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Abstract

In this paper, a new mathematical model is formulated that describes the interaction

between uninfected cells, infected cells, viruses, intracellular viral RNA, Cytotoxic T-lympho-

cytes (CTLs), and antibodies. Hence, the model contains certain biological relations that are

thought to be key factors driving this interaction which allow us to obtain precise logical con-

clusions. Therefore, it improves our perception, that would otherwise not be possible, to

comprehend the pathogenesis, to interpret clinical data, to control treatment, and to suggest

new relations. This model can be used to study viral dynamics in patients for a wide range of

infectious diseases like HIV, HPV, HBV, HCV, and Covid-19. Though, analysis of a new

multiscale HCV model incorporating the immune system response is considered in detail,

the analysis and results can be applied for all other viruses. The model utilizes a transformed

multiscale model in the form of ordinary differential equations (ODE) and incorporates into it

the interaction of the immune system. The role of CTLs and the role of antibody responses

are investigated. The positivity of the solutions is proven, the basic reproduction number is

obtained, and the equilibrium points are specified. The stability at the equilibrium points is

analyzed based on the Lyapunov invariance principle. By using appropriate Lyapunov func-

tions, the uninfected equilibrium point is proven to be globally asymptotically stable when

the reproduction number is less than one and unstable otherwise. Global stability of the

infected equilibrium points is considered, and it has been found that each equilibrium point

has a specific domain of stability. Stability regions could be overlapped and a bistable equi-

libria could be found, which means the coexistence of two stable equilibrium points. Hence,

the solution converges to one of them depending on the initial conditions.

1. Introduction

Hepatitis C virus (HCV) is a bloodborne virus that has become one of the most serious infec-

tious diseases that threaten human health [1]. It can lead to both acute and chronic hepatitis,

ranging in severity from a mild to a serious lifelong illness. A significant number of those who
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are chronically infected will develop cirrhosis or liver cancer, where HCV is a major cause of

liver cancer. An estimated 71 million people have chronic HCV infections worldwide. The

world health organization (WHO) estimated that in 2016, approximately 399 000 people died

from hepatitis C, mostly from cirrhosis and liver cancer [2]. Treatment for chronic hepatitis C

infection began in the early 1990s with interferon-alfa [3]. This injectable drug worked by

improving the immune system, rather than by specifically attacking the virus. In 1998, the oral

drug ribavirin was added to interferon [4]. The development of the treatment occurred in

2002 with the approval of pegylated interferon-alfa, a process that makes interferon more

durable and effective [5]. New treatment options include direct-acting antiviral agents (DAAs)

targeting specific HCV-life cycle components [6]. The quick steps of HCV drug development

where a cure rate of more than 95% was achieved [2], have led to the hopeful prediction that

full eradication of HCV is theoretically possible in the absence of a vaccine for HCV. There

remain many barriers that need to be overcome. Further studies for factors that increase the

eradication rate are needed. Such barriers include factors related to awareness, linkage to care,

the development and availability of simplified and highly effective drug regimens, improving

the rates of detection of infection, and the availability of funds expertise [7,8].

Mathematical modeling is a useful tool to study and analyze many engineering and physical

problems. It has also been used to describe some biological processes such as heartbeats [9],

tumor growth and cancer treatment [10,11], and virus dynamics for many types of viruses

such as HCV, HBV, HIV, and Covid-19 [12–14]. It provides a powerful tool in the study of

virus dynamics because it helps to understand the biological mechanisms and interpret the

experimental results. Mathematical models can be used to predict the virus behavior under

certain conditions or to determine which parameters increase disease spread. They can also be

used to predict the number of medications required to help eradicate a disease or control it

[9]. Mathematical modeling is also useful in public health policy formulation addressing the

control of infectious diseases [15]. The early mathematical model for HCV was developed and

analyzed in [16,17] as a scheme consisting of a system of ordinary differential equations

describing the basic dynamics of the hepatitis C virus in-vivo. Models for HCV treatment with

DAAs therapy is considered in [18–22]. A novel approximate analytical solution for solving

the standard viral dynamic model for HCV is presented in [23]. Local and global stability anal-

ysis for basic virus dynamics models is studied in [24–26].

Interactions between replicating virus, liver cells, and different types of immune responses

(CTLs and antibodies) are highly complex and nonlinear, so these interactions between HCV

and the immune system were studied with mathematical models in [27,28] and stability has

been analyzed for these models. However, these models can only describe the intercellular

viral dynamics and cannot describe the intracellular viral dynamics which is required to cap-

ture the different antiviral effects corresponding to the action mechanisms of drugs.

Authors in [29–32] constructed a multiscale model that accounts for the dynamics of intra-

cellular viral replication, and which includes the major stages in the HCV life cycle that are tar-

geted by DAAs. These multiscale models have been developed using partial differential

equations (PDEs). Since numerical PDE solvers are time-consuming and often converge

poorly, a new approach has been suggested by Kitagawa, et al. [33] that converts a standard

PDE multiscale model of the HCV infection into an equivalent system of ordinary differential

equations (ODEs) without any assumptions. This transformed model prevents time-consum-

ing calculations and has become widely available for further mathematical analysis. Kitagawa,

et al. [34] derived the basic reproduction number of the transformed ODE model and studied

the global stability of the model using Lyapunov–LaSalle’s invariance principle and investi-

gated all possible steady states of the model. Local stability analysis of this model is considered
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in [35] using Routh-Hurwitz criterion. In that work, sensitivity analysis had been performed

to specify the influence of each parameter on the basic reproduction number.

It is worth mentioning that the classical multiscale model ignores the responses of the

immune system, which have a significant role in reducing viral load. From the point of view of

the mathematical analysis, considering the immune system with a multiscale model in the

PDE form is an undesirable task. In this paper, a new mathematical model, that deals with the

interaction between the transformed multiscale model of the HCV infection in ODE form and

immune responses, is proposed. Different antiviral effects of multidrug treatments are pre-

sented by defining three efficacies which are responsible for blocking intracellular viral pro-

duction, blocking virion assembly/secretion, and enhancing the degradation rate of vRNA.

The model contributes to improving our realization to the interactions between HCV, drug

treatments, infected cells, and immune system. For instance, the analysis of the model reveals

the existence of five equilibrium points: an uninfected point, an infected point with no

immune responses, an infected point with dominant antibody responses without CTLs, an

infected point with dominant CTLs responses without antibody, and an infected point with

coexistence responses of both CTLs and antibody. In section 2, the ODE model extracted from

the multiscale model for describing the dynamics of the HCV infection is described. Conse-

quently, this model is extended to consider the impact of the immune system response. The

proof of the positivity of the extended model and calculation of the reproduction number for

the model is presented in section 3. The equilibrium points are determined in section 4 and

the stability analysis is presented in section 5. Finally, section 6 concludes the paper.

2. Extended model for the transformed multiscale ODE HCV model

A multiscale model in the form of PDEs, which describes the intracellular life cycle had been

proposed and applied by many researchers [29–32] for analyzing clinical data under multidrug

treatment. The model is as follows:

@Rða; tÞ
@t

þ
@Rða; tÞ
@a

¼ a 1 � εað Þ � 1 � εsð Þrþ kmð ÞR að Þ ð1Þ

dTðtÞ
dt
¼ s � r T tð Þ � b V tð ÞT tð Þ ð2Þ

@iða; tÞ
@t

þ
@iða; tÞ
@a

¼ � d i a; tð Þ ð3Þ

dVðtÞ
dt
¼ 1 � εsð Þr

Z1

0

Rða; tÞiða; tÞda � c V tð Þ ð4Þ

The variables T(t) and V(t) are the numbers of target cells and viruses, respectively, and the

variable i(a,t) represents the age distribution of infected cells. Similarly, R(a,t) is the age and

time distribution of intracellular viral RNA (vRNA) in a cell with infection age a. The target

cells are assumed to be produced at rate s, infected by viruses at rate β, and naturally die at rate

r. The infected cells die at rate δ, and virions are cleared at rate c. The parameters α and μ
denote the production and degradation rates of the intracellular viral RNA, respectively. Viral

RNA is assumed to assemble along with viral proteins and to be secreted from an infected cell

as viral particles at rate ρ. The model recognizes the different antiviral effects of multidrug

treatments by defining three efficacies εα, εs, and k�1, which are responsible for the actions of
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blocking intracellular viral production, blocking virion assembly and/or secretion, and

increasing the degradation rate of vRNA, respectively.

Kitagawa et al. [33] transformed the previous multiscale PDE model into the following

ODEs model:

dTðtÞ
dt
¼ s � r T tð Þ � b V tð ÞT tð Þ ð5Þ

dIðtÞ
dt
¼ b V tð ÞT tð Þ � d I tð Þ ð6Þ

dPðtÞ
dt
¼ zb V tð ÞT tð Þ þ a 1 � εað ÞI tð Þ � kmþ rð1 � εsÞ þ dð ÞP tð Þ ð7Þ

dVðtÞ
dt
¼ r 1 � εsð ÞP tð Þ � c V tð Þ ð8Þ

where I(t) denotes the total number of infected cells and is defined as IðtÞ ¼
R1

0
iða; tÞda, and

P(t) is the total amount of intracellular viral RNA pooled in all infected cells and defined as

PðtÞ ¼
R1

0
Rða; tÞiða; tÞda. The entry virus-derived RNA starts to replicate from z copies in a

newly infected cell and is fixed to 1 [33,34].

In this work, an extension to the transformed multiscale ODE model is proposed. Two

more variables are added to stand for the immune system response. The first one represents

the CTLs number which is responsible for killing the infected cells accordingly inhibiting the

reproduction of the virus and is denoted by Z(t). The second one represents the number of the

antibodies generated which is responsible for neutralizing the virus in-vivo and is denoted by

W(t). Hence, the proposed model is described by the following ODEs system:

dTðtÞ
dt
¼ s � r T tð Þ � b V tð ÞT tð Þ ð9Þ

dIðtÞ
dt
¼ b V tð ÞT tð Þ � d I tð Þ � f I tð ÞZ tð Þ ð10Þ

dPðtÞ
dt
¼ b V tð ÞT tð Þ þ a 1 � εað ÞI tð Þ � kmþ ð1 � εsÞrþ dð ÞP tð Þ ð11Þ

dVðtÞ
dt
¼ r 1 � εsð ÞP tð Þ � c V tð Þ � q V tð ÞW tð Þ ð12Þ

dZðtÞ
dt
¼ u I tð ÞZ tð Þ � b Z tð Þ ð13Þ

dWðtÞ
dt

¼ gV tð ÞW tð Þ � h W tð Þ ð14Þ

The term f I(t)Z(t) in Eq (10) represents the rate of killing the infected cells by the CTL

response and the term q V(t)W(t) in Eq (12) represents the rate of neutralizing virus particles

by the antibodies. CTLs become activated in response to viral antigen derived from infected

cells, and once activated, they are divided, and their population grows (clonal expansion). So,

in Eq (13), the CTLs increase at a rate of uI(t)Z(t). The CTLs decay at a rate of bZ(t) due to the
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lack of antigenic stimulation. Antibodies are produced by B cells and initially they are attached

to them. They serve as the receptor that can specifically recognize the virus. When the B cells

are exposed to a free virus, they divide and secrete the antibodies. Accordingly, antibodies

progress at a rate gV(t)W(t) and decay at a rate hW(t) in Eq (14).

To avoid complexity in the mathematical analysis, the saturation effects of the concentra-

tions of all variables are not contained in the proposed model. Yet, since the proliferation

terms are not limited by saturation, the model could predict unlimited increases in the values

of these variables which are certainly unrealistic. In general, however, the model can describe

the dynamics of these variables and to gain important insights, as long as one is aware of the

model limitations, and the results obtained do not depend on the unrealistic values of

variables.

The proposed model presented by Eqs (9)–(14) can be used for numerical simulations to

represent a variety of medical cases under treatment and can be a valuable tool to comprehend

the pathogenesis and in controlling treatment of chronic HCV. Yet, the computation of the

basic reproduction number, the determination of the equilibrium points, and stability analysis

for this model have to be accomplished under no treatment. No treatment can be specified by

assigning εα = 0, εs = 0, and k = 1. For clarity and effectiveness, we demonstrate the form of

the proposed model under no treatment as:

dTðtÞ
dt
¼ s � r T tð Þ � b V tð ÞT tð Þ ð15Þ

dIðtÞ
dt
¼ b V tð ÞT tð Þ � d I tð Þ � f I tð ÞZ tð Þ ð16Þ

dPðtÞ
dt
¼ b V tð ÞT tð Þ þ a I tð Þ � mþ rþ dð ÞP tð Þ ð17Þ

dVðtÞ
dt
¼ r P tð Þ � c V tð Þ � q V tð ÞW tð Þ ð18Þ

dZðtÞ
dt
¼ u I tð ÞZ tð Þ � b Z tð Þ ð19Þ

dWðtÞ
dt

¼ gV tð ÞW tð Þ � h W tð Þ ð20Þ

3. Basic properties of the extended model

3.1 Non-negativity of the solutions

To retain the biological fidelity of the model, the solutions to the mathematical model have to

be non-negative.

Theorem 3.1. Let τ>0. If the initial conditions satisfy T(0)�0, I(0)�0, P(0)�0, V(0)�0, Z
(0)�0 and W(0)�0 then for all t2[0, τ], T(t), I(t), P(t), V(t), Z(t) andW(t) will remain non-neg-
ative in R6.
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Proof. We know that all of the parameters used in the system are positive. Thus, we can

place lower bounds on each of the Eqs (9)–(14). Thus,

dTðtÞ
dt
� � r T tð Þ � b V tð ÞT tð Þ

dIðtÞ
dt
� � d I tð Þ � f I tð ÞZ tð Þ

dPðtÞ
dt
� � kmþ ð1 � εsÞrþ dð ÞP tð Þ

dVðtÞ
dt
� � c V tð Þ � q V tð ÞW tð Þ

dZðtÞ
dt
� � b Z tð Þ

dWðtÞ
dt

� � h W tð Þ

Through basic differential equations methods, we can resolve the inequalities and produce:

TðtÞ � e� r t� b
R

VðtÞdt
� 0;

IðtÞ � e� d t� f
R

ZðtÞdt
� 0;

PðtÞ � e� ðkmþð1� εsÞrþdÞt � 0;

VðtÞ � e� c t� q
R

WðtÞdt
� 0

ZðtÞ � e� b t � 0;

WðtÞ � e� h t � 0;

Thus, for all t2[0,τ], T(t), I(t), P(t), V(t), Z(t) andW(t) will remain non-negative inR6.

3.2 Computation of the basic reproduction number (R0)

The basic reproduction number is defined as the expected total number of viral particles newly

produced during the whole period of infection from one typical viral particle in a population

consisting only of uninfected cells. Accordingly, the basic reproduction number R0 is calcu-

lated under no treatment condition described by Eqs (15)–(20), and it is also computed at dis-

ease-free equilibrium E0. E0 is the uninfected equilibrium point, which will be explained in

section 4, with T = s/r,I = P = V = Z = W = 0. It can be written as E0 = (T0 = s/r,0,0,0,0,0). This

basic reproduction number explains the average number of newly infected cells based on the

dynamics of the total amount of intracellular viral RNA, which corresponds to P(t) in the

transformed ODE model, instead of the dynamics of the individual amount of intracellular

viral RNA in the original PDE model. Note that the life cycles of both extracellular viral and
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total intracellular viral RNA are explicitly considered in the ODE model, and the viruses are

formulated from the viral RNAs.

Many methods can be used to obtain the basic reproduction number, see for example [36].

The chosen method is the next-generation method, which was introduced Diekmann et. al.,

[37]. There are two principal approaches to apply this method elaborated by Driessche and

Watmough [38] and by Castillo-Chavez, et. al., [39]. In this work, the second approach is con-

sidered, and an outline of this approach is given, proofs and further details can be found in

[36,37,39]. Variables T(t), I(t), P(t), V(t), Z(t) and W(t) can be discretized into three groups:

the non-infected group ϕ, the infected but not infectious group ψ, and the infected and infec-

tious group γ. Hence, we have ϕ = (T,Z,W), ψ = (I,P), and γ = (V). The model in Eqs (15)–(20)

can be written as

d�
dx
¼ f �;c; gð Þ ð21Þ

dc
dx
¼ g �;c; gð Þ ð22Þ

dg
dx
¼ h �;c; gð Þ ð23Þ

The uninfected equilibrium point is given by E0 = (ϕ0,ψ0,γ0), where ϕ0 = (T0,0,0), ψ0 = (0,0),

and γ0 = (0). Considering g(ϕ0,ψ,γ) = 0 gives:

b T0 V � d I ¼ 0 ð24Þ

b T0 V þ a I � ðmþ rþ dÞP ¼ 0 ð25Þ

Solving these two equations for I and P in terms of V, gives:

I ¼
b T0

d
V ð26Þ

P ¼
b T0ðaþ dÞ

dðmþ rþ dÞ
V ð27Þ

Substituting in h (ϕ0,I,P,V) leads to:

h �0; Ið�0;VÞ; Pð�0;VÞ;Vð Þ ¼
r b T0ðaþ dÞ

dðmþ rþ dÞ
V � c V ð28Þ

Let

G ¼
d
dV

h �0; Ið�0; 0Þ; Pð�0; 0Þ; 0ð Þ ¼
r b T0ðaþ dÞ

dðmþ rþ dÞ
� c ð29Þ

hence:

G ¼
r b T0ðaþ dÞ

dðmþ rþ dÞ
� c ð30Þ
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G can be written as:

G ¼ M � D; where M ¼
rb T0ðaþ dÞ

dðmþ rþ dÞ
and D ¼ c ð31Þ

Hence, the basic reproductive number is the spectral radius:

R0 ¼ r1ðMD� 1Þ ð32Þ

that means that:

R0 ¼
b s rðaþ dÞ

c r dðmþ rþ dÞ
ð33Þ

4. The equilibrium points

Equilibrium points are the values of the variables T�, I�, P�, V�, Z� and W�, under no treatment,

at which the derivatives of these variables, i.e., the left-hand sides in Eqs (15)–(20), vanish.

These equilibrium points represent the steady states after the cease of medication. In Fact, in

stability analysis the interest is in specifying the behavior of the virus after the cease of medica-

tion. Hence, these equilibrium points satisfy the following algebraic equations:

s � r T� � b V�T� ¼ 0 ð34Þ

b V�T� � d I� � f I�Z� ¼ 0 ð35Þ

b V�T� þ a I� � ðmþ rþ dÞP� ¼ 0 ð36Þ

r P� � c V� � q V�W� ¼ 0 ð37Þ

u I�Z� � b Z� ¼ 0 ð38Þ

gV�W� � h W� ¼ 0 ð39Þ

The commercial program Mathematica 12 program is used solve these algebraic equations

to obtain the equilibrium points. The program gives six equilibrium points, however, one of

them has negative coordinates that have no biological meaning. The five other points are:

E0 ¼
s
r
; 0; 0; 0; 0; 0

� �
ð40Þ

E1 ¼
s

rR0

;
s
d

1 �
1

R0

� �

;
c r
br

R0 � 1ð Þ;
r
b

R0 � 1ð Þ; 0; 0

� �

ð41Þ

E2 ¼ k2s;
bhS
dg

k2;
c r hR0

gr
k2;

h
g
; 0;

c
q
� 1þ r k2R0ð Þ

� �

ð42Þ

E3 ¼
k1 þ 2c r u m1 � k3

2b r ru
;
b
u
;
k1 þ k3

2b r m1u
;
k1 þ k3

2b c m1u
;
ðk1 þ k3Þ

2 b brf
�
ðaþ dÞ

f
; 0

� �

ð43Þ

E4 ¼ k2s;
b
u
;

cd r R0

srðaþ dÞ
a b
ub
þ

sk2h
g

� �

;
h
g
;

b h s u
brgf þ bbhf

�
d

f

� �

;
a bgr
hm1qu

þ
bk2rs
m1q

�
c
q

� �� �

ð44Þ
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where

m1 ¼ ðdþ mþ rÞ

k1 ¼ a b b rþ br s u � c r u m1

k2 ¼
g

r g þ bh

k3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4a b b c r rm1uþ k1

2

q

The first point, E0, is a virus-free equilibrium point, while the other four points are virus-

infected. These four infected equilibrium points are: an infected state with no immune

responses, an infected state with dominant antibody responses without CTLs, an infected state

with dominant CTL responses without antibodies, and an infected state with coexistence

responses of both CTLs and antibodies, respectively.

Since the equilibrium points should have non-negative coordinates only, the following con-

ditions for existence can be obtained:

Remark 4.1

1. E1 exists only if R0�1. When R0 = 1 then E1 = E0.

2. E2 exists only if R0�A1. When R0 = A1 then E2 = E1.

3. E3 exists only if
ðk1þk3Þ

2 b brf �
ðaþdÞ

f , which by simplification leads to R0�A2. It is also required that

2 c r u μ1�k3−k1, however, this is always true and would not add a new condition. When R0

= A2 then E3 = E1.

4. E4 exists only if R0�A4 and R0�A3. When R0 = A3 then E4 = E2 and when R0 = A4 then E4 =

E3.

Where, A1 ¼ 1þ b h
r g ;A2 ¼ 1þ

b r bðaþdÞ
c r u m1

;A3 ¼
gr bðaþdÞ

c r u h k2m1
, and A4 ¼

b s u hðaþdÞ
r dða b gþb s u h k2Þ

These conditions are necessary and sufficient conditions for the existence and non-exis-

tence of the equilibrium points.

5. Global stability analysis

Usually, the global stability analysis of a dynamical system is a very complex problem. One of

the most efficient methods to solve this problem is Lyapunov’s theory. To build the Lyapunov

function, the technique used in [24–26,40], which had been suggested and utilized for other

models, is adopted. In this section, the global asymptotic stability of the model for both the

uninfected and the infected equilibrium points is investigated.

Assume the following general form of Lyapunov function l(t):

l tð Þ ¼ �1 T � T� � T�ln
T
T�

� �� �

þ �2 I � I� � I�ln
I
I�

� �� �

þ �3 P � P� � P�ln
P
P�

� �� �

þ �4 V � V� � V�ln
V
V�

� �� �

þ �5 Z � Z� � Z�ln
Z
Z�

� �� �

þ �6 W � W� � W�ln
W
W�

� �� �

ð45Þ
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where T� means the value of T at the equilibrium point, and whenever T� is zero the corre-

sponding ln term does not exist, and this is applied to all other variables. �1, �2, �3, �4, �5, and �6

are constants and will be specified through the proof of the stability of equilibrium points.

5.1 Basic properties of Lyapunov function l(t)
The following properties should be demonstrated in any Lyapunov function l(t):

1. It is a continuously differentiable function defined in domain D�R6; 02D, and defined for

all T(t)�0, I(t)�0, P(t)�0, V(t)�0, Z(t)�0 and W(t)�0. This property is already satisfied in

the proposed function in Eq (45).

2. It is always nonnegative function in R6, but equal to 0 at the equilibrium points. In the fol-

lowing subsections, the conditions required for the equilibrium points to fulfill this prop-

erty are obtained.

3. It satisfies the radial unboundedness condition i.e., if any dependent variable tends to infin-

ity, l(t) also tends to infinity. To show this, let us assume that T(t) in Eq (45) tends to infin-

ity, then:

l tð Þ ¼ �1 limT!1
T � T� � T�ln

T
T�

� �� �

þ Finite terms

¼ �1 limT!1
T 1 �

T�
T
�
lnðT=T�Þ
T=T�

� �

þ Finite terms

Using L’Hôpital’s rule,
lnðT=T�Þ
T=T�

tends to zero, hence, l(t) tends to infinity.

5.2 Global stability of uninfected equilibrium point

Theorem 5.1. E0 is globally asymptotically stable if R0�1.

Proof: Consider the following Lyapunov function for the uninfected equilibrium point

E0(T0,0,0,0,0,0):

l tð Þ ¼ 1þ
a

d

� �
T � T0 � T0ln

T
T�

� �� �

þ
a

d
I þ P þ

m1

r
V þ

a

d

f
u
Z þ q

m1

r g
W

In this case �1 ¼ 1þ a

d

� �
; �2 ¼

a

d
; �3 ¼ 1; �4 ¼

m1

r
; �5 ¼

a

d

f
u ; �6 ¼ q m1

r g. The time derivative of l
(t) is:

dlðtÞ
dt
¼ 1þ

a

d

� �
1 �

T0

T

� �

s � r T � b V Tð Þ þ
a

d

� �
b V T � d I � f I Zð Þ

þ b V T þ aI � m1Pð Þ þ
m1

r

� �

rP � c V � q V Wð Þ þ
a

d

f
u

� �

u I Z � b Zð Þ

þ q
m1

rg
g V W � h Wð Þ

Eq (45) can be simplified by substituting s = r T0, which leads to:

dlðtÞ
dt
¼ 1þ

a

d

� �
T � T0ð Þ r

T0

T
� r � b V

� �

þ
a

d
b V Tð Þ þ

m1

r
� cVð Þ þ

a

d

f
u
� b Zð Þ

þ q
m1

rg
� h Wð Þ
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dlðtÞ
dt
¼ 1þ

a

d

� �
T � T0ð Þ r

T0

T
� r

� �

þ 1þ
a

d

� �
b T0V þ

m1

r
� c Vð Þ þ

a

d

f
u
� b Zð Þ

þ q
m1

rg
� h Wð Þ

dlðtÞ
dt
¼ r T0 1þ

a

d

� �
2 �

T0

T
�

T
T0

� �

�
a

d

f
u
b Z � q

m1

rg
h W þ 1þ

a

d

� �
bT0 � c

m1

r

� �

V

Since R0 ¼
b srðaþdÞ
c r dm1

, then
dlðtÞ
dt can be simplified to

dlðtÞ
dt
¼ r T0 1þ

a

d

� �
2 �

T0

T
�

T
T0

� �

�
a

d

f
u
b Z � q

m1

rg
h W �

cm1

r
1 � R0ð ÞV

Since the arithmetical mean is greater than the geometrical mean, then 2 � T
T0
�

T0

T

� �
< 0.

Consequently,
dlðtÞ
dt < 0 for any coordinate values (T,I,P,V,Z,W) and

dlðtÞ
dt ¼ 0 at the coordinates

of the uninfected equilibrium point (T0,0,0,0,0,0). Therefore, R0�1 ensures that
dlðtÞ
dt � 0 which

verifies that all the trajectories of the model converge to E0, that is, the uninfected equilibrium

point E0 is globally asymptotically stable when R0�1.

Theorem 5.2

1. E1 is globally asymptotically stable if 1�R0�min(A1, A2).

2. E2 is globally asymptotically stable if A1�R0�A3.

3. E3 is globally asymptotically stable if A2�R0�A4.

4. E4 is globally asymptotically stable if R0�max(A3, A4).

Proof:
Consider the Lyapunov function for the infected equilibrium points:

l tð Þ ¼ 1þ
aI�

bV�T�

� �

T � T� � T�ln
T
T�

� �� �

þ
aI�

bV�T�
I � I� � I�ln

I
I�

� �� �

þ P � P� � P�ln
P
P�

� �� �

þ
m1

r
V � V� � V�ln

V
V�

� �� �

þ
f aI�

u bV�T�
Z � Z� � Z�ln

Z
Z�

� �� �

þ q
m1

r g
W � W� � W�ln

W
W�

� �� �

The time derivative of l(t) is:

dlðtÞ
dt
¼ 1þ

aI�
bV�T�

� �

1 �
T�
T

� �

s � r T � b V Tð Þ þ
aI�

bV�T�

� �

1 �
I�
I

� �

� b V T � d I � f I Zð Þ þ 1 �
P�
P

� �

b V T þ a I � m1Pð Þ þ
m1

r

� �

1 �
V�
V

� �

� rP � c V � q V Wð Þ þ
f aI�

ubV�T�

� �

1 �
Z�
Z

� �

u I Z � b Zð Þ þ q
m1

rg
1 �

W�

W

� �

� gV W � h Wð Þ ð46Þ
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For the infected equilibrium points, Eq (46) can be simplified by the following substitutions

from Eqs (15)–(20):

s ¼ r T� þ b V�T�; ð47Þ

d ¼
b V�T�

I�
� fZ�; ð48Þ

m1 ¼
ðaI� þ bV�T�Þ

P�
; ð49Þ

c ¼
rP� � qV�W�

V�
ð50Þ

The six terms of Eq (46) can be simplified as shown:

The first term:

By using Eq (47), the first term can be simplified as shown:

1þ
aI�

bV�T�

� �

1 �
T�
T

� �

s � r TðtÞ � b V Tð Þ

¼ 1þ
aI�

b V�T�

� �

1 �
T�
T

� �

r T� þ b V�T� � r T � b V Tð Þ

¼ 1þ
aI�

b V�T�

� �

r T� 2 �
T
T�
�

T�
T

� �

þ b V�T� 1 �
VT
V�T�

�
T�
T
þ

V
V�

� �

þ
aI�

b V�T�
b V�T�ð1 �

VT
V�T�

�
T�
T
þ

V
V�
Þ

The second term:

By using Eq (48), the second term can be simplified as shown:

aI�
bV�T�

� �

1 �
I�
I

� �

b V T � d I � f I Zð Þ

¼
aI�

b V�T�

� �

1 �
I�
I

� �

b V T �
bV�T�I

I�
þ fZ�I � f I Z

� �

¼
aI�

bV�T�

� �

bV�T�
VT
V�T�

�
I
I�
�

I�VT
V�T�I

þ 1

� �

þ
aI�

bV�T�

� �

fZ�I�
I
I�
�

I Z
Z�I�
� 1þ

Z
Z�

� �

The third term:
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By using Eq (49), the third term can be simplified as shown:

1 �
P�
P

� �

b V T þ aI � ðm1ÞPð Þ

¼ 1 �
P�
P

� �

b V T þ
a

d

b V�T�I
I�

�
a

d
fZ�I � aI� þ b V�T�ð Þ

P
P�

� �

¼ 1 �
P�
P

� �

b V�T�
VT
V�T�

�
P
P�

� �

þ
a

d
b V�T�

I
I�
�

P
P�

� �

þ fZ�I�
a

d

P
P�
�

I
I�

� �� �

¼ b V�T�
VT
V�T�

�
P
P�
�

VTP�
V�T�PðtÞ

þ 1

� �

þ
a

d
b V�T�

I
I�
�

P
P�
�

IP�
I�P
þ 1

� �

þ fZ�I�
a

d

P
P�
�

I
I�
� 1þ

IP�
I�P

� �

The fourth term:

By using Eq (50), the fourth term can be simplified as shown:

m1

r

� �

1 �
V�
V

� �

rP � cV � qVWð Þ ¼
m1

r

� �

1 �
V�
V

� �

rP � V
rP� � qV�W�

V�

� �

� qVW
� �

¼
m1

r

� �

1 �
V�
V

� �
r

ðm1Þ
m1ð ÞP�

P
P�
�

V
V�

� �

þ qVW� � qVW
� �

¼
m1

r

� �

1 �
V�
V

� �
r

ðm1Þ
m1ð ÞP�

P
P�
�

V
V�

� �� �

þ
m1

r

� �

1 �
V�
V

� �

qVW� � qVWð Þ

¼ b V�T� þ aI�ð Þ 1 �
V�
V

� �
P
P�
�

V
V�

� �

þ
m1

r

� �

1 �
V�
V

� �

qVW� � qVWð Þ

¼ bV�T� þ
a

d
dI�

� � P
P�
�

V
V�
�

V�P
P�V
þ 1

� �

þ
m1

r

� �

1 �
V�
V

� �

qVW� � qVWð Þ

¼ bV�T� þ
a

d
b V�T� � fZ�I�ð Þ

� � P
P�
�

V
V�
�

V�P
P�V
þ 1

� �

þ
m1

r

� �

1 �
V�
V

� �

� qVW� � qVWð Þ

¼ b V�T�
P
P�
�

V
V�
�

V�P
P�V
þ 1

� �

þ
a

d
b V�T�ð Þ

P
P�
�

V
V�
�

V�P
P�V
þ 1

� �

�
a

d
fZ�I�ð Þ

�
P
P�
�

V
V�
�

V�P
P�V
þ 1

� �

þ
m1

r

� �

q VW� � VW � V�W� þ V�Wð Þ

The fifth term:

f aI�
u bV�T�

� �

u I Z � b Z � Z�u I þ bZ�ð Þ

The sixth term:

q
m1

rg
gVW � h W � gVW� þ hW�ð Þ
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Substituting the sixth terms in Eq (46) gives:

dlðtÞ
dt
¼ 1þ

aI�
b V�T�

� �

r T� 2 �
T
T�
�

T�
T

� �

þ b V�T� 2 �
T�
T
þ

V
V�
�

VTP�
V�T�PðtÞ

� �

þ aI� 2 �
I
I�
�

I�VT
V�T�I

�
T�
T
þ

V
V�

� �

þ
aI�

b V�T�

� �

fZ�I� � 1þ
Z
Z�

� �

þ
a

d
bV�T� 2þ

I
I�
�

IP�
I�P
�

V
V�
�

V�P
P�V

� �

þ bV�T� �
V
V�
�

V�P
P�V
þ 1

� �

þ
a

d
fZ�I�ð Þ

�
V
V�
þ

V�P
P�V
�

I
I�
þ

IP�
I�P
� 2

� �

þ
m1

r

� �

q � V�W� þ V�Wð Þ þ
aI�

bV�T�

f
u

� �

� � bZ þ bZ�ð Þ þ q
m1

rg
� h W þ hW�ð Þ

Substituting Eq (48) into the previous equation gives

dlðtÞ
dt
¼ r T� 1þ

aI�
b V�T�

� �

2 �
T
T�
�

T�
T

� �

þ bV�T� 3 �
T�
T
�

V TP�
V�T�PðtÞ

�
V�P
P�V

� �

þ
aI�

bV�T�

� �

fI� � Z� þ Zð Þ þ aI� 4 �
IP�
I�P
�

V�P
P�V
�

I�VT
V�T�I

�
T�
T

� �

þ
m1

r

� �

q � V�W� þ V�Wð Þ þ
aI�

bV�T�

f
u

� �

� b Z þ bZ�ð Þ þ q
m1

r g
� hW þ hW�ð Þð51Þ

Since the arithmetical mean is greater than the geometrical mean, i.e., the terms

2 � T
T�
�

T�
T

� �
; 3 �

T�
T �

V�P
P�V
�

VTP�
V�T�P

� �
, and 4 �

T�
T �

I�VT
V�T�I
�

IP�
I�P
�

V�P
P�V

� �
are negative.

For the infected equilibrium point E1: Substituting Z� = 0 in Eq (48) and then substituting

the result combined with Z� = 0 and W� = 0 into Eq (51) gives

dlðtÞ
dt
¼ rT� 1þ

a I�
b V�T�

� �

2 �
T
T�
�

T�
T

� �

þ b V�T� 3 �
T�
T
�

V�P
P�V
�

VTP�
V�T�P

� �

þ aI� 4 �
IP�
I�P
�

V�P
P�V
�

I�VT
V�T�I

�
T�
T

� �

þ
a

d
f Z I� �

b
u

� �

þ q
m1

r
W V� �

h
g

� �

As per our derivation,
dlðtÞ
dt ¼ 0 only at the equilibrium point E1. Furthermore, for I� � b

u and

V� � h
g it follows that

dlðtÞ
dt < 0. Substituting the coordinates of the equilibrium point leads to

R0 �
u s

u s� d b and R0 � 1þ b h
r g . Hence, according to Lyapunov–LaSalle’s invariant principle

combined with remark 4.1, E1 exists and it is globally asymptotically stable if 1�R0�min(A1,

A2).

For the infected equilibrium point E2: Substituting Z� = 0 in Eq (48) and then substituting

the result combined with Z� = 0 and V� ¼
g
h into Eq (51) gives:

dlðtÞ
dt
¼ r T� 1þ

aI�
b V�T�

� �

2 �
T
T�
�

T�
T

� �

þ b V�T� 3 �
T�
T
�

V�P
P�V
�

VT P�
V�T�P

� �

þ aI� 4 �
IP�
I�P
�

V�P
P�V
�

I�VT
V�T�I

�
T�
T

� �

þ
a

d
f Z I� �

b
u

� �

dlðtÞ
dt ¼ 0 only at the equilibrium point E2. For I� � b

u it follows that
dlðtÞ
dt < 0. Substituting the

coordinates of this equilibrium point leads to R0 �
gr bðaþdÞ
c r u hk2m1

. Hence, according to Lyapunov–
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LaSalle’s invariance principle combined with remark 4.1, E2 exists and it is globally asymptoti-

cally stable if A2�R0�A3.

For the infected equilibrium point E3: Substituting W� = 0, and I� ¼ b
u into Eq (51) gives

dlðtÞ
dt
¼ r T� 1þ

aI�
bV�T�

� �

2 �
T
T�
�

T�
T

� �

þ b V�T� 3 �
T�
T
�

V�P
P�V
�

VT P�
V�T�P

� �

þ aI� 4 �
IP�
I�P
�

V�P
P�V
�

I�VT
V�T�I

�
T�
T

� �

þ q
m1

r
W V� �

h
g

� �

It can be noticed that
dlðtÞ
dt ¼ 0 only at the equilibrium point E3. For V� � h

g it follows that

dlðtÞ
dt < 0. Substituting the coordinates of this equilibrium point gives

k1þk3

2b c m1u
� h

g, which by sim-

plification leads to R0 �
b s u h ðaþdÞ

r d ða b gþb s u h k2Þ
. Hence, according to Lyapunov–LaSalle’s invariant

principle combined with remark 4.1, E3 exists and it is globally asymptotically stable if

A1�R0�A4.

For the infected equilibrium point E4: Substituting I� ¼ b
u, and V� ¼

g
h into Eq (51) gives

dlðtÞ
dt
¼ r T� 1þ

aI�
bV�T�

� �

2 �
T
T�
�

T�
T

� �

þ b V�T� 3 �
T�
T
�

V�P
P�V
�

VT P�
V�T�P

� �

þ aI� 4 �
IP�
I�P
�

V�P
P�V
�

I�V T
V�T�I

�
T�
T

� �

Only at the equilibrium point E4 the derivative
dlðtÞ
dt ¼ 0 while

dlðtÞ
dt < 0 at any other point.

According to Lyapunov–LaSalle’s invariance principle combined with remark 4.1, E4 exists

and it is globally asymptotically stable if R0�max(A3, A4). This ends the prove of theorem 5.2.

6. Simulations

In this section, the proposed model and the transformed model are numerically simulated. For

each of them, the corresponding system of ODE’s is numerically solved using Mathematica 12
program. The parameter values, which were estimated from clinical datasets in [33], are sum-

marized in (Table 1), and the immune system parameters, which were proposed in [41], are

given in (Table 2). These parameters are used in the simulations. Some of the values of the

parameters are not mentioned in the Tables 1 and 2 and the used values will be mentioned

explicitly.

Table 1. Multiscale model parameter values.

Parameters Parameter definition Values and units

s Production rate of target cells cells/ml. day−1

β The rate at which virus V(t) infects target cells T(t) 5×10−8 ml day

−1virion−1

r Death rate of target cells 0.01 day−1

δ Natural death rate of infected cell 0.14 day−1

α The age-dependent rates of vRNA production 40 day−1

k Efficacy responsible for the action of secretion and increasing degradation

rate of vRNA

1 day−1

μ The age-dependent rates of vRNA degradation 1 day−1

c Natural clearance rate of virus V(t) day−1

ρ The age-dependent rates of vRNA assembly/secretion 8.18 day−1

εα Efficacy responsible for the actions of blocking intracellular viral production 0.99

εs Efficacy responsible for the actions of blocking virion assembly 0.56

https://doi.org/10.1371/journal.pone.0257975.t001
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To demonstrate the mutual relations between the basic reproduction number, the equilib-

rium points, and the stability analysis, the form of the proposed model under no treatment

represented in Eqs (15)–(20) is simulated first. The simulation demonstrates the variation of

all variables T(t), I(t), P(t), V(t), Z(t), W(t) with time. Each figure represents a case with a spe-

cific value for the basic reproduction number R0 which leads to a corresponding equilibrium

point that is stable according to theorems 5.1 and 5.2. Figs 1–5 illustrate that the variables con-

verge to that equilibrium point. T0, I0, P0, V0, Z0, andW0 are the initial values of the variables.

To demonstrate the effect of medical treatments, the form of the proposed model under

treatment represented in Eqs (9)–(14) is considered now. The same cases considered in the

first stage is reconsidered in this stage, however, with medical treatment. Figs 6–10 reveal the

effect of medication. Whenever the line for the antibodies is not seen it coincides with the line

for CTLs. The simulation proves the practicality and the effectiveness of the proposed model.

For the comparison purpose, the simulation for the transformed model is performed. The

transformed model has two equilibrium points only. Hence, two cases are considered, one for

the noninfected case and the other for infected case. No treatment illustrations are considered

by substituting εα = 0, εs = 0, and k = 1 in Eqs 5–8 and for the medical treatment illustrations,

the values in Table 1 for these parameters are used. Comparing Figs 11–14 with Figs 1, 2, 6 and

7 reveal some important outcomes for including the CTLs and antibodies in the model. The

Table 2. Immune system parameter values.

Parameters Parameter definition Values

u Expand rate of CTLs Z(t) in response to virus antigen derived from infected cells I(t) 4.4×10−7 day−1

b Natural decay rate of CTLs Z(t) in the absence of antigenic stimulation 10−2day−1

g Development rate of antibody W(t) in response to virus V(t) 10−5day−1

h Natural decay rate of antibody W(t) 10−2day−1

f The rate at which CTLs Z(t) kills infected cells I(t) 6.4×10−4 day−1

q The rate at which antibody W(t) neutralized the virus V(t) 2 day−1

https://doi.org/10.1371/journal.pone.0257975.t002

Fig 1. Variation of the variables for no treatment case with s = 1.3×104, c = 22.3, R0 = 0.733. Hence R0<1 and E0 is

stable. E0 = {1.3×106,0,0,0,0,0}. T0 = 0.6×107, I0 = 100, P0 = 400, V0 = 50, Z0 = 20, W0 = 20.

https://doi.org/10.1371/journal.pone.0257975.g001
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comparison shows that CTLs and antibodies smoothen the variation of other variables and

reduce the medication time.

7. Discussion

It can be notice from Eq (33) that the parameters related to immune system do not affect the

basic reproduction number. To explain that, let us go back to the definition of R0 which

Fig 2. Variation of the variables for no treatment case with s = 68225, c = 82.3, R0 = 1.043, A1 = 1.05, A2 = 1.049, A3

= 1.02, and A4 = 1.07. Hence 1<R0<min(A1,A2) and E1 is stable. E1 = {6.54×106, 20108, 86603, 8608,0,0}. T0 =

0.9×107, I0 = 100, P0 = 100, V0 = 100, Z0 = 20, W0 = 20.

https://doi.org/10.1371/journal.pone.0257975.g002

Fig 3. Variation of the variables for no treatment case with s = 1.3×105, c = 22.3, R0 = 7.33, A1 = 1.005, A2 = 1.18 A3

= 36.08, and A4 = 0.204. Hence A1<R0<A3 and E2 is stable. E2 = {1.29×107, 4620, 19897, 1000, 0,70}. T0 = 0.9×107, I0 =

100, P0 = 100, V0 = 100, Z0 = 20, W0 = 20.

https://doi.org/10.1371/journal.pone.0257975.g003
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implies that we assume that a virus particle enters the system, when t = 0 and the system is at

the disease-free equilibrium E0. Accordingly, when t = 0, Eqs (15)–(18) implies that the rates of

variables T,I,P,V have nonzero values since V(0) = 1, T(0) = T0. Hence, these variables will

vary with time. Opposite to that, when t = 0, Eqs (19) and (20) imply that the rates of variables

Z and W have zero values since Z(0) = 0, W(0) = 0. Hence, Z andW will not vary with time

i.e., Z(t) = 0 and W(t) = 0. Biologically, when one typical viral particle placed in a population

Fig 5. Variation of the variables for no treatment case with s = 1.3×106, c = 22.3, R0 = 73.35, A1 = 1.005, A2 = 1.18,

A3 = 36.08 and A4 = 2.036. Hence R0�max(A3, A4) and E4 is stable. E4 = {1.29×108, 22727, 98236, 1000, 226, 391}. T0 =

0.9×108, I0 = 2000, P0 = 200, V0 = 200, Z0 = 200, W0 = 250.

https://doi.org/10.1371/journal.pone.0257975.g005

Fig 4. Variation of the variables for no treatment case with s = 1.3×105, c = 82.3, R0 = 1.99, A1 = 1.05, A2 = 1.049,

A3 = 1.021, and A4 = 2.036. Hence A2<R0<A4 and E3 is stable. E3 = {1.24×107, 22727, 98191, 9759, 197,0}. T0 =

1.9×107, I0 = 100, P0 = 100, V0 = 100, Z0 = 20, W0 = 20.

https://doi.org/10.1371/journal.pone.0257975.g004
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consisting only of uninfected cells T, ultimately, some of these cells would be infected and

became infected I cells and consequently P intracellular viral RNA cells. However, since ini-

tially there are no CTLs and antibodies, they could not be generated. Therefore, the parameters

multiplied by Z andW would not appear in the formula of R0.

Including the immune system, raised the number of the equilibrium points to five. The first

point is a virus-free equilibrium point, and the second point is an infected point with no

immune responses. These two equilibrium points are the same as those obtained using trans-

formed model without the immune system in [34]. The last three equilibrium points give an

insight about immune response on the stability of the system and notably they could not be

Fig 6. Variation of the variables for medical treatment case with R0 = 0.733. .

https://doi.org/10.1371/journal.pone.0257975.g006

Fig 7. Variation of the variables for medical treatment case with R0 = 1.043.

https://doi.org/10.1371/journal.pone.0257975.g007
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obtained using the transformed model. These three infected equilibrium points are: a point

with dominant antibody responses without CTLs, a point with dominant CTL responses with-

out antibodies, and a point with coexistence responses of both CTLs and antibodies, respec-

tively. Both the CTLs and antibodies are stimulated by the virus, so they are in competition.

Though role of CTL and antibodies for the resolution of HCV infection is debated in the litera-

ture, many medical evidence supports the notion of competition between the two branches of

the immune system [42,43]. The infected equilibrium point with dominant antibody means

that the antibody response is strong and diminishes virus load to a level that is too low to stim-

ulate the CTL response. The infected equilibrium point with dominant CTLs means that the

CTL response is strong and diminishes virus load to a level that is too low to stimulate the anti-

body response. In these two equilibrium points, the competition between the CTLs and

Fig 8. Variation of the variables for medical treatment case with R0 = 0.733.

https://doi.org/10.1371/journal.pone.0257975.g008

Fig 9. Variation of the variables for medical treatment case with R0 = 1.99.

https://doi.org/10.1371/journal.pone.0257975.g009
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antibodies results in exclusion of one of them. The competition could result in co-existence of

both as in the fifth equilibrium point.

Comparing the values of the variables T�, I�, P�, and V� for the equilibrium point with no

immune responses E1 and the equilibrium point with dominant antibody responses E2, it can

be simply proven that T2�T1, I2�I1, P2�P1, and V2�V1 when E2 exists i.e., R0�A1. The same

is applicable to equilibrium point with dominant CTL E3 responses and equilibrium point

with coexistence responses of both CTLs and antibodies E4. Though, the antibody activation

and the CTL activation could not eliminate the viral load, they notably increase the uninfected

cells, decrease the infected cells and intracellular viral RNA, and reduce the viral load.

Fig 10. Variation of the variables for medical treatment case with R0 = 73.35.

https://doi.org/10.1371/journal.pone.0257975.g010

Fig 11. Variation of the variables for the transformed model for no treatment case with s = 1.3×104, c = 22.3, R0 =

0.733. Hence R0<1 and E0 is stable. E0 = {1.3×106,0,0,0}. T0 = 0.6×107, I0 = 100, P0 = 400, V0 = 50.

https://doi.org/10.1371/journal.pone.0257975.g011
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It is worth to notice that theorems 5.1 and 5.2 prove that each equilibrium point has a spe-

cific domain of stability. These domains of stability could be overlapped. For example, if

A1�A2 and A3�A4, the domains of global stability of E2 and E3 will be intersecting except if

A3�A2. Hence, a bistable equilibrium could be found, which means the coexistence of two sta-

ble equilibrium points. A similar situation had been reported in many biological circum-

stances, like in multistrain disease dynamics discussed in [36], due to the low capacity for

treatment of infective in epidemic models [44], and in investigating bifurcations and stability

of an HIV model that incorporates the immune responses [45]. In the presence of bistable

Fig 12. Variation of the variables for the transformed model for no treatment case with s = 68225, c = 82.3, R0 =

1.043. Hence R0>1 and E1 is stable. E1 = {6.54×106, 20108, 86603, 8608}. T0 = 0.9×107,I0 = 100, P0 = 100, V0 = 100.

https://doi.org/10.1371/journal.pone.0257975.g012

Fig 13. Variation of the variables for transformed model for medical treatment case with R0 = 0.733.

https://doi.org/10.1371/journal.pone.0257975.g013
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equilibria, the solution converges to one of the two stable equilibrium points depending on the

initial conditions. Therefore, it is called bistable dominance since the species in the better posi-

tion originally dominates [36].

Since the proposed model is a multiscale model that incorporate the immune system

response, it considers the intracellular viral RNA with the introduction of age-dependency in

addition to time-dependency. Hence, the model can explore the dynamics of HCV infection

under therapy with DAAs by including both the intracellular viral RNA replication/degrada-

tion and the extracellular viral infection with age-dependency in addition to time-dependency.

The parameters of the intracellular viral RNA, P, appears in both the basic reproduction num-

ber and in the coordinates of the equilibrium points. Therefore, the stability of the proposed

model is considerably much more difficult to consider and to analyze compared to the corre-

sponding classical model which could not describe the intracellular viral dynamics [27,28,46].

8. Conclusions

This work has utilized the transformed multiscale model for HCV in the form of ODE, which

is direct and easier to analyze and modify. The immune system, which has a significant role in

reducing the virus load, has been incorporated into the multiscale model. The proposed model

could represent a valuable tool to comprehend the pathogenesis and controlling treatment of

chronic HCV. One of the main advantages of the proposed model over classical multiscale

model is its ability to obtain equilibrium points after the cease of medication while in the pres-

ence the immune effects. The basic reproduction number of the infection R0 has a crucial rule

in dealing with the stability of the spread of the HCV infection, hence; it has been identified.

The parameters related to immune system do not affect the basic reproduction number. The

disease-free equilibrium point and the endemic equilibrium points are specified. Conditions

for the existence of these points are derived. At any state of the system, only a maximum of five

total equilibrium points including the uninfected point can be available. The four infected

equilibrium points are: a point with no immune responses, a point with dominant antibody

responses without CTLs, a point with dominant CTL responses without antibodies, and a

point with coexistence responses of both CTLs and antibodies, respectively. It has been

Fig 14. Variation of the variables for the transformed model for medical treatment case with R0 = 1.043.

https://doi.org/10.1371/journal.pone.0257975.g014

PLOS ONE Lyapunov function and global asymptotic stability for a new multiscale HCV viral dynamics model

PLOS ONE | https://doi.org/10.1371/journal.pone.0257975 October 12, 2021 23 / 26

https://doi.org/10.1371/journal.pone.0257975.g014
https://doi.org/10.1371/journal.pone.0257975


revealed that the four infected equilibrium points are dependent upon the immune system

parameters.

Global stability of the equilibrium points has been considered, the Lyapunov principle has

been utilized. A new appropriate Lyapunov function has been suggested, hence, sufficient con-

ditions have been derived for the global stability of the five equilibrium points. It has been

proven that the uninfected equilibrium point is asymptotically stable if R0� 1 and unstable if

R0 > 1. The stability of the four infected equilibrium points depends upon the basic reproduc-

tion number and upon the parameters defined by the CTL response and antibody response.

Therefore, these parameters play an important role to characterize the stability of the equilib-

rium points. The activation of antibodies and the activation of CTLs will not eliminate the

viral load but they, remarkably, reduce the viral load.

For successful treatment, if R0>1 the treatment should be directed to improve the body

parameters to ensure that R0�1 and then the treatment for reducing the virus could be con-

ducted until the state of the body comes to the attracting zone for the stable uninfected point.

Consequently, the immune system will lead the state of the body to a stable uninfected state.

Otherwise, if an unstable uninfected equilibrium point exists, the virus could not be eradicated

even if this uninfected point is approached. Also, a successful treatment ensures that the

infected equilibrium points do not exist, so the system would not be attracted by any one of

them if it exists.
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