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ORIGINAL ARTICLE

Preclinical Modeling of Tumor Growth and Angiogenesis
Inhibition to Describe Pazopanib Clinical Effects in Renal
Cell Carcinoma

A Ouerdani', H Struemper?, AB Suttle?, D Ouellet* and B Ribba'*

The objective was to leverage tumor size data from preclinical experiments to propose a model of tumor growth and
angiogenesis inhibition for the analysis of pazopanib efficacy in renal cell carcinoma (RCC) patients. We analyzed tumor data
in mice with RCC CAKI-2 cell line treated with pazopanib. Clinical tumor size data obtained in a subset of patients with RCC
were also analyzed. A model accounting for the processes of tumor growth, angiogenesis, and drug effect was developed.
The final tumor model was composed of two variables: the tumor and its vasculature. Our results show that, both in mice and
in humans, pazopanib exhibits a dual mechanism of action, and parameter estimation values highlight the inherent difference
between mice and humans on the time scale of tumor size response. We developed a semimechanistic tumor growth
inhibition model that takes into account tumor angiogenesis in order to describe the effects of pazopanib in mice. Analyzing
rich preclinical data with a semimechanistic model may be a relevant approach to facilitate the description of sparse clinical
longitudinal tumor size data and to provide insights for the understanding of the drug mechanisms of action in patients.
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC? 4 Pazopanib is a tyrosine kinase inhibitor with multiple targets includ-
ing angiogenesis. Existing pharmacokinetic-pharmacodynamic models are based on an empiric representation of tumor shrink-
age due to treatment, and this representation does not specifically capture the compound’s antiangiogenic action. ¢ WHAT
QUESTION DID THIS STUDY ADDRESS? 4 The study focuses on the analysis of tumor size time course data from preclinical
studies to lead to the development of a mechanistic model to predict pazopanib clinical efficacy. ¢ WHAT THIS STUDY ADDS TO
OUR KNOWLEDGE ™ Our analysis supports the use of complete tumor dynamics in mice to build an angiogenesis-dependent
tumor growth model that describes the antiangiogenic effects of pazopanib in phase Il patients. Our work concludes that, both in
mice and in humans, pazopanib exhibits a dual mechanism of action, and that the scaling of preclinical to clinical parameters
shows a correspondence with allometric ratios that needs to be investigated in a future work. ¢ HOW THIS MIGHT CHANGE
CLINICAL PHARMACOLOGY AND THERAPEUTICS ¥ For a compound with a mechanism of action similar to that of pazopanib,
an interesting avenue of research would be to compare clinical tumor response to the response predicted by scaling the preclinical
model parameters for the new compound with the rate ratios estimated for pazopanib. Our model suggests that PD might be iden-
tified prematurely as a potential long-term tumor shrinkage due to the antiangiogenic effect of pazopanib that is likely to occur in
some patients. If this statement is validated in future work, it will help to build new trial protocols in order to better assess efficacy.

Targeted therapy with tyrosine kinase inhibitors (TKI) such
as pazopanib (VOTRIENT; GlaxoSmithKline, UK) is widely
used in the treatment of renal cell carcinoma (RCC). Pazo-
panib has multiple targets, including the vascular endothe-
lial growth factor (VEGF) receptors 1, 2, and 3; the platelet-
derived growth factor receptors (PDGFR) « and f, and the
stem cell factor receptor c-KIT.! The mechanisms of action
of pazopanib, like those of other multitarget inhibitors, are
complex and not fully understood. The underlying complex-
ity of multitarget inhibitors makes the development of these
drugs challenging, especially when translating from mice to
humans.? For this purpose, many compounds that showed
excellent antitumor properties in animals did not perform as

well in patients, which resulted in drug development failure.
This was the case for the compounds SU5416, TNP-470,
and IM862, for example.®

Population modeling is recognized as a relevant method for
characterizing tumor response to anticancer drugs. Tumor
growth and inhibition (TGI) models have been used to leverage
data on early tumor size dynamics with the aim of optimizing
the design of late-phase trials.*® Several models have been
published that describe the time course of tumor size in RCC.
Maitland et al.® successfully applied the model of Wang et al. to
analyze tumor size time course in RCC patients treated with
sorafenib. Houk et al.” used the model of Claret et al® to
describe the efficacy of sunitinib in metastatic RCC patients,
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and Stein et al.® proposed another model to describe tumor
size kinetics in metastatic RCC patients treated with everolimus
in a phase lll trial. Bonate and Suttle developed a model that
specifically addresses tumor size response in RCC patients
treated with pazopanib.'® Their model relies on an empiric rep-
resentation of tumor shrinkage due to treatment, and this repre-
sentation does not specifically capture the compound’s
antiangiogenic action. Like the models reviewed above, this
model was developed on the basis of tumor size data.

The models described above bear high resemblance to one
another, despite considering drugs with different mechanisms
of action. This similarity may be due to the fact that in most
cases longitudinal tumor size measurements in treated patients
are characterized by an initial decrease eventually followed by
a tumor regrowth. The designs of the clinical trials, as well as
the need to remove patients from the study when tumor size
increases, are significant constraints for the development of
detailed mechanistic models.

To develop more accurate mechanistic models of tumor
response, it is necessary to take advantage of any available
complementary data associated with the clinical dataset
analyzed. In previous work, carried out in a preclinical set-
ting, we used histological data to complement tumor size
records and proposed a multiscale model for tumor growth
and angiogenesis."' The use of data on circulating bio-
markers can also supplement the information encompassed
in tumor size measurements to better predict patients’ out-
comes in response to treatment (see refs. 12—14 as exam-
ples). Challenges in translating data from animal models in
oncology are frequently cited as a critical impediment to
drug development efforts,'® yet herein we propose that pre-
clinical tumor size data can provide sufficient insights to
facilitate the development of a more detailed mechanistic
model of clinical tumor size response. Specifically, we show
that the analysis of tumor size time course data from pre-
clinical studies can be used to obtain a more detailed
description of pazopanib effect in patients and can lead to
the development of a mechanistic model to predict pazopa-
nib clinical efficacy.

METHODS

Preclinical data

Female CB-17 SCID mice, aged 8-10 weeks, were housed in
specific-pathogen-free  environments and subcutaneously
injected with a suspension of RCC CAKI-2 tumor cells. Once
their tumors had grown to a size between 100 and 250 mm?®,
mice were randomly distributed into dosing groups (8 mice per
group) and received vehicle control, or 10, 30, or 100 mg/kg of
pazopanib. The drug was administered once daily by oral
gavage for 24 days. Twice weekly for the duration of the experi-
ment, mice were weighed and tumor volumes were evaluated
(eight observations of each type per mouse). The length and
width of tumors were measured by handheld calipers, and tumor
volume was calculated according to the following formula: tumor
volume = (Length X Width?)/2.

Clinical data
Clinical data were obtained from a multicenter, open-label
phase Il study (NCT00244764).'® We had access to a sub-
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set of 47 patients, aged 43 to 79 years, with advanced and/
or metastatic RCC of predominantly clear-cell histology and
obviousness of measurable disease by Response Evalua-
tion Criteria in Solid Tumors (RECIST). Patients were
included in the dataset if they were treatment-naive or had
previously undergone a single treatment with systemic
immunotherapy by cytokines, and/or had benefited from
prior surgery (nephrectomy) and/or radiotherapy. Additional
eligibility criteria included an Eastern Cooperative Oncology
Group performance status (ECOG PS) of 0 or 1, and
adequate hematologic, hepatic, and renal function. The clin-
ical trial was conducted according to the International Con-
ference on Harmonization Guidelines for Good Clinical
Practice and the amended Declaration of Helsinki. Patients
were administered a dose of 800 mg of pazopanib once
daily that was reduced in case of intolerance. Treatment
was stopped because of unacceptable toxicity, withdrawal
of consent for any reason, or disease progression (PD)
assessed through RECIST 1.1." No dose interruptions
were reported within the dataset despite the events listed
above. Disease assessments (sum of longest tumor diame-
ter (SLD)) using computed tomography or magnetic reso-
nance imaging were scheduled prior to initiation of
pazopanib treatment (at baseline), at weeks 8 and 12 fol-
lowing treatment commencement, and every 8 weeks there-
after until progression.

Mixed effect modeling of tumor growth and effects

of drug treatment

Nonlinear mixed-effect modeling (NLME) enables variability
among individuals to be integrated into the description of
any given process.'® In our case, the structural part of the
model corresponds to the solution of a system of ordinary
differential equations (ODEs). In modeling tumor growth
and effects of drug treatment, ODEs are generally written
as a balance between the net growth and the drug-induced
decay of the tumor size. Net growth can be represented by
several types of functions, for example, linear, exponential,
or logistic. The term representing drug-induced decay can
be constant or exponential, driven by drug exposure, and it
can incorporate a resistance term or a delay term to
accommodate a wide range of tumor response shapes (see
refs. 8,9,19-24 for reviews).

To develop the statistical component of the model, we
considered additive, proportional, and combined residual
error models for both preclinical and clinical data and
assumed that the individual parameters were log-normally
distributed.

The preclinical and clinical data were analyzed using the
First Order Conditional Estimation with Interaction method
(FOCEI with NONMEM 7.2). The value of Bayesian infor-
mation criterion (BIC) was used to drive the process of
model selection. Validity of candidate models was also eval-
uated through the percent of relative standard error (RSE)
of the parameters and goodness of fit plots such as visual
predictive check (VPC). VPC was performed by simulating
500 studies from where the 95% confidence intervals for
the 5th, 50th, and 95th percentiles were calculated. For the
preclinical data, VPC plots were stratified according to the
doses administered. For the clinical data, we performed
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Figure 1 Left: Tumor volume time course in CAKI-2 xenograft mice treated with vehicle or pazopanib 10, 30, or 100 mg/kg given from
time 0 to the end of the experiment. Right: Individual time course of tumor size, expressed as the sum of longest diameters, in the sub-
set of 47 patients included in the analysis. Dashed lines are the individual tumor dynamics.

prediction-corrected VPC, as most of the patients experi-
enced dose reduction (see ref. 25 for further details).

RESULTS

Figure 1 (left panel) presents tumor volume time course
data in mice treated with vehicle or pazopanib 10, 30, or
100 mg/kg.

In a first stage, we analyzed the data from animals (both
control and treated). Testing models of increasing complex-
ity resulted in a final model composed of a system of two
ordinary differential equations (see Supplementary Table
S1 for the full list of tested models). One equation repre-
sents the tumor volume (P) while the other describes the
tumor carrying capacity (K), which is defined as the maxi-
mal tumor volume or mass supported by the current level
of tumor vascularization. We suppose that the tumor,
through proangiogenic factors such as vascular endothelial
growth factor (VEGF), is capable of extending its carrying
capacity (K). Thereby the capacity (K) is expected to
always increase. This hypothesis is consistent with RCC
growth as it overexpresses proangiogenic factors due to
the von Hippel Lindau (VHL) gene mutation leading to a
continuous and anarchic tumor angiogenesis.?® Tumor vas-
culature can be seen as a growth-limiting factor supporting
the concept of tumor carrying capacity. We assume that
tumor angiogenesis is dependent on the tumor volume (P)
as more proangiogenic factors are synthesized when the
quantity of tumor cells increases. To modulate the relation-
ship between the carrying capacity (K) and the tumor vol-
ume (P), we introduce an empirical parameter n.

The tumor growth and angiogenesis inhibition model can
be written as follows:

dp 75 _ —5t
E_A P (1 K> o-e P

dk .
G- Pk

(1)

where P is the tumor volume in mm?® and /. its growth rate
constant (in 1/day). The parameter b is the capacity rate
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constant (in 1/day). It regulates how quickly the carrying
capacity grows. The parameter n was not identifiable but
was tested using likelihood profiling with different arbitrary
values. Specifically, we varied the value of n between 0.5
and 3 to cover a sufficient range of angiogenesis potency
(tested values: 0.5, 2/3, 1, 1.5, 2, 2.5, and 3).

As proposed by Hahnfeldt et al,?” when n=2/3 the
model assumes that the tumor angiogenesis (represented
by the carrying capacity term K) depends on a surface area
of the tumor volume. We evaluated the fit of the model by
analyzing changes in the BIC and individual fits. The best
results were obtained with an n value of 1. y (1/day), o (1/
day), and ¢ (1/day) are constants representing the antian-
giogenic effect, the putative cytotoxic effect, and the resist-
ance on the cytotoxic effect of pazopanib, respectively.

Based on the individual fits, goodness of fit plots, and
BIC values (Table S1), assumption of a single effect of
pazopanib on the tumor carrying capacity K (representing
its antiangiogenic action) was not sufficient to optimally
describe the tumor data, since both observed initial and
long-term tumor shrinkage could not be fitted by the model.
The final model integrated a second direct effect on the
tumor volume P, which can be attributed to a cytotoxic
effect of the drug. In addition, in line with previous sugges-
tions,® we added a resistance term (5) that decreases the
cytotoxic effect on tumor volume with time (Eq. 1). A resist-
ance on the cytotoxic effect depending on the drug expo-
sure was tested but resulted in worse BIC values and
individual fits. This is probably due to the fact that the vari-
ability of patients’ drug exposures was small and not suffi-
cient to discriminate an effect on drug resistance.

Drug exposure (area under the curve (AUC)) was also
included in the model; we used the following covariate mod-
els to describe its effect on the drug efficacy parameters «
and 7y:

o = o - AUCP: @)
7= 70 - AUCP: )

where AUC is treated as a continuous variable with values
of 220.2, 656.8, and 1140.8 pg-h/mL for the doses of 10,
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Figure 2 Up, left: Observed vs. predicted tumor volumes for individual mice across treatment groups (vehicle, 10, 30, 100 mg/kg). Up,
right: Conditional weighted residuals (CWRES) vs. individual predictions. VPC stratified by the dose for the preclinical analysis (n=8
mice per group). Middle, left: VPC for the vehicle group. Middle, right: 10 mg/kg. Bottom, left: 30 mg/kg. Bottom, right: 100 mg/kg. The
dashed lines represent the 5%, 50%, and 95% percentiles of the observed data. The colored areas represent the 95% prediction areas
for the respective percentiles. VPC should be interpreted carefully, as the number of mice for each group is small. Therefore, observed
5th and 95th percentiles are equals to the smallest and biggest tumor dynamic respectively. Nevertheless, the model is describing well

the median observed tumor dynamic for each group.

30, and 100 mg/kg, respectively, as reported in separate
preclinical pharmacokinetic studies (http://www.accessdata.
fda.gov/drugsatfda_docs/nda/2009/022465s000_PharmR.
pdf). oo and y, stand respectively for the "baseline" popula-
tion values of « and y; and S, and f, represent the two
covariate model parameters to be estimated. As an
assumption, no interindividual variability (IIV) was associ-
ated with these two parameters. Pazopanib displays a non-
linear pharmacokinetics, which mechanism seems to be
due to the drug absorption process. Overall, the model con-
tains seven structural parameters (4, b, «, 9, 7, Po, Ko). The
initial tumor volume (P,) was set to the observed value so
that only six model parameters were estimated. To avoid
bias due to sampling errors, we took into account the val-
ues of the residual error parameters in the initial condition
of tumor size. Random effects were assumed for all model
parameters except for parameter b, as its estimation was
associated with numerical instabilities. Data were not log-

transformed, as this transformation did not result in any
improvement of the estimation.

In contrast to other tumor models, the proposed model
(Eg. 1) can assume for certain parameter values a finite,
nonzero equilibrium, i.e., represent prolonged stable dis-
ease. To understand this long-term behavior of the model,
note that asymptotically (i.e., for large values of 1), in
the particular case of n=1, an infinite set of equilibrium P=
K > 0 can be reached if b=1y. For n values other than 1,
the model can also assume a unique nonzero equilibrium:

P—K= (i)_ @

P=K=0 defines an equilibrium given that n is strictly
greater than 0.

The combination of both antiangiogenic and cytotoxic
effects led to the best diagnostics. Overall, the proposed
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Figure 3 Up: Observed tumor size expressed as sum of the lon-
gest diameters vs. the model’s individual predictions. Middle:
CWRES vs. individual predictions. Bottom: prediction-corrected
VPC for the clinical analysis. The dashed lines represent the
5%, 50%, and 95% percentiles of the observed data, and the
colored areas stand for the 95% prediction areas for the respec-
tive percentiles.

model provided an adequate description of the tumor vol-
ume data within the four treatment groups (see Figure 2
for basic goodness of fit plots and VPCs stratified by dose).

The same model was applied to the analysis of the clini-
cal data presented in Figure 1 (right panel). For this analy-
sis, it was necessary to apply a correction on the empirical
parameter n, which was set in this case to the value 0.5.
This value allows the model to better predict the tumor
regrowth, as well as the second decrease due to the long-
term antiangiogenic effect, by reducing the potency of the
tumor angiogenesis. Therefore, this new value of n signifi-
cantly improved the fits of the model's predictions to the
tumor size dynamics of individual patients. For this analy-
sis, IV of the parameters Ky and b was fixed to 0; we veri-
fied that increasing the 11V of Ky and b did not improve the
objective function. The model also incorporated mean expo-
sure at each dose level (800 mg daily and at reduced
doses). To identify these mean exposure levels in the
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absence of pharmacokinetic data, we fitted an E,,,x model
to mean AUC values reported in previous clinical trials; this
approach enabled us to account for the less-than-dose-
proportional increase in AUC. Data from five clinical trials
that investigated pazopanib doses of 5 mg to 2,000 mg
administered once daily were pooled for the analysis.?®~32
According to the Enax model, mean exposure was 771.6
ug-h/mL (range, 629.4—802.4 ug-h/mL) corresponding to a
mean dose of 727 mg (range: 473-800 mg) through the
population of 47 patients. Predicting patients’ exposures
from the E,.x model may certainly introduce a degree of
uncertainty that complicates the comparison of tumor and
drug-specific parameters between mice and humans.

As in the case of the preclinical data, we ruled out the
possibility that simpler including models assuming a single
(antiangiogenic or cytotoxic) effect of the drug would be
sufficient to describe the clinical data (Table S1). Basic
goodness of fit plots and VPC plots (Figure 3) indeed indi-
cated that a model that assumes both effects is more
appropriate. Individual plots were much better with our
model, as it could describe the initial and long-term tumor
shrinkage due to pazopanib effects. Nevertheless, regard-
ing BIC values, no significant improvement was observed
between the dual effect model and the single cytotoxic
effect model or the model described in ref. 8 (Supplemen-
tary Table S1). The values of the parameter estimated by
the final model in both preclinical and clinical settings are
summarized in Table 1. Both studies were analyzed sepa-
rately, as a simultaneous analysis did not improve parame-
ter identifiability. Figure 5 shows individual data and their
corresponding model’s predictions for 3 mice per group
(control, 10, 30, and 100 mg/kg pazopanib) selected
according to their residual error values that are increasing
from the first row to the third one. The same graphs for
nine patients are shown in Figure 6.

DISCUSSION

Most models developed so far have been indifferently
applied to cytotoxic and cytostatic drugs, including angio-
genesis inhibitors such as pazopanib. Our model takes
into account the role of tumor vasculature in tumor growth
and shrinkage, and therefore is well suited to pazopanib,
as it is an angiogenesis inhibitor. The use of preclinical
data, obtained through a rich experimental design (charac-
terized by a high number of longitudinal observations, in
addition to an accelerated course of disease), enabled us
to build a simple mechanistic model that would probably
not have been possible given clinical data alone. Figure 4
illustrates the typical dynamics of tumor size over time
(the data shown are outcomes of a simulation using the
population parameters reported in Table 1). The typical
response to pazopanib in both humans and mice displays
an unusual pattern: tumor burden decreases as soon as
treatment starts. After some time, the tumor regrows
before shrinking again. In light of the model's assump-
tions, the observed shape can be explained in the follow-
ing terms: The initial decrease is due to a direct cytotoxic
effect of the drug. Reducing vasculature could potentially



Table 1 Model parameter estimates for the preclinical and clinical data analysis
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Preclinical results Clinical results

Parameters Unit Estimates (RSE %) IV (RSE %) Estimates (RSE %) IV (RSE %)

Model parameters A day ' 0.166 (24) 53 (108) 0.0021 (6) 82 (35)

Ko mm? | mm 543 (15) 36 (77) 329 (25) Fixed to 0

b day ' 0.0183 (58) Fixed to 0 0.0392 (22) Fixed to 0

y day ' 0.007 (29) 19 (127) 0.0023 (9) 31 (51)

By 0.332 (15) 0.142 (7)

@ day ' 0.251 (13) 24 (96) 0.0032 (2) 62 (29)

Ba Fixed to 0 0.125 (14)

5 day™’ 0.196 (26) 42 (103) 0.0153 (3) 101 (45)
Residual error & (proportional) % 14 (23) 8 (2)

& (additive) mm? | mm 3(17) 1(3)

Interindividual variability (11V) is approximated by the square root of the variance (omega) estimated by NONMEM and expressed as a percentage together with standard
errors of estimates (RSE). In both preclinical and clinical settings, the best error model was a combination of proportional (e1) and additive (e2) parameters. They are both
expressed as standard deviations that are calculated from variances (sigma) estimated by NONMEM. ¢; is presented as a percentage, whereas ¢, is the standard devia-
tion in the unit of the observed variable (mm?® and mm for preclinical and clinical tumor size, respectively).
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Figure 4 Model simulation of tumor size (P) and carrying capacity (K) time course using the population parameter estimates of the pre-
clinical (left) and clinical (right) data. Tumor size is expressed as volume (mm?®) for mice and SLD (mm) for patients.

translate into tumor shrinkage, but with a delay in time.
This delay allows K to go below the tumor size variable
and corresponds in reality to the time needed for the cells
to respond to lack of oxygen supply. This delay is not
observed in mice and patients. However, because of the
resistance term, this effect disappears with time and, con-
sequently, tumor size once again increases as disease
progresses. This regrowth occurs until the antiangiogenic
effect leads to a decrease in the carrying capacity (K)
below the tumor size (P) so that the tumor shrinks again.
Simulations show that if the treatment is administered for
a sufficiently long period of time, the tumor size (P) and
the carrying capacity (K) will decrease exponentially to
reach a steady state. Interestingly, model simulations with
typical (population) parameter values produce this unusual
shape in both mice and humans even if only 13% of the
population presents these tumor size dynamics. In
patients whose tumors followed such a pattern, the initial
short decrease in tumor size and the subsequent, longer-

term decrease appeared after about 3 and 17 months of
treatment, respectively (see Figure 4). A large majority of
patients, however, did not show this behavior. This may
have been a result of the schedule of assessments (we
note that dose interruptions were not reported for any of
our analyzed patients). The model is still capable of repro-
ducing the behavior, as the second decrease is observed
among tumors whose initial carrying capacity K is rela-
tively high, indicating high vascularization.

In mice, the level of pazopanib exposure had no impact
on the cytotoxic effect (5, was initially estimated at 0.0002
then fixed to 0). However, the impact of exposure level on
the antiangiogenic effect parameter was significant, mean-
ing that, in mice, higher doses of pazopanib are associated
with greater long-term tumor shrinkage, due to the destruc-
tion of the tumor vasculature. In humans, the impact of
drug exposure on both antiangiogenic and cytotoxic efficacy
was found to be significantly different from 0, although the
range of exposure levels was narrow.
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Figure 5 Observed tumor volume (circles) and individual predictions (solid line) for 3 mice per group (from left to right: control, 10, 30,
and 100 mg/kg pazopanib) selected on the basis of their typical residual error magnitude (top row: best; middle row: median; bottom

row: worst).
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Figure 6 Observed SLD (circles) and individual predictions (solid line) for nine individuals selected on the basis of their typical residual
error magnitude (top row: best; middle row: median; bottom row: worst).
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Our model, incorporating an indirect effect of the drug on
the tumor size through inhibition of the vasculature, is
based on plausible biological phenomena. Indeed, pazopa-
nib’s effect on tumor size is likely to be partially attributable
to the drug’s antiangiogenic action, as RCC is character-
ized by high tumor vascularization, due to the overexpres-
sion of proangiogenic factors by the cells displaying the
mutation of the VHL gene. By inhibiting the pathways acti-
vated by VEGF and PDGF in endothelial cells, pazopanib
could lead to a transient normalization of the blood vessels
and subsequent destruction of the tumor vasculature, thus
depriving tumor cells of oxygen and nutrients needed for
growth. The modeled cytotoxic effect is supported by sev-
eral mechanisms documented in the literature. A cytotoxic
effect may plausibly occur through pazopanib’s effect on
the VEGF pathway, a pathway known to promote prolifera-
tion and resistance to apoptosis.®®3* Pazopanib is also a
potent inhibitor of the stem cell factor receptor c-KIT
(ICs0 =0.074 umol/L; for comparison, ICso = 0.010, 0.030,
and 0.047 umol/L for VEGFR1, 2, and 3, respectively.
ICs0 =0.071 and 0.084 pumol/L for PDGFR-« and f, respec-
tively"), which is responsible for the proliferation, differentia-
tion, migration, and survival of concerned cells.>® Finally,
emergence of resistance to the cytotoxic effect of pazopa-
nib can be plausibly attributed to acquired polymorphisms
and mutations of TKI receptors.®®

Herein, by using preclinical tumor size time course infor-
mation as input data in a model-building procedure, we
were able to propose a new semimechanistic model of
tumor size response to pazopanib in RCC patients. The
model could describe the full unusual tumor dynamics in
both mice and patients better than previously published
tumor growth inhibition models. This preliminary work
opens up many opportunities. In a future work it would be
of interest to translate preclinical results into clinical predic-
tions by using new scaling methods or allometry. To this
end, we computed ratios between the preclinical and clini-
cal rate parameter values (Supplementary Table S2).
While these ratios do not provide exact matches to allomet-
ric ratios (e.g., unadjusted physiologic time ratio of
7.3 =(70/0.025 kg)%2® for drug half-life, or the maximum
life-span potential ratio of about 30 between humans and
mice), they show a rough correspondence in terms of order
of magnitude.>” More specifically, for a compound with a
mechanism of action similar to that of pazopanib, an inter-
esting avenue of research would be to compare clinical
tumor response to the response predicted by scaling the
preclinical model parameters for the new compound with
the rate ratios estimated for pazopanib. Another field of
investigation concerns the improvement of the evaluation of
clinical TKI efficacy. Indeed, our model is able to predict a
long-term antiangiogenic effect following tumor regrowth.
Therefore, it may be possible that some patients who
dropped out due to PD, assessed through RECIST criteria,
might have experienced a second tumor shrinkage thanks
to the antiangiogenic effect of pazopanib. This suggests
that a longer follow-up and/or treatment could be beneficial
to better assess efficacy in phase Il. Actual data cannot
support this statement, which needs to be investigated in a
future work.
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