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Regulatory B cells (Bregs) have an anti-inflammatory role and can suppress autoimmunity,
by employing both cytokine secretion and cell-contact mediated mechanisms. Numerous
Breg subsets have been described and have overlapping phenotypes in terms of their
immune expression markers or cytokine production. A hallmark feature of Bregs is the
secretion of IL-10, although IL-35 and TGFb−producing B cells have also been identified.
To date, few reports have identified an impaired frequency or function of Bregs in
individuals with type 1 diabetes; thus our understanding of the role played by these
Breg subsets in the pathogenesis of this condition is limited. In this review we will focus on
how regulatory B cells are altered in the development of type 1 diabetes, highlighting both
frequency and function and discuss both human and animal studies.
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INTRODUCTION

It is now well-established that regulatory B cells (Bregs) can dampen immune responses and play a
role in maintaining immune tolerance. These immunosuppressive Bregs are generally named for the
anti-inflammatory cytokines that they produce to exert their regulatory effects, and so a variety of
Bregs have been identified. The cytokine most widely associated with Bregs is Interleukin-(IL-)10
(1) and thus has been the major focus of many studies into the failure of Bregs to suppress
inflammation in autoimmune conditions. IL-10 independent mechanisms have been identified,
including suppression mediated by contact of cell surface molecules (2, 3) or other soluble mediators
such as the production of TGFb (4) and IL-35 (5). However, currently there are no reports of
alterations in these IL-10 independent regulatory B cell populations, either in number or function,
in human type 1 diabetes; thus their contribution to type 1 diabetes remains an
outstanding question.

In type 1 diabetes B cells are typically understood to play a pathogenic role in disease, likely
through the production of inflammatory cytokines and presentation of autoantigens to T cells (6).
This has been emphasized by the use of Rituximab in clinical trials and the observed temporary
delay in the loss of C-peptide (7). However, studies of other autoimmune diseases have highlighted
the essential role for regulatory B cells (8) and this has now been reflected in type 1 diabetes,
although comparatively with fewer studies. Regulatory B cells in other autoimmune diseases,
including diabetes, has recently been reviewed (9). It is imperative that we further understand the
balance between effector and regulatory B cells in order to improve immunotherapeutic treatments
targeting these lymphocytes, including utilizing Bregs as a therapeutic option. This review will focus
on the emerging literature on Bregs and discuss their role in type 1 diabetes.
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REGULATORY B CELL PHENOTYPES

Studies in both human and mouse have contributed to
identifying numerous IL-10-producing Breg subsets using a
variety of immune markers, some of which overlap, to indicate
a regulatory population. In humans, several Breg subsets
enriched at different stages of B cell maturation, including
immature B cells (CD24hiCD38hi) (10), memory B cells
(CD24hiCD27+ [B10]) (11) and plasmablasts (CD27intCD38+)
(12) have been identified. Similarly, in mice, various subsets have
been identified in the transitional (13) and marginal zone (14) B
cell compartments, including specific mouse subsets that parallel
human B10 cells (11, 15) and human plasmablasts (12).

Other human regulatory B cell subsets have also been
described including CD19+Tim-1+ B cells (16) and
CD39+CD73+ Bregs (17), with equivalent subsets described in
mice (18, 19). In addition, human CD25hiCD71hi B cells produce
IgG4 and are designated as regulatory Br1 cells (20). However,
these subsets have not yet been described in human type 1
diabetes. The diversity and identification of Breg phenotypes has
been reviewed extensively (9, 21, 22). The range and variability in
Frontiers in Immunology | www.frontiersin.org 2
methods which induce IL-10-producing B cells, along with a lack
of a key definitive marker, makes it difficult to define a Breg cell
without assessing IL-10 production, as a key function. Therefore,
the evaluation of IL-10-production during the differentiation and
developmental stages of B cells is important, as demonstrated by
Iwata et al. reporting the distinction between B10 cells and B10-
progenitor cells (B10PRO) (11). The different subsets of Bregs that
have been assessed, specifically in studies of type 1 diabetes, is
discussed (in Impaired Regulatory B Cell Mechanisms in type 1
diabetes) and Table 1.
BREG INDUCTION AND
TYPE 1 DIABETES

The heterogeneity of Bregs, both in phenotype and response to
stimuli, and the absence of a definitive single marker (so far) has
led to the hypothesis that any B cell can differentiate into a Breg
depending on their prevailing environment, rather than a subset
derived from a distinct lineage (21). Indeed, signals required for
the induction or the promotion of regulatory B cells are the result
TABLE 1 | Evidence for numerical defects in Bregs in type 1 diabetes.

Study Phenotype of B cell Change in cell frequency (vs.
healthy donors)

Stimulus for IL-10
induction

Diabetes
duration
(years)

Age of donors with
diabetes (years)

Age of healthy
donors (years)

De Filippo.,
et al. (23)

CD5+CD19+ Increase
(median 250 vs. 95 [cells mm3])*

NM <30days
diagnosis

Mean ±SD:
6.7±2.5

Age-matched

Deng., et al.
(24)

CD19+CD5+CD1dhi

(B10 cells)
Decrease

(Median, values not described,
[B10% of CD19+]***

NM Mean ±SD:
3.1 ± 3.5

Mean ±SD:
28.53 ±16.21

Mean ±SD:
41.37 ± 13.52

Habib., et al.
(25)

CD19+CD27-

CD10+CD24hiCD38hi
Increase

(Mean, values not described,
[%transitional/CD19+]*

NM Not reported Range: 19-36 Range: 19-46

Hanley.,
et al. (26)

CD24hiCD38hi Decrease
(Mean ±SD:

1.54± 0.85 vs. 2.67 ±1.15 [% of
CD19+]**

NM Mean ±SD:
19.25 ± 10.99

Mean ±SD:
34.75 ± 13.13

Mean ±SD:
31.75 ±8.17

Thompson.,
et al. (27)

CD19+CD27-

CD24hiCD38hi

(transitional)

No difference (P=0.50) NM Range: 0.2-31.
Median: 1.8

Range: 9-42.
Median: 20

Range:18-37.
Median: 27

IL-10+ B cells No difference (P=0.74) Anti-CD40 + IL-21 (3 days)
+ CpG + LPS (last 5hrs)

Kleffel., et al.
(28)

CD19+IL-10+ B cells Decreased
(Mean ±SEM, values not described,

[IL-10%]**

CD40L + LPS (4 days) Mean ±SEM:
35 ±2.4

Mean ±SEM:
53.2 ± 2.3

Mean ±SEM:
32.1 ± 2.2

Saxena.,
et al. (29)

CD5+IL-10+ B cells No difference (P=0.31) PMA/Ionomycin Range:
1.5-31.5

Range:
18-49.2

Range:
19.2-46

Wang., et al.
(30)

CD24hiCD38hi Decreased
(Mean ±SEM, 5.6 ± 3.5 vs. 6.9 ± 3.3

[%])*

NM Mean ±SEM
5.38± 0.72

23.76± 5.89§

(Range 7-29)
24.91± 2.92§

(Range 20-30)

CD24hiCD38hiIL-10+ Decreased
(Mean ±SEM, values not described,

[IL-10%])***

CD40L + CpG (3 days)

El-Mokhtar.,
et al. (31)

CD24hiCD38hiIL-10+

CD24+CD27+IL-10+
Decreased

(% CD24hiCD38hiIL-10+, Mean ±SEM,
0.48 ± 0.54 vs. 1.3 ± 0.57)***

(% CD24+CD27+IL-10+, Mean ±SEM,
0.49 ± 0.57 vs. 1.3 ± 0.53)***

PMA/Ionomycin Range 0.1-
4.85,

Median 1.6

Range 3.4-11,
Median 7

Range 2.6-8.5,
Median

7
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All studies measured IL-10 production by intracytoplasmic staining. NM (not measured). Versus and compared to healthy donors. All studies performed in human peripheral blood. *p <
0.05, **p < 0.01, ***p < 0.001. §Average age, SEM or SD not stated.
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of an activated inflammatory environment, including pro-
inflammatory cytokines, engagement of Toll-like receptors
(TLRs) and costimulatory signals (32, 33). This has been
reviewed extensively (34). Certainly, evidence from mouse
studies show that Bregs are induced in response to
inflammation or autoimmunity (13, 35). Moreover, a number
of cytokines are involved in promoting Breg responses, many of
which have been associated with autoimmune disorders. In
autoimmune diabetes a number of cytokines including IL-1b,
IL-6 and Interferon (IFN)a, play a role in the development of
disease and can contribute to pancreatic b cell death (36). The
same cytokines, as well as IL-21, have been shown to activate or
expand Breg function (33, 37). IFNa secreted from plasmacytoid
DCs (pDCs), in combination with CD40 ligation, can induce IL-
10-producing Bregs (37). B cells stimulated with cytosine-
phosphate-guanine (CpG) dinucleotides in combination with
IL-2, IL-6 and IFNa induced an enhanced IL-10 response (12).
Furthermore, IL-1b and IL-6 can drive B cell IL-10-production
and Breg differentiation (33). Interestingly, this raises the
question of why then in some studies Bregs are numerically or
Frontiers in Immunology | www.frontiersin.org 3
functionally defective in autoimmunity that includes type 1
diabetes (see Impaired Regulatory B Cell Mechanisms in type 1
diabetes). One possible reason for this paradox could be
explained by other mechanisms required for Breg induction,
which are altered in autoimmunity (Figure 1).

In a human study of SLE, the failed Breg expansion is
attributed to elevated levels of IFNa produced from pDCs
during disease, which drives plasmablast differentiation rather
than Breg expansion (37). Therefore, it is suggested the
concentration levels of cytokine are an important factor in
Breg induction, and chronic exposure during inflammation can
impair Breg frequency and function (37, 38). Type 1 diabetes,
like SLE, is associated with an IFN signature. IFNa expression
detected in the pancreatic islets (39) and IFN-associated genes
are overexpressed in islets of individuals with type 1 diabetes
(40). Additionally, an IFN transcriptional signature has been
shown to be increased, even before the onset of human islet
autoimmunity (41).

Both IL-21 and CD40 receptor engagement are required for
the maturation and function of IL-10-producing B cells, a key
FIGURE 1 | Possible contributions of immune cell crosstalk resulting in dysregulation of regulatory B cells in type 1 diabetes. (A) Aberrant CD40:CD40L signalling
through T cells (B) Elevated IFNa production from pDCs (C) Altered iNK T cells and CD1d expression on B cells (D) TLR signalling from apoptotic cell debris or the
presence of viruses or microbes (E) Increased expression of Fas on IL-10+ B cells are targeted by CD5+FasL B cells (F) PD-L1: PD-1 engagement resulting in
increased Breg apoptosis. Red box depicts a possible mechanism reported in type 1 diabetes. CPG, cytosine-phosphate-guanine; BCR, B cell receptor; IFN,
Interferon; iNK, invariant natural killer; pDCs, plasmacytoid dendritic cells; TLR, toll-like receptor; FasL, Fas-ligand; PD-L1, programmed death-ligand 1; PD-1,
programmed cell death protein 1.
September 2021 | Volume 12 | Article 746187
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study demonstrated in mice (42). Interestingly, naïve B cell
responses to IL-21 are diminished in established human type 1
diabetes; however this response is enhanced in pre-diabetic
individuals with multiple islet autoantibodies (43).
Furthermore, CD4 T follicular helper (Tfh) cells in patients
with type 1 diabetes have increased IL-21 production,
compared to healthy donors (44, 45).

The importance of CD40: CD40L signaling has been noted in
autoimmunity. For example, in autoimmunediabetes, the influence
of CD40L blockade on the development of diabetes has been
demonstrated in the NOD mouse model (46). This fundamental
signaling pathway is important in bothT andB cells. In people with
type 1 diabetes, CD4loCD40+ T cells (TCD40) are expanded in
peripheral blood (47). In another autoimmune disease, SLE,
aberrant expression of CD40L in circulating B cells, in addition to
T cells has been noted (48). Furthermore, reduced numbers of
CD40+ B cells is observed in individuals with type 1 diabetes,
compared to healthy donors; however, the levels of CD40
expression on B cells were not measured in this study (28).

Other mechanisms are necessary for the generation or
expansion of Bregs and these include both adaptive and innate
immune pathways. B cell receptor (BCR) signaling (32, 49), is
diminished in B cells from individuals with established type 1
diabetes (25, 43). Signaling through TLR9 changes the frequency
and function of IL-10 producing B cells in NOD mice; TLR9
deficiency specifically in B cells increased IL-10 producing cells
and protected against diabetes (50). No direct study has
demonstrated a mechanism that drives a Breg defect in type 1
diabetes in humans however, and this remains an outstanding
question (see Discussion and Outstanding Questions).
IMPAIRED REGULATORY B CELL
MECHANISMS IN TYPE 1 DIABETES

Studies on the numerical and functional defects of Bregs have been
described in various autoimmune diseases, including SLE, RA and
MS and overall an inverse correlation between the frequency of
Bregs and disease activity has been observed (10, 51). It should be
noted, however, that studies have also reported either nodifferences
or an increased frequency in these cells between autoimmune
individuals and healthy donors (11, 25). Others have
demonstrated different levels of CD24hiCD38hi Bregs in various
autoimmune conditions, comparedwith healthy controls (52). This
theme of contrary results is echoed in studies of type 1 diabetes,
which are summarized in Table 1.

It still remains unclear whether a defect or an impaired
function of Bregs contributes to the development of diabetes or
if the observed aberrant frequency and function is a result of
chronic inflammation. Studies in the Experimental autoimmune
encephalomyelitis (EAE) mouse model of MS has implicated
Bregs in disease initiation rather than late-phase progression
(53, 54). Moreover, in NOD mice, early treatment (5-6 weeks
old) with BCR-activated B cells both delayed and reduced diabetes
onset; however later treatment at 9 weeks of age only delayed onset
of disease (55). Determining how Bregs contribute to the onset of
type 1 diabetes will be of significance when considering
Frontiers in Immunology | www.frontiersin.org 4
immunotherapies targeted at B cells. Future real-time studies of
regulatory B cells in islet autoantibody-positive individuals, who
have not yet developed overt type 1 diabetes, would improve
understanding of this.

Evidence for Numerical Defects in
Regulatory B Cells in Type 1 Diabetes
Specific cell subsets that are associated with regulation, and B
cells actively producing IL-10 after ex vivo stimulation, have been
evaluated to ascertain if Breg frequencies are altered in type 1
diabetes. Whether the frequency of Breg-associated populations
are altered, which include CD5+CD1dhi and transitional
CD24hiCD38hi B cells, has been inconclusive when comparing
patients to healthy donors (Table 1). A likely contributor to the
disparity in these studies is the different sets of immune markers
used to distinguish discrete populations or analysis of different
Breg subsets. Use of an increased number of immune markers
and high-dimensional profiling will help to determine more
discrete B cell subsets and may resolve these dichotomies. For
example, detailed characterisation has shown that human B cells
which readily produce IL-10 are enriched in both T2 (CD27-

IgM+IgD+) and CD27+ B cells in the transitional CD24hiCD38hi

compartment (52). Furthermore, stimulation via TLR9 resulted
in enhanced IL-10 expression in the transitional T3 subset (52).

Direct assessment and evaluation of IL-10 production from B
cells requires exogenous stimuli. Targets include either the innate
TLRs or other receptors such CD40 or the BCR, either separately
or by co-engagement, and if IL-10 is measured by
intracytoplasmic staining, the addition of PMA/Ionomycin is
also required (56). So far in type 1 diabetes, the studies
employing CD40L and TLR stimulants - either LPS [TLR4] or
CpG [TLR9] in culture before assessment, or with PMA/
ionomycin alone - have shown a decrease in numerical
frequency of IL-10-producing B cells from peripheral blood
samples (28–30). However, when a combination of LPS and
CPG was used, with the addition of IL-21, which can drive IL-10
production fromB cells (42), the investigators found no difference
in IL-10+ B cells, in either naïve ormemory compartments (27). A
detailed summary of these studies is described inTable 1. It is clear
that both the stimulation conditions and the appropriate markers
to identify distinct populations are necessary for a more accurate
overview on how B cell subsets are altered in type 1 diabetes.

In addition, a key disparity between studies is how accurately
healthy donors were age-matched (Table 1). It is clear that
subsets, such as transitional CD24hiCD38hi B cells, enriched
with IL-10+ B cells, decline with age (27, 57), which is an
important note for future studies. Recently, in children with
type 1 diabetes, a decrease in both the CD24hiCD27+ (B10) and
transitional CD24hiCD38hi IL-10+ B cells but not in
CD38hiCD27+IL-10+ plasmablasts was found (31). This
numerical decrease was also negatively correlated with HbA1c
levels (31), as was the frequency of CD24hiCD38hi B cells in a
study by Wang et al. (30). In view of the recent observation that
the frequency of pancreatic CD20+ B cells correlates with earlier
diagnosis of a rapidly progressing and more aggressive disease
(58), considering both age and clinical parameters in studies
assessing regulatory B cells will be particularly important.
September 2021 | Volume 12 | Article 746187
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Currently, very few studies have assessed Breg populations in
individuals with multiple islet autoantibodies who are classed as
‘at risk’ or in ‘stage 1’ or ‘stage 2’ (59) of developing diabetes.
Kleffel et al. reported that individuals with multiple islet
autoantibodies (like individuals with diabetes) had significantly
fewer IL-10+ B cells, compared to healthy controls (28).
However, Saxena et al. observed that antibody positive
individuals had increased CD5+IL-10+ B cells, compared to
both healthy and diabetic controls (29). Overall, whether
numerical differences exist in IL-10-producing B cells in
individuals with islet autoantibodies remains a key outstanding
question, which needs to be addressed in order to refine and
improve immunotherapy targeted at B cells.

Although evidence has been provided in mouse models that
IL-10+ B cells can control autoimmune diabetes (55), few studies
have addressed the number of IL-10-producing B cells in mice
that have developed overt disease. Recent work from our group
has demonstrated that NOD mice that developed diabetes
showed a reduced splenic IL-10+ B cell population, measured
by intracytoplasmic staining, compared to mice that were long-
term normoglycemic or ‘naturally-protected’ from diabetes (>35
weeks old) (60). Also, the frequency of IL-10+ B cells was
dependent on the B cell stimulation used, with anti-CD40
ligation highlighting the greatest loss in frequency of IL-10+ B
cells in diabetic NOD mice (60). This again focuses our attention
on the need for better understanding and a more comprehensive
use of different, combined stimuli. Additionally, we observed
either no difference or increased IL-10 secretion in the mice that
had developed diabetes, dependent on the stimulus used for
study of the B cells (60). To date, type 1 diabetes studies reporting
differences in IL-10+ B cells have not evaluated IL-10 secretion.
Increased IL-10+ B cell frequency has been demonstrated in
long-term normoglycemic or ‘naturally protected’ NOD mice in
pancreatic islets (28, 61), suggesting a Breg-mediated protection
against b cell destruction. For further discussion of Bregs related
to pancreatic islets see Regulatory B cells in Pancreatic Islets.

Impaired Regulatory B Cell Function in
Type 1 Diabetes
Functional studies in Bregs have described numerous
immunosuppressive mechanisms of IL-10-producing B cells,
including inhibiting pro-inflammatory cytokines from immune
cells and promoting regulatory T cell differentiation (10, 51, 62),
together with dampening of antigen presenting cell (APC)
responses (11, 12). In autoimmune conditions, failed mechanisms
of Breg immunosuppression are observed. In SLE patients, B cells
fail to produce IL-10 in response to CD40 ligation and are
unsuccessful in suppressing Th1 responses (10). CD24hiCD38hi

Bregs from individuals with active RA are unable to convert
CD4+CD25- into Tregs or suppress Th17 responses (51).
Moreover, CD19+CD27+IL-10+ B cells from donors with RA fail
to suppress IFNg from CD4+ T cells, compared to healthy
individuals (62).

Evidence for diminished Breg function in human type 1
diabetes studies is limited. A recent study demonstrated that a
numerical deficiency of Bregs was coupled with a functional
Frontiers in Immunology | www.frontiersin.org 5
defect in patients (30). Here, IL-10-producing B cells in healthy
volunteers were enriched in the CD24hiCD38hi transitional
subset, after CD40L and CPG stimulation, as shown previously
(10). Furthermore, CD24hiCD38hi B cells inhibited effector
cytokines from CD4+ T cells and promoted CD4+FoxP3+

Tregs, in an IL-10-dependent manner (10). However, in
patients with type 1 diabetes, CD24hiCD38hi B cells failed to
reduce IFNg, TNFa and IL-17 production from CD4+ T cells
(30). Conversely, Kleffel et al. showed that expanded IL-10-
producing B cells from individuals with type 1 diabetes could
suppress IFNg production in PBMC cultures, in the presence of
IA-2 peptide (28). However, the generation of IL-10+ B cells from
both individuals with type 1 diabetes and those with multiple
islet autoantibodies was significantly impaired compared to
healthy donors (28).

Murine studies have illustrated how regulatory B cells can
control autoimmunity (8). Research has focused on how B cells
can suppress autoimmune diabetes, demonstrating a role for IL-
10-independent (63) and IL-10-dependent (55) mechanisms of B
cell-mediated immunosuppression. However, data describing
impaired regulatory B cell responses in mice, NOD or
otherwise, are limited. TLR4-activated B cells from NOD mice
that have developed diabetes suppress insulin-specific CD8 T
cells, and in a B cell: DC : CD8 T cell co-culture produced
significant amounts of IL-10 (60). This required the presence of
the pathogenic CD8 T cells, because without pathogenic CD8 T
cells in the cultures, the TLR4-induced B cells produced
significantly less IL-10 and were less efficient in reducing DC
activation. We also showed, in NOD mice with established
diabetes, that CD40-ligation on B cells, followed by co-culture
with DCs, the ability to reduce DC activation was decreased and
resulted in a contact-dependent increase in IFNg secretion,
compared to NOD mice naturally-protected from autoimmune
diabetes (60). In line with these observations, B cells from
hyperglycemic NOD mice adoptively transferred into B cell-
depleted long-term normoglycemic NOD animals promoted
diabetes onset (28).

Other mechanisms of Breg suppression, independent of IL-10
expression and dependent on cell-contact have been noted. For
example, PD-L1 and FasL exert suppression via apoptosis of
target cells upon engagement with their receptors (2, 64). B cells
that express FasL can induce apoptosis and suppress
proliferation of CD4+ T cells (3, 65). In mice, FasL can be
induced by TLR4 activation in CD5+CD1d+ Bregs (65) and in
the NOD mouse model can be activated with LPS (TLR4),
resulting in TGFb production, which inhibits Th1 responses
and diabetes progression (63). In humans FasLhiCD5+ B cells are
increased in frequency in individuals with type 1 diabetes,
compared to both islet autoantibody positive and healthy
donors (29), although here the levels of TGFb production with
stimulation was not assessed. Interestingly, in this study the
frequency of CD5+IL-10+ B cells did not differ between healthy
and diabetes donors (described in Table 1), but the percentage of
Fas-expressing CD5+IL-10+ B cells was elevated in donors with
type 1 diabetes (29). This is indicative of Fas-FasL B cell
interplay, with elevated CD5+FasL B cells targeting more
September 2021 | Volume 12 | Article 746187
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apoptosis-sensitive CD5+IL-10+ B cells, which results in fewer
IL-10+ B cells in individuals with autoimmune diabetes (29)
(Figure 1, red box).

It remains inconclusive if there is an intrinsic developmental
Breg defect that contributes to disease progression in individuals
that develop type 1 diabetes, and is complicated by the lack of a
definitive Breg marker and their heterogeneity. It is possible the
differences in Bregs observed in some studies (described in
Table 1) results from the inflammatory environment that
occurs with the progression of disease, which indirectly
impacts the size or function of the Breg compartment (see
Figure 1). Indeed, IL-10-producing B cells are expanded in
mice predisposed to autoimmunity, compared to non-
susceptible mice (32). Furthermore, IL-10+ splenic B cells are
expanded in 4-week-old NOD mice and IL-10+ B cells from
normoglycemic NODmice are still capable of suppressing T cell-
mediated diabetes (28).

Overall, these studies described above in type 1 diabetes
suggest that further interrogation is warranted on the defective
or dysfunctional Bregs observed, including the autocrine B cell
mechanisms and crosstalk with other immune cells (see
Discussion and Outstanding Questions). Further studies, using
both human peripheral blood and tissue sites in different cohorts,
taking into account that IL-10+ B cell immune-phenotypes are
variable with age (66), will provide insight into Breg defects.
REGULATORY B CELLS IN
PANCREATIC ISLETS

B cells residing in pancreatic islets during inflammation
contribute to the destruction of b cells, and consequently a loss
in the secretion of insulin. Evidence for this direct pathogenic
role has been shown by B cell depletion studies in the NOD
mouse model, highlighting a reduction in effector T cell function
inhibiting tissue-specific inflammation in treated mice (67, 68).
In NOD mice, B-1a cells located in the pancreas, early in
diabetes, play a role in initiation of disease (69). Furthermore,
the observation of different profiles of insulitis in human
pancreatic islets, with increased frequency of CD20 B cells
correlate with a more progressive earlier diagnosis (58).

Previously, we have alluded to proposed interactions between
regulatory B cells and the inflammatory pancreatic islet
environment, and how Bregs can control inflammation (70).
Islet-specific B cells in naturally-protected normoglycemic NOD
mice have increased IL-10 and CD40 expression (28). More
recently, we have corroborated this work and demonstrated B
cells from naturally-protected NOD mice have an increased
frequency of B cells expressing IL-10, CD80 and CD40 (61). In
th i s s t udy we a l s o de s c r i b ed an en r i chmen t o f
CD19intCD138hiCD44hiKi67+ dividing plasmablasts in
naturally-protected NOD mice (61) a phenotype attributed to
IL-10 production (12). Alongside this increase in regulatory B
cells, a significant increase of CTLA4+FoxP3+ Tregs was also
observed (61), possibly indicating some Breg-Treg crosstalk,
which suppresses local pancreatic inflammation. However, it is
Frontiers in Immunology | www.frontiersin.org 6
unknown if this crosstalk is dependent on the expression of IL-
10. It is possible that other IL-10-independent Treg induction by
B cells may occur, as shown by the requirement for Breg
expression of GITR ligand (71). Moreover, it is currently
unclear if the altered pancreatic milieu in naturally-protected
NOD mice is responsible for the induction of these regulatory
immune cells, or a result of expanded IL-10+B cells in the
periphery (60). IL-10+ B cells can be detected in the pancreatic
islets of younger NOD mice after CD40 ligation along with a
PMA/Ionomycin stimulation, albeit the frequency of IL-10+ B
cells was very low (28, 61), and it is unknown if they have any
role in controlling local b cell damage in vivo.
DISCUSSION AND
OUTSTANDING QUESTIONS

As discussed above, studies of regulatory B cells in type 1 diabetes
are limited in comparison to other autoimmune diseases that
include SLE, RA and MS, and thus lessons can be learned in
order to extrapolate the findings to direct key research in type 1
diabetes. Finally, we discuss future and outstanding research
questions that will advance the treatments of type 1 diabetes.

1. A deeper understanding of the different Breg repertoires that
are IL-10-producing or IL-10-competent, together with the
altered frequency and function in different stages of
autoimmune diabetes development.

The complex picture described, so far, in diabetes and other
autoimmune diseases may reflect the divergent role of Breg subsets
in various disease settings. Different subsets of Bregs, based on their
maturity, may be more influenced by the level of inflammation and
disease stage of the individual. As previously shown, different
immune profiles for B cell and T cell responses are dependent on
disease stage or progression (43). It should also be noted that IL-10-
producing B cells can also secrete TNF and IL-6 and so there is
heterogeneity in Breg cytokine production (72).

2. Breg interplay and crosstalk with both other B cell populations
and different immune cells to dissect the relationships that
impact frequency and function (Figure 1).

Interrogating Breg: immune cell crosstalk will uncover
aberrant regulatory feedback loops. Cell subsets like pDCs (37)
or other DC subsets will reveal how Bregs dampen, or fail to
dampen APCs. Other Breg studies highlight immunosuppressive
mechanisms via invariant NKT cells dependent on the surface
molecule CD1d (73). Other studies describe a feedback loop
between T cells and B cells, via CD40:CD40L interactions, to
develop regulatory function, which differentially regulate T cell
proliferation and Th1 responses (74).

3. Determine the impact of defective Breg frequency and
function. Do impaired Bregs contribute to diabetes
initiation or progression or both?
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Determining if the defect in Breg frequency and/or function is
a consequence of chronic inflammation or a contributor to the
development of diabetes will have an impact on how B cell
depletion therapy is exploited in individuals during various
stages of disease progression. Furthermore, understanding if
impaired Bregs contribute to disease due to the lack of
immunosuppressive action or if Breg plasticity results in a
further progression of disease under certain chronic conditions
should be addressed.

4. The use of immunotherapies to either selectively expand Bregs
or target pathogenic B cells but spare regulatory B cells.

So far, only a pan-B cell depletion approach has been trialed
in type 1 diabetes (Rituximab) (7), and therefore we can only
discuss preclinical studies that approach expanding Bregs in vivo
or targeting a specific B cell population. Expansion of CD73+

regulatory B cells after treatment with a small molecule inhibitor
that disrupts the Aicda-encoded activation-induced cytidine
deaminase protein (AID) results in the inhibition of diabetes
development in the NOD mouse (75). Conversely, AID
deficiency in the NOD mouse model can accelerate type 1
diabetes development (76) and therefore the role of AID in
diabetes progression requires further investigation. An
additional B cell-targeted therapeutic approach is to selectively
deplete effector B cells preserving regulatory B cells; however this
is complicated by the lack of a definitive Breg marker.
Interestingly, targeting of B cells via the blockade of the B cell
activating factor (BAFF) induced an increase of IL-10+ B cells
and diabetes protection (77). Furthermore, in this study, anti-
CD20 treatment depleted this IL-10-producing B cell population,
suggesting that Bregs are more sensitive to deletion during anti-
CD20 treatment (77). This Breg sensitivity may have contributed
Frontiers in Immunology | www.frontiersin.org 7
to the limited success of the Rituximab clinical trial (7). However,
as discussed above, a deeper understanding of Bregs during the
development of type 1 diabetes is needed to harness and develop
successful B cell targeted immunotherapies.

Overall, the pathogenesis of type 1 diabetes is complex and
multi-stage, and requires a number of pathogenic cell types that give
rise to the development of disease. Equally, it is clear that balanced
against these pathogenic cells are regulatory cells, that include both
T and B cell subsets. Defining the roles of these less-understood Breg
subsets will provide important information to be further studied in
humans with the aim of increasing therapeutic opportunities.
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