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Abstract: Mountain arnica Arnica montana L. is a source of several metabolite classes with diverse
biological activities. The chemical composition of essential oil and its major volatile components
in arnica may vary depending on the geographical region, environmental factors, and plant
organ. The objective of this study was to characterize the chemical composition of essential
oil derived from A. montana achenes and to investigate its effect on induction of apoptosis and
autophagy in human anaplastic astrocytoma MOGGCCM and glioblastoma multiforme T98G cell
lines. The chemical composition of essential oil extracted from the achenes was examined with the
use of Gas Chromatography–Mass Spectrometry GC-MS. Only 16 components of the essential oil
obtained from the achenes of 3-year-old plants and 18 components in the essential oil obtained from
the achenes of 4-year-old plants constituted ca. 94.14% and 96.38% of the total EO content, respectively.
The main components in the EO from the arnica achenes were 2,5-dimethoxy-p-cymene (39.54 and
44.65%), cumene (13.24 and 10.71%), thymol methyl ether (8.66 and 8.63%), 2,6-diisopropylanisole
(8.55 and 8.41%), decanal (7.31 and 6.28%), and 1,2,2,3-tetramethylcyclopent-3-enol (4.33 and 2.94%)
in the 3- and 4-year-old plants, respectively. The essential oils were found to exert an anticancer effect
by induction of cell death in anaplastic astrocytoma and glioblastoma multiforme cells. The induction
of apoptosis at a level of 25.7–32.7% facilitates the use of this secondary metabolite in further studies
focused on the development of glioma therapy in the future. Probably, this component plays a key
role in the anticancer activity against the MOGGCCM and T98G cell lines. The present study is the
first report on the composition and anticancer activities of essential oil from A. montana achenes,
and further studies are required to explore its potential for future medicinal purposes.

Keywords: Arnica montana L.; achenes; essential oil composition; anticancer activity activity;
MOGGCCM and T98G cell lines

1. Introduction

Arnica montana L. is a source of several active compounds (sesquiterpene lactones, flavonoids,
terpenoids, phenolic acids, and essential oils) exhibiting antibacterial, antifungal, antiseptic,
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anti-inflammatory, antiradical, antisclerotic, and antioxidant activities [1–9]. The chemical composition
of essential oil (EO) and its major volatile components in arnica may vary depending on the
geographical region and environmental factors [4–7,9–11]. Essential oils extracted from different organs
of many specimens coming from different regions of Europe are composed mainly of sesquiterpene
hydrocarbons (e.g., E-caryophyllene, germacrene D, α-humulene, bicyclogermacrene), oxygenated
monoterpenoids (e.g., 1,8-cineole, linalool), oxygenated sesquiterpenoids (e.g., caryophyllene oxide,
α-cadinol), and phenyl derivative compounds (e.g., 2,5-dimethoxy-p-cymene, thymol methyl ether,
p-methoxyheptanophenone, and 2,6-diisopropylanisole) [4,7,9–12]. As reported in the literature,
EO extracted from such arnica organs as flower heads, rhizomes, plant roots, and hair roots may
vary. This fact implies a very broad possibility of the use of the chemically different secondary
metabolites. The seed yield and germination characteristics were studied during introduction of a
wild arnica population into field conditions [6,13–16]. Seed dispersal was analyzed in terms of plant
protection as well as restoration and development of endangered plant communities [17]. Our earlier
study focused on the phenolic profiles and antioxidant abilities of achene extracts as novel sources of
natural antioxidants [2], with a view to carrying out further investigations of chemical compounds
contained in mountain arnica achenes. This study was conducted to determine a new quality of
secondary metabolites in, e.g., A. montana, which is a very interesting and valuable pharmacopeal
plant species [6,7,10]. Achenes are an alternative source of biological substances besides flower heads,
rhizomes, roots, and herb.

Cancer is a growing global problem. In a report on the global burden of cancer, it was estimated that
there would be 18.1 million new cases and 9.6 million cancer deaths worldwide in 2018. In the case of the
brain and nervous system, there were 296,851 new cases and over 81% of death cases [18]. Therefore, many
alternative treatments and therapies based on plants have been explored, which is especially important
for patients that do not tolerate extreme side effects. Although the research on the application of EOs as
anticancer therapeutic agents is relatively new, approximately half of conventional chemotherapy agents
have plant origin, with roughly 25% directly derived from plants and 25% being chemically modified
versions of phytoproducts [19]. Plants have been analyzed to identify their anticancer properties and
chemically characterized to reveal the presence of many bioactive compounds, e.g., polyphenols, taxols,
brassinosteroids, etc. [20]. The major group of malignant gliomas is represented by anaplastic astrocytoma
(AA, WHO grade III) and glioblastoma multiforme (GBM, WHO grade IV). Despite the tremendous efforts
in improvement of therapeutic measures, such as surgery, radiotherapy, and chemotherapy, the clinical
outcome of gliomas remains dismaying [21,22]. Various types of malignancies such as gliomas are reported
to decrease after treatment with plant essential oils [23]. Hence, such molecules are assumed to have
potential anticancer activities that are useful in prevention and therapeutic strategies [20,24]. Therefore,
there is an urgent need for searching for new substances, e.g., essential oils, to elucidate the molecular
basis of malignant progression of gliomas [25–32].

Natural products and their derivatives are important sources of novel therapeutic molecules [33].
EOs have been applied in traditional medicine systems since ancient times in human history. Researchers
from all over the world are trying to characterize the range of biological properties of EO, which includes
antimicrobial, antiviral, antimutagenic, anticancer, antioxidant, anti-inflammatory, immunomodulatory,
and antiprotozoal activities [20,34–39]. The interest in medicinal plants is continuously growing due to
the increasing human demand [40]; therefore, new combinations of EO components can exhibit new
properties and activities that can be used in medicine, pharmacy, or cosmetic industry in the future. In the
case of A. montana, the knowledge of the chemical characteristics and biological activity of achenes is
insufficient [2]. Therefore, the results presented in this paper fill this gap partially and provide information
that can be the first step in studies of the anticancer activity of secondary metabolites from the mountain
arnica. Therefore, the objective of this study was (i) to characterize the chemical composition of EO
derived from A. montana achenes collected from 3-year-old and 4-year-old plants, and (ii) to investigate
the effect of the analyzed EO on induction of apoptosis and autophagy in human anaplastic astrocytoma
MOGGCCM and glioblastoma multiforme T98G cell lines.
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2. Results

2.1. Chemical Characteristics of EO

The yield of the essential oil and the content of the components of EO obtained from the achenes
of 3-year-old plants (EO-3) and EO obtained from the achenes of 4-year-old plants (EO-4) of mountain
arnica are presented in Table 1. The content of EO was at a level of 0.167% and 0.145% v/w in
the EO-3 and EO-4, respectively. There are slight differences in the chemical composition between
the two samples. Only 16 components in the EO from the achenes collected from the 3-year-old
specimens and 18 components in the EO from the achenes of the 4-year-old plants constituted
ca. 94.14% and 96.38% of the total EO content, respectively. The studied EO was dominated
by phenyl derivative constituents, which accounted for 48.09 and 53.06% in the EO-3 and EO-4,
respectively (Table 1). Monoterpenes (23.77 and 20.49%) were the second major class of compounds.
The other class of compounds was represented by sesquiterpenes (10.06 and 10.05%) and aliphatic
aldehydes (7.31 and 6.28% in the EO-3 and EO-4, respectively). The main components in the EO from
the arnica achenes were 2,5-dimethoxy-p-cymene (39.54 and 44.65%), cumene (13.24 and 10.71%),
thymol methyl ether (8.66 and 8.63%), 2,6-diisopropylanisole (8.55 and 8.41%), decanal (7.31 and
6.28%), and 1,2,2,3-tetramethylcyclopent-3-enol (4.33 and 2.94%) in the 3- and 4-year-old plants,
respectively. The concentration of such EO components as cumene, 1,2,2,3-tetramethylcyclopent-3-enol,
α-pinene oxide, β-maaliene, E-α-bergamotene, and lippifoli-1(6)-en-5-one was higher in EO-3.
In turn, higher concentrations of 7-epi-silphiperfol-5-ene, α-isocomene, 2,5-dimetoxy-p-cymene,
E-caryophyllene, and caryophyllene oxide were determined in EO-4.

Table 1. Composition of essential oil from A. montana achenes collected from 3-year-old (EO-3) and
4-year-old (EO-4) plants.

A. montana Achenes

EO-3 EO-4

Essential Oil Content [% v/w] ± SD

0.167 ± 0.015 0.145 ± 0.012

Compound RI RI LIT Identification Essential Oil Composition [%] ± SD

Cumene 928 924 MS, RI 13.24 ± 0.12 10.71 ± 0.04

1,2,2,3-Tetramethylcyclopent-3-Enol 1034 1030 a MS, RI 4.33 ± 0.31 2.94 ± 0.15

α-Pinene Oxide 1105 1099 MS, RI 1.87 ± 0.24 1.15 ± 0.11

Borneol 1176 1165 MS, RI 0.58 ± 0.39 0.47 ± 0.06

Decanal 1210 1201 MS, RI e 7.31 ± 0.82 6.28 ± 0.50

Thymol Methyl Ether 1234 1232 MS, RI 8.66 ± 0.46 8.63 ± 0.19

Presilphiperphol-7-Ene 1339 1334 MS, RI 0.49 ± 0.07 0.55 ± 0.02

7-Epi-Silphiperfol-5-Ene 1350 1345 MS, RI 0.74 ± 0.01 0.82 ± 0.08

β-Maaliene 1395 1389 b MS, RI 0.88 ± 0.11 0.39 ± 0.04

α-Isocomene 1391 1387 MS, RI 3.49 ± 0.12 4.16 ± 0.13

2,5-Dimetoxy-p-Cymene 1429 1424 c MS, RI 39.54 ± 0.74 44.65 ± 0.61

E-Caryophyllene 1423 1417 MS, RI e 1.12 ± 0.07 1.40 ± 0.06

E-α-Bergamotene 1441 1432 MS, RI 0.85 ± 0.01 0.73 ± 0.08

2,6-Diisopropylanisole 1444 1438 MS, RI 8.55 ± 0.21 8.41 ± 0.04

Lippifoli-1(6)-En-5-One 1560 1550 MS, RI 1.40 ± 0.14 0.46 ± 0.01

Caryophyllene Oxide 1588 1582 MS, RI e 1.09 ± 0.10 1.54 ± 0.09

2-Pentadecanone-6,10,14-Trimethyl 1849 1846 MS, RI - 2.22 ± 0.26

β-Springene 1921 1918 a,d MS, RI - 0.87 ± 0.06

Monoterpenes 23.77 20.49

Aliphatic Aldehydes 7.31 6.28

Sesquiterpenes 10.06 10.05

Phenyl Derivative, Ether 48.09 53.06

Others 4.91 6.5

Sum of Identified (%) 94.14 96.38

RI—retention indices (from temperature-programming, using definition of Van Den Dool and Kratz [41]).
RILit—retention indices taken from literature [42], a [43], b [7], c [4], d [44] e identified based on comparison
with standards.
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2.2. Anticancer Activity

To estimate the sensitivity of MOGGCCM and T98G cells to treatment with the EO from
arnica achenes, a staining method with dyes specific for apoptosis, necrosis, and autophagy; i.e.,
Hoechst 33342, propidium iodide, and acridine orange, respectively, was employed (Figures 1–4).
The two-way ANOVA results showed a significant main effect of the EO concentration only on
apoptosis, necrosis and autophagy of the MOGGCCM cells (F = 160.70, p < 0.001; F = 877.9, p < 0.001;
F = 16.18, p < 0.001, respectively) and the T98G cells (F = 416.11, p < 0.001; F = 5.79, p < 0.01; F = 5.42,
p < 0.01, respectively). In contrast, no statistically significant effect of the plant age (F = 0.75, p = 0.400;
F = 0.51, p = 0.486; F = 0.14, p = 0.711, respectively) and the EO concentration/plant age interaction
was confirmed (F = 1.7, p = 0.193; F = 0.68, p = 0.382; F = 0.17, p = 0.933, respectively).

The microscopic observations revealed that EO-3 added to the MOGGCCM culture medium
at a concentration of 0.5 µL/mL exerted a considerable effect on induction of cell death (Figure 1).
A significant 7.0% increase in the number of apoptotic cells under the influence of EO-3 was observed
at a concentration of 0.5 µL/mL (Figure 1). A further increase in the EO concentration resulted in
an increase in the level of apoptosis to 25.7%. Besides apoptosis, EO-3 initiated necrosis at a level
of ca. 1.3% only. The EO concentration of 2 µL/mL caused a decrease in the percentage of apoptotic
cells, but it was not statistically significant. However, despite the apoptosis occurring at this EO
concentration, necrosis (41.7%) and autophagy (1.0%) was initiated.
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Figure 1. Level of apoptosis, necrosis, and autophagy induction in anaplastic astrocytoma MOGGCCM
cells treated with the essential oil (concentration: 0, 0.5, 1, 2 µL/mL) from mountain arnica achenes
collected from 3-year-old plants. The values designated by the different letters are significantly different
(p = 0.05). (Tukey test, p < 0.05).

The application of 0.5 µL/mL of EO-4 to the MOGGCCM culture medium had a considerable
effect on cell death, i.e., a significant 4.0% increase in the number of apoptotic cells was observed at
this concentration (Figure 2). A further increase in the EO concentration also resulted in a significant
increase in the level of apoptosis to over 29.0%. The EO-4 concentration of 2 µL/mL caused a statistically
significant decrease in the percentage of apoptotic cells (23.7%). However, despite the apoptosis
occurring at this EO concentration, necrosis was initiated at a level 31.7%, which was higher than the
level of apoptosis. It is worth underlining that both EO-3 and EO-4 did not initiate autophagy in the
MOGGCCM culture medium (Figures 1 and 2).
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The microscopic observations showed that EO-3 applied at the concentration of 0.5 µL/mL to the
T98G culture medium had a considerable effect on cell death (Figure 3). A significant 19.3% increase
in the number of apoptotic cells under the influence of the EO was observed at the concentration
of 0.5 µL mL (Figure 3). A further increase in the EO-3 concentration also resulted in a ca. 32.7%
increase in the level of apoptosis. Besides apoptosis, EO initiated necrosis, but only at a level of ca.
0.3%. The EO concentration of 2 µL/mL caused a statistically significant decrease in the percentage of
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Figure 3. Level of apoptosis, necrosis, and autophagy induction in glioblastoma multiforme T98G
cells treated with the essential oil (concentration: 0, 0.5, 1, 2 µL/mL) from mountain arnica achenes
collected from 3-year-old plants. The values designated by the different letters are significantly different
(p = 0.05). (Tukey test, p < 0.05).
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The application of EO-4 to the T98G culture medium (Figure 4) caused a similar reaction to that
described above (Figure 3). A significant 14.3% increase in the number of apoptotic cells was induced by
EO-4 applied at the concentration of 0.5 µL/mL. A further increase in the EO concentration to 1 µL/mL
also resulted in a ca. 27.7% increase in the level of apoptosis. In turn, the concentration of 2 µL/mL
caused a gradual increase in the percentage of apoptotic cells to 33.0%; however, it was not statistically
significant. Besides apoptosis, the EO initiated necrosis at a level 16.7%. It is worth underlining
that both EO-3 and EO-4 did not cause autophagy in the T98G culture medium. Analogically to the
MOGGCCM line (Figures 1 and 2), the effect of EO-3 and EO-4 on autophagy induction in the T98G
line was not significant (Figures 3 and 4).

The IC50 analysis also revealed that the MOGGCCM cells were more sensitive to initiation of
cell death after the treatment with the essential oils in comparison to the T98G cell line (Table 2).
The analyzed essential oils had no effect on cell death initiation in normal fibroblasts (data not shown).

Table 2. IC50 value for the essential oil from mountain arnica achenes collected from 3-year-old (EO-3)
and 4-year-old (EO-4) plants.

Cell Line EO-3 EO-4

MOGGCCM 1.6 1.8
T98G 2.1 2.0Molecules 2019, 24, x 7 of 14 
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Figure 4. Level of apoptosis, necrosis, and autophagy induction in glioblastoma multiforme T98G
cells treated with the essential oil (concentration: 0, 0.5, 1, 2 µL/mL) from mountain arnica achenes
collected from 4-year-old plants. The values designated by the different letters are significantly different
(p = 0.05). (Tukey test, p < 0.05).

3. Discussion

Sixteen components in the EO-3 mountain arnica plants and 18 components in EO-4 constituted
ca. 94.14% and 96.38% of the total oil content, respectively. The number and diversity of components
in the EO from A. montana achenes was lower in comparison to EO from flower heads analyzed in a
population from Lithuania [11]. In the present study, the number of constituents was by 34 lower than
in EO from flower heads from Bosnia [45], by 42 lower than in EO from flower heads from Serbia [10],
and by 24 lower than in EO from flower heads from Poland demonstrated in our previous study [7,9].
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The main components in the EO from the arnica achenes were 2,5-dimethoxy-p-cymene
(39.54 and 44.65%), cumene (13.24 and 10.71%), thymol methyl ether (8.66 and 8.63%), 2,6-diisopropylanisole
(8.55 and 8.41%), decanal (7.31 and 6.28%), and 1,2,2,3-tetramethylcyclopent- 3-enol (4.33 and 2.94%)
in EO-3 and EO-4, respectively. This EO composition is most similar to the chemical composition
of EOs from arnica rhizomes and roots reported by Pljevjakušić et al. [4]. 2,5-dimethoxy-p-cymene
was demonstrated by the authors as the main component of EO from rhizomes (28.9–30.0%) and
roots (37.9–40.6%). The other most abundant molecule in the rhizomes and roots was thymol methyl
ether, with a concentration of 26.1% and 27.2%, respectively. In turn, Weremczuk-Jeżyna et al. [12]
identified two main components in EO from hairy roots in vitro and plant roots of Arnica montana,
i.e., 10-isobutyryloxy-8,9-didehydro-thymol isobutyrate and 10-isobutyryloxy-8,9-didehydro-thymol
methyl ether. Interestingly, 2,5-dimethoxy-p-cymene, i.e., the dominant compound in the EO from
the arnica achenes was not detected in the EO from the mountain arnica flower heads analyzed
in our earlier studies [7,9]. However, the main components in the EO from the flower heads were
E-caryophyllene, germacrene D, cumene, p-cymene, decanal, and caryophyllene oxide [9]. The EO
profile in arnica achenes is similar to the EO profile in arnica rhizomes [4], but completely different from
the EO profile in arnica flower heads. In the present study, phenyl derivatives were the most abundant
group (48.09% and 53.06%), followed by monoterpenes (23.77% and 20.49%) and sesquiterpene (10.06%
and 10.05%). However, the EO obtained from arnica flower heads was characterized by dominance of
sesquiterpenes (over 60%) [7,9].

In the literature, there are current reports on the anticancer properties of several essential
oils [23,26,30,31]. These active EO constituents appear to act synergistically with conventional
chemotherapy and radiotherapy, and some clinical studies in humans have been initiated [23].
Anticancer activity has been detected in the EO of various plant species, e.g., Achillea fragrantissima [30],
Lycopus lucidus [26], Porcelia macrocarpa [46], and neotropical piper species [31]. As shown in our study,
the anticancer activities were also found in the EO of A. montana achenes (Figures 2–4. Therefore,
this plant species can be included in the group with high anticancer potential.

The chemical composition of EOs is determined by a wide range of factors. These include
environmental conditions, seasonal variations, weather and climatic conditions, and plant development
phases and age [6,14,15,47–50]. In turn, the effect of EO with a specific chemical composition has been
reported to vary depending on the cancer type. Yu et al. [26] indicated that the cytotoxicity of EO from
L. lucidus against liver carcinoma and breast cancer cell lines was significantly stronger than against
other cell lines. Similarly, da Silva et al. [51] showed varied cytotoxic activity of Piper aleyreanum oils
on colon and melanoma cell lines. Lima et al. [52] demonstrated various levels of cytotoxic activity
of P. klotzschianum oils inhibiting human hepatocellular carcinoma, human promyelocytic leukemia,
and murine melanoma cell lines. In turn, a broad cytotoxicity spectrum was demonstrated in the case
of P. cernuum oil against, e.g., murine melanoma, human melanoma, human cervical tumor, human
myeloid leukemia, and human glioblastoma cells [53,54]. In the present study, the quality of the EO-3
and EO-4 was similar. 2,5-dimetoxy-p-cymene was the dominant component of the EO; moreover,
the impact of the EO on the MOGGCCM and T98G cell lines (apoptosis, necrosis, and autophagy) was
similar. This implies that the age of arnica plants does not affect the studied chemical composition and
antitumor activity of its essential oil.

Apoptosis or autophagy are mechanisms responsible for induction of programmed cell death in
malignant gliomas [21,27,28,55]. The concentration of EO plays a key role in the treatment of human
cancer cell lines through inhibition of cell growth and has an impact on these mechanisms [26]. In the
case of the studied MOGGCCM and T98G lines, the concentration of 0.5 µL/mL initiated apoptosis
without induction of necrosis and autophagy. The concentration of 1 µL/mL caused apoptosis without
induction of autophagy. Thus, the biological activities of the EO from A. montana achenes make it a
source of molecules that can be exploited in medicine and pharmaceutical industry. The results are very
promising in the perspective of further studies focused on isolation of the main components, application
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thereof in studies on the MOGGCCM and T98G lines, and analysis of the typical programmed cell
death and its molecular mechanism.

Gliomas are aggressive brain tumors with very high resistance to chemotherapy [32]. Natural
bioactive compounds may act in synergy with drugs in pharmacological applications [56,57]. Therefore,
in studies of the effectiveness of different substances in elimination of human glioma cells through
apoptosis and autophagy, an attempt was made to use quercetin in such combinations [25,27–29].
Quercetin is a flavonoid found in A. montana and A. chamissonis flower heads and characterized by
different biological, pharmacological, and medical applications [24,58]. The study of the effectiveness
of such combinations in induction of programmed cell death in human gliomas has shown that
quercetin exerts a toxic effect on the astrocytoma MOGGCCM cell line, inducing necrosis rather than
programmed cell death [24]. However, the EO from the arnica montana achenes induced apoptosis
of the MOGGCCM cell line without induction of necrosis and autophagy. The increase in the EO
concentration to 1 µL/mL resulted in an increase in the level of apoptosis to 25.7% and 29.0% and to
27.7% and 32.7% in the MOGGCCM and T98G cell lines, respectively (Figures 2–4, which suggests that
it is a more promising natural anticancer product than quercetin.

There are only a few studies on the effects of EO or their components on glioma cells. Those with
the most spectacular effects include α-bisabolol, i.e., a nontoxic natural compound that strongly induces
apoptosis in glioma cells [34]. Thymol has been shown to have an inhibitory effect on apoptosis and cell
growth in DBTRG-05MG human glioblastoma [59]. β-elemene, which is a natural plant drug extracted
from Curcuma wenyujin, has shown promising anticancer effects against a broad spectrum of tumors,
also inducing apoptosis of glioblastoma cells [22,60]. However, there are no literature reports of the
effect of mountain arnica extracts or EOs on the induction of apoptosis of glioblastoma cells, especially
in the MOGGCCM and T98G cell lines. The present study has shown that EO has an impact on glioma
cell death. This is an important finding, especially in the light of recent investigations showing that
gliomas naturally resist apoptosis [61]. The analyzed arnica EOs are characterized by dominance
of 2,5-dimetoxy-p-cymene in the range of 39.54–44.65%; hence, they are a rich source of this highly
interesting molecule [62]. Essential oils with this compound as a major component have antibacterial,
antifungal, and insecticidal properties [63–65]. 2,5-dimetoxy-p-cymene is a dominant component of EO
Eupatorium triplinerve [62], Bubonium imbricatum [63], Ayapana triplinervis [66], Pulicaria mauritanica [67],
Limbarda crithmoides [68], and Laggera crispata [69]. Therefore, it probably plays an essential role in
the anticancer activity of EO in relation to the MOGGCCM and T98G cell lines. The induction of
apoptosis at a level of 25.7–32.7% presented in this paper has evidenced the anticancer activity of EO.
The information obtained in this study indicates a need for further studies on the anticancer effect of
arnica EOs and 2,5-dimetoxy-p-cymene against gliomas and on elucidation of the molecular anticancer
mechanisms of this molecule.

4. Materials and Methods

4.1. Plant Material

Arnica achenes were collected when they were completely ripe. The achenes originated from
3-year-old and 4-year-old plants growing on experimental fields at the University of Life Sciences in
Lublin located in the eastern part of Poland, (51◦31′25′′ N; 22◦45′04′′ E) on grey-brown podsolic soil
with a granulometric composition of heavy loamy sand.

4.2. Qualitative and Quantitative Analysis of Essential Oil

4.2.1. Assay of the Essential Oil Content

The A. montana achenes were air-dried and not crumbled. Essential oils were obtained
by hydrodistillation using a Deryng type apparatus, according to the procedure of the Polish
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Pharmacopoeia VI [70]. The distillation time was 3 h. For this purpose, 20.0 g of achenes and
400 mL water was used. The distillation time was 3 h. The analysis was carried out in five repetitions.

4.2.2. GC-MS Analysis

The chromatographic analysis was performed according to procedures described previously [7,9].
The analysis was performed in triplicate. The essential oils were analyzed using a Varian 4000
GC–MS/MS system (Varian, Palo Alto, CA, USA). The compounds were separated on a 30 m × 0.25 mm
× 0.25 µm VF–5 ms column (Varian, Palo Alto, CA, USA). The column temperature was increased from
50 ◦C to 250 ◦C at a rate of 4 ◦C/min; injector temperature 250 ◦C; split ratio 1:50; injection volume 5 µL.
The MS parameters were as follows: EI mode, with ionization voltage 70 eV, ion source temperature,
200 ◦C; scan range, 40–870 Da.

4.2.3. Qualitative and Quantitative Analysis

The qualitative analysis was carried out on the basis of MS spectra, which were compared with the
spectra from the NIST library [43] and with data available in the literature [42,71]. The identity of the
compounds was confirmed by their retention indices [41] taken from the literature [42,71] and our data
for standards described previously [7,9]. The quantitative analysis was performed with the internal
standard addition method (alkanes C12 and C19) according to procedures described previously [72].

4.3. Glioma Cells and Culture

4.3.1. Cells and Culture Conditions

Human glioblastoma multiforme cells (T98G, European Collection of Cell Cultures) and human
anaplastic astrocytoma cells (MOGGCCM, European Collection of Cell Cultures) were grown in a 3:1
mixture of Dulbecco’s Modified Eagle Medium (DMEM) and Ham’s nutrient mixture F-12 (Sigma,
St. Louis, MO, USA) supplemented with 10% fetal bovine serum (Sigma), penicillin (100 units/mL)
(Sigma), and streptomycin (100 µg/mL) (Sigma, St. Louis, MO, USA). The cultures were kept at 37 ◦C
in a humidified atmosphere of 95% air and 5% CO2. Primary cultures of human skin fibroblast were
prepared according to a method described previously [73].

4.3.2. Detection of Apoptosis, Necrosis, and Autophagy

Apoptosis, autophagy, and necrosis were identified microscopically after staining with
fluorochromes Hoechst 33342 (Sigma), acridine orange (Sigma, St. Louis, MO, USA), and propidium
iodide (Sigma, St. Louis, MO, USA) respectively, as described previously [27–29]. A fluorescence
microscope (Nikon E-800, Tokyo, Japan) was used for morphological analysis of dead cells. At least
1000 cells in randomly selected microscopic fields were counted under the microscope. Each experiment
was repeated three times with each 1000 cells. In addition, 50% inhibitory concentrations (IC50 values)
were determined for all the tested extracts using GraphPad Prism version 7 (GraphPad Software,
San Diego, CA, USA).

4.4. Statistical Analysis

The normality (Shapiro-Wilk test) and variance heterogeneity (Levene test) were tested and
transformed data were used when necessary. The two-way analysis of variance (ANOVA) and
subsequent Tukey tests were used. The results were expressed as means ± SD, and the differences
were considered significant at p < 0.05. The statistical analyses were carried out using the Statistica 6.0
software (Stat. Soft, Inc., Kraków, Polska).

5. Conclusions

The essential oil from A. monatana achenes is described in this paper for the first time. Its quality
and chemical composition are different from those of essential oils from flower heads and roots of
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arnica populations in different regions of Europe. EOs exert an anticancer effect by induction of
anaplastic astrocytoma and glioblastoma multiforme cell death. The activity expressed by induction
of apoptosis at a level of 25.7–32.7% facilitates the use of this secondary metabolite in subsequent
studies focused on the development of glioma therapy in the future. The essential oil from A. monatana
achenes is characterized by dominance of 2,5-dimetoxy-p-cymene. Probably, this component plays
a key role in the anticancer activity against MOGGCCM and T98G cell lines. The knowledge and
information obtained in this study indicate a need for further research on the anticancer effect of
2,5-dimetoxy-p-cymene on the MOGGCCM and T98G cell lines and for elucidation of the molecular
anticancer mechanisms of this compound.
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3. Gawlik-Dziki, U.; Świeca, M.; Sugier, D.; Cichocka, J. Comparison of in vitro lipoxygenase, xanthine oxidase
inhibitory and antioxidant activity of Arnica montana and Arnica chamissonis tinctures. Acta. Sci. Pol.
Hortorum Cultus 2011, 10, 15–27.
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