]. Histone modifications and 
DNA methylation are the two most extensively investigated 
epigenetic marks and contain distinct mechanisms affecting 
the repression or activation of transcription, which is depen-
dent on factors such as the type of modification, genomic 
locations, and site specificity [10,14,18]. Recent studies 
have shown that these epigenetic marks change within the 
organism throughout its lifetime, finding that both histone 
subunit composition and DNA methylation are dynamically 
regulated in cells [16,19-21]. Nevertheless, it is evident that 
DNA methylation and attendant changes in chromatin struc-
ture are capable of self-perpetuation and self-regeneration. 
Disruption of these mechanisms can contribute to neuron and 
neural circuit dysfunction.

While it is evident that transcriptional and epigenetic 
processes are linked to disease and impairment in non-retinal 
tissue, there is lack of gene profiling studies of RP. Indeed, 
previous studies have investigated the transcriptome and novel 
transcripts in the retina [22,23], including the transcriptome 
from the autosomal-recessive RP model, rd10 [24]. However, 
to date, the ADRP model rhodopsin Q344X has not been 
profiled using whole transcriptome techniques. In this study, 
we analyzed the transcriptomic alterations in the mRNA from 
3-week-old mouse retina in the rhodopsin Q344X ADRP 
model relative to age-matched wild-type (WT) mouse retina 
to identify the potential targets of epigenetic modifications. 
This time point was specifically chosen because it has already 
been shown in this model that outer nuclear layer thickness 
and outer segment length are maintained and display no 
structural characteristics of retinal remodeling [25]. Further-
more, to investigate whether epigenetics may have a role in 
driving and perpetuating persisting changes within rhodopsin 
Q344X, we examined the levels of protein expression from 
two histone proteins, histone H3 phosphorylated at serine 10 
and histone H4.

METHODS

RhodopsinQ344X/Q344X mice: Homozygous knock-in mice 
expressing human rhodopsin Q344X (Q344X mice) have 
been previously described [25]. The mice were kept on a 

12-h light/dark cycle. All procedures were performed using 
Institutional Animal Care and Use Committee (IACUC)-
approved protocols and were conducted in full compliance 
with the Association for the Assessment and Accreditation 
of Laboratory Animal Care (AAALAC).

RNA sequencing and bioinformatics: For RNA sequencing 
(RNA-seq), the retinas were extracted from 3-week-old 
mice (n=40 Q344X; 20 females, 20 males and n=34 WT; 
17 females, 17 males; samples were collected at approxi-
mately noon) and placed in stabilization reagent (RNAlater, 
QIAGEN, Hilden, Germany; Catalog no. 76,104). Total RNA 
was extracted (RNeasy, QIAGEN; Catalog no. 74,104) and 
quality controlled (Bioanalyzer, Agilent, Santa Clara, CA). A 
single WT replicate contained a RIN number <7, which was 
removed from the study. Poly(A) selection was performed, 
and the libraries were constructed using the NEBNext Direc-
tional RNA Library kit at the HudsonAlpha Institute for 
Biotechnology. Multiplex sequencing was performed with the 
Illumina HiSeq 2500 system (HudsonAlpha, v4 sequencing 
reagents, paired end, 50 bp). All samples contained a 
minimum of 26 million paired end reads with an average 
number of 26.4 million reads across all replicates.

The FASTQ files were uploaded to the University of 
Alabama at Birmingham’s high-performance computer 
cluster, Cheaha, for bioinformatics analysis. First, the quality 
and control of the reads were assessed using FastQC, and 
trimming of the bases with quality scores of less than 20 was 
performed with Trim_Galore! (v 0.4.4). Following trimming, 
the reads were aligned with STAR [26] to the mm10 Ensembl 
genome (v 2.5.2a. During runMode genomeGenerate, the 
option sjdbOverhang was set to 49). The alignment resulted 
in an average of 92.3% of reads that were uniquely mapped. 
The total number of reads that were uniquely mapped per 
sample is shown in Appendix 1. Gene-level counts were 
generated from the binary alignment map (BAM) files using 
the featureCounts [27] function in the Rsubread package 
(v 1.26.1) in R with the Mus_musculus.GRCm38.90.gtf file 
from the Ensembl database. The options used included: 
isGTFAnnotationFile=TRUE, useMetaFeatures=TRUE, 
isPairedEnd=TRUE, requireBothEndsMapped=TRUE, 
strandSpecific=2, and autosort=TRUE; additional options 
were kept as default. A summary of the read assignment 
per sample is given in Appendix 1. Further, the gene body 
coverage from the BAM files was evaluated with RSeQC (v 
2.6.3) and is reported in Appendix 1.

Finally, DESeq2 [28] (v 1.16.1) in R was used to perform 
count normalization and differential expression analysis. 
Following count normalization, principle component analysis 
(PCA) was performed and sample-to-samples distances were 
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computed using the Euclidean distance. The analysis identi-
fied a replicate from the Q344 × group as an outlier, which 
was removed from further analysis (Appendix 2). Therefore, 
the final data set for the current study includes two Q344X 
replicates and two WT replicates.

Differential expression was computed in DESeq2 with 
the application of the Benjamini & Hochberg false discovery 
rate (FDR) method to adjust the p values from multiple 
testing. Genes were called differentially expressed genes 
(DEGs) if they passed a statistical cutoff of FDR p<0.05 and 
if they contained an absolute log2 fold change (FC) >=1. Func-
tional annotation enrichment analysis was performed in the 
NIH Database for Annotation, Visualization and Integrated 
Discovery (DAVID, v 6.8) by submitting all DEGs identified. 
The Benjamini & Hochberg FDR correction was also applied 
to determine gene ontology (GO) terms and KEGG pathways 
with the cutoff of an FDR p<0.05.

The FASTQ files for the current study have been 
uploaded to NCBI’s Gene Expression Omnibus under acces-
sion number GSE102247. Figures, including the heatmaps, 
scatter plot, volcano plot, and box plots were made in R with 
the following packages: ggplot2 (v 2.2.1), ggforce (v 0.1.1), 
pheatmap (v 1.0.8), and gplots (v 3.0.1). The heatmap of the 
DEG used the Euclidean clustering method shown in the 
dendrograms.

Quantitative Immunoblotting: Retinas from mice (n=5 
Q344X, 3 females, 2 males; n=5 WT, 3 females, 2 males; 
samples were collected at approximately noon) were 
homogenized in sample application buffer as previously 
described [25], separated by standard PAGE, transferred to 
a nitrocellulose-supported membrane (GVS North America, 
Sanford, ME; Catalog no. 1,212,590), blocked for 1 h at room 
temperature with 4% non-fat dry milk in TBST [20 mM 
Tris-Cl, pH 7.6 and 0.1% (v/v) Tween-20] supplemented with 
0.02% sodium azide, and then incubated overnight at 4 °C in 
the same solution containing primary antibody (anti-phospho-
histone H3 (Ser10) cloneE173, Millipore, Billerica, MA; 
Catalog no. 04–1093; anti-histone H4, Millipore; Catalog 
no. 7–108; anti-histone H3, Millipore; Catalog no. 06–599). 
Binding of secondary antibody conjugated to horseradish 
peroxidase (Invitrogen, Carlsbad, CA; Catalog no. 65–6120) 
was detected using chemiluminescent reagents by exposure 
to film. For quantification, individual band intensity was 
measured using ImageJ. Each band was normalized to its 
relevant loading control.

Quantitative PCR: Retinas of Q344X and WT mice (n=12 
Q344X; 6 females, 6 males and n=12 WT; 6 females, 6 
males; samples were collected at approximately noon) were 
placed in stabilization reagent (RNAlater, QIAGEN; Catalog 

no. 76,104). Total RNA was extracted (RNeasy, QIAGEN; 
Catalog no. 74,104) and reverse transcribed using a High-
Capacity cDNA Reverse Transcription Kit (Thermo Fischer 
Scientific, Waltham, MA; Catalog no. 4,368,814). Individual 
gene assays were purchased from Applied Biosystems, 
Foster City, CA for each of the RNAs analyzed. ΔΔCt 
values were generated using Hist1h2be (Mm01166416_s1), 
Hist2H4 (Mm01952224_u1), Hist3h2a (Mm01701417_s1), 
Kcnv2 (Mm00807577_m1), Pax7 (Mm01354484_m1), and 
Prss33 Mm00617657_m1). TaqMan gene assays with Actb 
(Mm02619580_g1) served as internal standards. qPCR results 
are shown as the average of three different amplifications of 
cDNAs that were generated. The ΔΔCT method was applied 
to determine relative cDNA levels [29]. Unpaired Student t 
tests were conducted on ΔΔCT values from each genotype to 
determine their significance.

Statistics: Statistical analyses for quantitative western 
blots were performed in JMP software (SAS Institute Inc.). 
Statistical analyses for qRT-PCR were performed in R (The 
R Foundation). For all studies where an n is reported, the 
n represents the number of separate animals. A Student’s 
unpaired t test was used, and significance was set at p<0.05.

RESULTS

RNA-seq profiling of the ADRP mouse model Q344X rela-
tive to WT mice shows that 2151 genes are differentially 
expressed (FDR p<0.05, absolute log2 FC >=1); 1386 genes 
were downregulated, and 765 genes were upregulated in 
Q344X (Figure 1A,B). As expected, RNA-seq indicates 
the downregulation of the rhodopsin gene, Rho, in Q344X 
animals (Figure 1C). It is interesting to note that H1foo, a 
H1 histone family gene that is commonly expressed in early 
development, was identified among the top upregulated genes 
in Q344X animals, indicating that epigenetic mechanisms 
may have a role in RP. Further, additional histone genes were 
identified, including the histone deacetylase Hdac9, the H3 
histone gene H3f3b, and the H4 histone gene Hist2h4 (Figure 
1C). A complete list of all histone genes is given in Table 1. 
In addition, Kcnv2, a voltage-gated potassium channel gene 
found in high levels in the retina, was found to be downregu-
lated in Q344X. Additional DEGs found that are function-
ally related to transcriptional regulation include Egr1 (early 
growth response 1), Taf4b (TATA-box binding protein associ-
ated factor 4b), and Med20 (mediator complex subunit 20), 
suggesting that Q344X may alter specific targets affecting 
the transcriptional mechanism within this animal model. All 
genes found to be differentially expressed are represented in 
Figure 2, Appendix 3, and their normalized counts are shown 
in Appendix 4.
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To identify genes that are functionally related among 
our DEGs, functional annotation clustering was performed 
on gene ontology (GO) terms using the Benjamini & Hoch-
berg correction. Of the 2151 DEGs submitted to DAVID, 
1927 were identified in the database. The analysis indicates 
transcriptomic alterations in the Q344x model are linked to 
the following terms: extracellular matrix (GO:0031012, 92 
genes, FDR p=2.7×10−10), metal ion binding (GO:0046872, 
394 genes, FDR p=1.6×10−6), visual perception (GO:0007601, 
34 genes, FDR p=2.7×10−5), and photoreceptor outer segment 
(GO:0001750,17 genes, FDR p=2.7×10−3). A KEGG pathway 
for phototransduction (12 genes, FDR p=1.3×10−4) was also 
identified. The list of genes within the visual perception and 
photoreceptor GO terms and the genes within the KEGG 
pathway are presented in Table 2.

To determine the specificity of transcriptional altera-
tions in the ADRP model, Q344X, the current results were 
compared to the published list [24] of DEGs in the autosomal-
recessive RP model, rd10. The results indicate that 250 genes 

were present in both lists, and 196 genes were expressed in 
the same direction of change (up or downregulated) in both 
RP models. Of these, 178 genes were downregulated and 18 
were upregulated in Q344X and rd10 mice. Therefore, 1955 
genes (1901 genes not detected to be DEGs in rd10 + 54 genes 
with a dissimilar direction of change) in the rhodopsin Q344X 
mouse retina represent transcriptional alterations specific to 
Q344X. The genes that were found to be common between 
both models are indicated in Appendix 3.

To further investigate the role that histones may have in 
ADRP, we quantified the levels of two well studied histone 
proteins, histone H3 phosphorylated at serine 10 and histone 
H4. Quantitative western blots reveal statistically significant 
(p<0.05) decreased expression of both histone H3 phosphory-
lated at serine 10 and histone H4 (Figure 3A–D, Appendix 
5). These data are associated with the decreased expression 
found in the RNA-seq results, indicating the proper function 
of these proteins is slightly inhibited in Q344X retinas.

Figure 1. Transcriptomic alterations in the RP mouse model Q344X. A: Volcano plot of the fold changes and adjusted p values of all genes 
detected by DESeq2. The horizontal line indicates the statistical cutoff point (FDR p<0.05), and the vertical lines indicate the cutoff values 
used from FC. The blue points indicate genes that were downregulated (1386 genes), and the orange points indicate genes that were upregu-
lated (765 genes). B: Relative changes in transcription for all DEGs. C: Box plots displaying the expression levels as normalized counts for 
Rho, H1foo, Kcnv2, Hdac9, H3f3b, and Hist2h4.
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In addition to Rho, which was confirmed to be down-
regulated in Q344X animals in our RNA-seq, we performed 
qPCR on reverse-transcribed RNA (qRT-PCR) isolated from 
the retinas of 3-week-old Q344X and WT mice. The down-
regulated genes tested were: potassium channel, subfamily V, 
member 2, Kcnv2 (p=0.0008); histone cluster 2 H4, Hist2H4 
(p=0.032); and histone cluster 3 H2a, Hist3h2a (p=0.017). The 
upregulated genes tested were: protease, serine 33, Prss33 
(p=0.0023) and paired box 7, Pax7 (p=0.034). All genes tested 
were found to be expressed in the same direction of change 
(down or upregulated), matching the results found from our 
RNA-seq data (Appendix 6).

DISCUSSION

We have shown that transcriptional mechanisms contribute 
to retinal degeneration in the ADRP mouse model rhodopsin 
Q344X. Through RNA-seq profiling, we have identified 2151 
DEGs linked to ADRP by using a stringent statistical cutoff 
(FDR p<0.05). Intriguingly, our results show an increase 
in the RNA levels of the histone subunit H1foo, a subunit 
typically only expressed early in development. Meanwhile, 
there was a downregulation in the potassium channel gene, 
Kcnv2, which has also been shown to be downregulated in 
the rd10 model [24]. Furthermore, transcriptional regulatory 
genes were also identified, including the upregulation of 
Egr1, which has also been linked to RP in the rd10 model 
and in additional models of retinal disorders, including the 

retinal degeneration slow mouse model and the retinoschisin 
knockout model [24,30-32]. Furthermore, the results suggest 
that we found not only genes related to the visual perception, 
photoreceptor outer segment, and phototransduction pathway 
but also a vast majority of genes related to the extracellular 
matrix, neuron differentiation, and neuron projection [33-37]. 
Given the abundance of work indicating the presence of 
epigenetic modifications in neuro-specific genes, the current 
findings suggest that epigenetic mechanisms may have a role 
in RP [13,14,21,38-42].

Interestingly, relative to the transcriptomic profile from 
the autosomal-recessive RP model, rd10, our results show 
an overlap of 196 genes with the same directional change 
[24]. This suggests that the overlapping genes are ideal candi-
dates for studying RP across distinct genotypic models. The 
data also indicate that there is specificity in transcriptional 
patterns in relation to the heterozygous Q344X knock-in 
mouse model that may serve as candidates in relation to the 
autosomal dominant form of RP.

Our data indicate transcripts from several histone family 
genes were downregulated in Q344X. To characterize the 
role that histones may have in ADRP at the protein level, we 
performed quantitative western blots to measure the levels of 
the proteins from post-translationally modified histone H3 
phosphorylated at ser10 and the chromatin core histone H4. 
The results indicate that both histones are downregulated to a 
large degree. Post-translational modification, phosphorylation 

Figure 2. Heatmap and hierarchical clustering dendrogram of all DEGs across the Q344X and WT biologic replicates. Each column represents 
a DEG (FDR p<0.05, absolute FC>=1) where the values represent normalized counts that were standardized to z-scores. The color indicates 
the standard deviation increasing (orange) or decreasing (blue) relative to the mean (black). Row and column dendrograms represent the 
Euclidean clustering method.

http://www.molvis.org/molvis/v24/153
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of serine 10 of the N-terminal arm of histone H3, has been 
shown to be fundamental for mitotic chromosomal segrega-
tion and condensation; however, it has also been shown to 
play a role in regulating transcription [43-45]. Other studies 
have shown in vivo that several residues within histone H3 
and H4 cores are vital for heterochromatin integrity [46]. 
Therefore, these results strongly support the disruption of the 
histone core particle in ADRP and that it potentially drives 
transcriptional changes that contribute to retinal degeneration 
and its severity.

These data support the idea that the histone subunit 
composition of the chromatin particle can be modified in 
response to an ADRP-inducing gene mutation and that 
chromatin remodeling may be a crucial regulator of lasting 
functional change in the retina in ADRP. Individual histone 
variants differ in their capacity to support specific tran-
scriptional modifications, with some likely more associ-
ated with increased epigenetic “plasticity” and others more 
closely allied to epigenetically stable genomic regions [47]. 
Understanding the molecular mechanisms of transcriptional 
modifications within retinal degenerations will provide 
pivotal information for future therapeutic interventions, thus 
improving the quality of life for patients.

APPENDIX 1.

To access the data, click or select the words “Appendix 1”

APPENDIX 2.

To access the data, click or select the words “Appendix 2”

APPENDIX 3. LIST OF DEG IN Q344X MODEL 
WITH SIMILARITIES IN RD10 INDICATED.

To access the data, click or select the words “Appendix 3”

APPENDIX 4.

To access the data, click or select the words “Appendix 4”

APPENDIX 5. STATISTICAL ANALYSES OF 
NORMALIZED PROTEIN EXPRESSION LEVEL.

Quantitative western blot analyses of Histone H3 phos-
phorylated at serine 10 (H3.phospho) and histone H4 (H4) 
expression were normalized to Histone H3 (H3ac) expres-
sion levels. Protein expression levels of Histone H3 (H3ac) 
between Q344X and WT retinal extracts were found to be 
stable, therefore H3ac protein expression level was used 
to normalize Western Blot data. n=5 per group, ±SEM, 

Figure 3. Quantitative western blot analyses. A: Histone H3 phosphorylated at serine 10 (H3.phospho) and B: histone H4 (H4) expression 
significantly reduced in Q344X retinas. Band intensities were normalized to histone H3 (H3ac) expression. C: Loading control histone H3 
was used to normalize band intensity. D: Statistical analyses of protein expression level; both histone H3 phosphorylated at serine 10 and 
histone H4 are significantly reduced (p<0.05) based on a Student t test. n=5 per group, ±SEM, significance determined by a Student’s t test: 
*p<0.05.
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significance determined by Student t test: *p<0.05. To access 
the data, click or select the words “Appendix 5”

APPENDIX 6. QRT-PCR ON SELECT 
DIFFERENTIALLY EXPRESSED GENES.

Quantitative polymerase chain reaction on reverse-tran-
scribed RNA (qRT-PCR) isolated from retinas of 3-week-
old Q344X and WT mice. Downregulated genes tested 
were: potassium channel, subfamily V, member 2, Kcnv2 
(p=0.0008); histone cluster 2 H4, Hist2H4 (p=0.032); histone 
cluster 3 H2a, Hist3h2a (p=0.017). Upregulated genes tested 
were: protease, serine 33, Prss33 (p=0.0023) and paired box 7, 
Pax7 (p=0.034). All genes tested were found expressed in the 
same direction of change (down or upregulated) matching the 
results found from our RNA-seq data. n=12 per group, ±SEM, 
significance determined by Student t test: *p<0.05. To access 
the data, click or select the words “Appendix 6”
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