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Abstract

Soundscape ecology is an emerging field in both terrestrial and aquatic ecosystems, and

provides a powerful approach for assessing habitat quality and the ecological response of

sound-producing species to natural and anthropogenic perturbations. Little is known of how

underwater soundscapes respond during and after severe episodic disturbances, such as

hurricanes. This study addresses the impacts of Hurricane Irma on the coral reef sounds-

cape at two spur-and-groove fore-reef sites within the Florida Keys USA, using passive

acoustic data collected before and during the storm at Western Dry Rocks (WDR) and

before, during and after the storm at Eastern Sambo (ESB). As the storm passed, the cumu-

lative acoustic exposure near the seabed at these sites was comparable to a small vessel

operating continuously overhead for 1–2 weeks. Before the storm, sound pressure levels

(SPLs) showed a distinct pattern of low frequency diel variation and increased high fre-

quency sound during crepuscular periods. The low frequency band was partitioned in two

groups representative of soniferous reef fish, whereas the high frequency band represented

snapping shrimp sound production. Daily daytime patterns in low-frequency sound produc-

tion largely persisted in the weeks following the hurricane. Crepuscular sound production by

snapping shrimp was maintained post-hurricane with only a small shift (~1.5dB) in the level

of daytime vs nighttime sound production for this high frequency band. This study suggests

that on short time scales, temporal patterns in the coral reef soundscape were relatively

resilient to acoustic energy exposure during the storm, as well as changes in the benthic

habitat and environmental conditions resulting from hurricane damage.

Introduction

Ecosystems throughout the world are increasingly threatened by multiple natural and anthro-

pogenic stressors, often leading to ecosystem shifts from desirable to less desirable states [1–4].

Coral reefs are the some of the most diverse ecosystems on Earth, and the transition between

disturbance states is often observed through changes in coral reef community composition

and ecosystem function [5–7]. The desired state is an environment that supports critical eco-

logical processes and resulting patterns across space and time, such as overall system produc-

tion, key predator-prey (or grazer) interactions, and reproduction across multiple functional
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groups [8, 9]. Disturbance states in coral reef ecosystems are often described as a shift from the

desired, structurally complex coral dominated reef, to a less desirable macroalgal dominated

state [10–12], as well as reductions in major functional groups such as herbivorous grazers,

prey fish stocks, and apex predators [13, 14].

Natural disturbance impacts to coral reef ecosystems vary from chronic events such as coral

predation, bioerosion, and intermittent disease, to pulsed catastrophic events such as mass

bleaching and hurricanes [15–17]. In certain geographic regions such as the Caribbean, Baha-

mas and Florida, coral reefs are prone to hurricanes that can cause massive structural damage

[18, 19]. Hurricanes can disrupt and reduce ecosystem functions and services [20–24]. Long-

term habitat degradation and the persistent decline in the three-dimensional structure of coral

reefs can have cascading consequences for reef fish diversity, fisheries, and ecosystem services

[25–27]. The response of reef fauna to disturbed benthic habitats can lead to a shift in their

spatial distribution as changes in prey densities or habitat specialists compete for sufficient ref-

uge space [28]. Conversely, large-bodied, transient reef fish are more likely to survive an

immediate decline in benthic cover because of their ability to relocate to a presumably more

desirable habitat [29]. Hurricane impacts have been widely assessed in coral reef ecosystems as

catastrophic events that not only promote long-term declines in habitat quality (e.g. algal

regime shifts, sedimentation), but further hinder recovery processes from other chronic stress-

ors such as coral disease, overfishing, pollution, and sedimentation [18, 24, 30, 31]. Neverthe-

less, we know little about how extreme episodic impacts, such as hurricanes, alter the behavior

of biological sound production, or biophony, of soniferous (sound-producing) species.

One of the most common quantitative methods to assess the magnitude of change within a

population or community pre- and post-disturbance is to assess the temporal response of spe-

cies composition using abundance or biomass indices [22, 32, 33]. Recent application of pas-

sive and active acoustic sampling techniques now allow studies of hurricane impacts to marine

organisms using a before, during, and after impact approach [34–36]. For example, acoustic

telemetry (active acoustic techniques) of tagged fish characterized the success or failure of noc-

turnal foraging reef fish (e.g. grunts, snapper) to find refugia, as well as their vulnerability to

predation, following a severe disturbance [37]. A recent study on juvenile bull shark (Carch-
archinus leucas) movements before and after hurricane Irma also described predatory behav-

ioral responses related to shifting prey densities [38]. Although active acoustic studies provide

information on individual animal movements, passive acoustic monitoring provides informa-

tion on soniferous species assemblages that use sounds to communicate, and thereby can be

sampled to reflect potential deviations in behavior in response to disturbances such as hurri-

canes [39–41].

Soundscape ecology

Soundscapes, the collection of biological, environmental, and anthropogenic sound sources

within an ecosystem, can provide high resolution spatiotemporal information about ecosystem

patterns and processes [42–44]. Critical information about habitat-specific biodiversity and

environmental conditions can be derived from passive acoustic monitoring [44, 45]. Addition-

ally, soundscape analysis allows for the passive acquisition of species assemblage patterns with-

out the influence of human interactions [46–48]. The presence of divers can alter fish

distribution and behavior as a negative (i.e. avoidance) or positive (i.e. aggregate) association

with human presence [49–51]. Soundscapes provide a collection of empirical data in a natural

state without disrupting critical biological or ecological interactions, and allows for visualiza-

tion of various temporal patterns in acoustic activity and inferred behavior (e.g. hourly, daily,

annually, seasonally) for soniferous species. The ecological application of soundscapes is
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becoming more widely accepted as an indicator of species presence/absence, habitat associa-

tions, and complex biological interactions (e.g. territorial behavior, spawning aggregations,

migratory patterns) with applications across a wide range of terrestrial (e.g. woodland forest,

desert) [52–54] and aquatic (e.g. coral reefs, oyster reefs, seagrass beds, kelp forest) [55–59]

ecosystems.

Application of soundscape ecology to disturbance impacts

Soundscape methods have been useful in distinguishing between healthy and degraded ecosys-

tems largely by recording the presence and absence, as well as behavior of key soniferous taxa

[44]. For example, distinct changes in important ecological behavior (e.g. foraging, mating) or

daily activities across space and time can reflect noise avoidance or acoustic masking [60–62],

with the former resulting in quieter areas due to a decrease in soniferous species abundance

and diversity [63, 64]. Landscape ecology studies are increasingly relying on bioacoustic moni-

toring to assess deleterious impacts resulting from human land use activities (e.g. clear cutting,

forest fire, habitat destruction, noise pollution etc.), and to assess changes in biodiversity, spa-

tial distribution, and animal behavior [65–67]. In a broader context, soundscape studies in ter-

restrial systems are proving to be instrumental in rapidly assessing biodiversity and informing

management recommendations for ecological conservation in the aftermath of detrimental

anthropogenic and natural disturbances [68, 69]. Thus, understanding the interaction between

disturbance states due to natural or anthropogenic impacts and changes in a soundscape are

becoming increasingly relevant to management in terrestrial [70, 71] and aquatic ecosystems

[72, 73].

Underwater soundscape monitoring is unique in its access to sound-producing inverte-

brates and resident reef fish assemblages. In underwater environments, sound is an important

indicator of habitat quality [74–76], where relatively high densities of soniferous species may

indicate high ecosystem health or structural complexity via an abundance of refugia [77]. For

example, Freeman & Freeman [78] used coral reef soundscapes to quantitatively assess the cor-

relation between dominant biological frequencies and habitat quality, in which macroalgal

dominated reefs are an indicator of reef degradation and were dominated by high frequency

sounds produced by benthic invertebrates. Underwater soundscape studies have been success-

ful in characterizing critical spawning habitats, estimating soniferous species abundance, and

characterizing community-level interactions [79–81] by collecting semi-continuous, non-inva-

sive information when traditional sampling methods, such as use of nets or diver surveys, are

logistically not feasible (e.g. at night, during extreme storm events). Recent work on coral reef

soundscapes have provided baseline data on spatiotemporal variation of coral reef soundscapes

across various disturbances states such as dead coral cover, high crustose coralline algae cover,

and other degraded habitats [82–85].

The presence of rainfall, wind and wave activity on the ocean’s ambient soundscape is well

established [86, 87]; however, few studies have focused specifically on modification in the

soundscape during extreme weather events, such as hurricanes. Weather and climate may also

indirectly influence abiotic sound production by controlling the distribution of ice at high lati-

tudes [88], with the collapse of large ice sheets in Antarctica elevating sound levels throughout

the southern Pacific and Indian Oceans [89]. In some ocean basins, the soundscape may be

disrupted by large earthquakes that generate high amplitude sounds over time scales of min-

utes, or by intense episodes of submarine volcanism, which may extend for periods of days-to-

weeks [90–93]. The potential ecological significance of these transient natural sound sources is

not well understood; however, like hurricanes, they dominant the low-frequency portions of

the acoustic spectrum that can be critical in the communication of many marine fauna.
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Hurricane Irma and objectives

On September 2017, Hurricane Irma (Category 4) traveled across the Lower Florida Keys with

sustained hurricane force winds (>64kts) extending 130 km from the center [94]. Hurricane

Irma passed directly over the Florida Keys National Marine Sanctuary (FKNMS) nearshore

marine habitats before making landfall near Cudjoe Key, Florida (USA) [94, 95]. Short-term

impacts by large freshwater inflows resulted in changes in the phytoplankton community in

nearby coastal canals, with phytoplankton communities returning to normal seasonal patterns

within 3 months after the hurricane [96]. The impacts to the Lower Florida Keys seagrass com-

munities from Irma were generally localized, with species-specific beds of seagrass uprooted,

and loss of seagrass from storm water runoff resulting in low dissolved oxygen and persistent

hyposalinity, similar to historical datasets [97, 98]. Coral reefs in the Middle and Upper Keys

showed a significant decline in abundance of the keystone urchin grazer Diadema antillarum,

as well as loss of sponges and hydrocorals due to high sedimentation [99].

During October 2017, NOAA science divers and partners surveyed more than 50 coral reef

sites from Biscayne Bay (near Miami) to the Marquesas (southwest of Key West) and described

severe damage in the Middle and Lower Florida Keys sponge and coral communities from

storm force waves, fast-moving debris, and heavy sediment deposits [100]. Sedimentation was

the most common impact among sites, resulting in poor visibility and high amounts of marine

debris [100]. In December 2017, NC State science divers surveyed eight fore-reef sites, includ-

ing ESB and WDR, and observed poor visibility (<3m), loose rubble, collapsed reef ledges

with a mix of schooling species, as well as sedimented and fragmented sub-massive reef-build-

ing corals (Fig 1, personal observation K. Simmons). The short-term disturbance in environ-

mental conditions and the remaining fractured reef habitat structure likely impacted marine

faunal interactions and behavior; however, little is known about how these changes in the

coral reef habitat are reflected in the sound production of coral reef animals that are mobile.

Passive acoustic recordings were used to characterize the underwater soundscape of the

coral reef tract in the lower Florida Keys, USA before, during and after Hurricane Irma. In the

weeks following the storm, the biological sounds produced by fish exhibited similar pre-distur-

bance temporal patterns, and the high frequency noise associated with snapping shrimp

showed only a small shift in its diurnal patterns. This opportunistic study investigates the util-

ity of soundscapes in assessing disturbance impacts to the coral reef soundscape generated by

soniferous reef fishes and snapping shrimp within a track of the Florida Keys reef system

impacted by Hurricane Irma. The main objectives of this study were to (i) quantify the cumu-

lative acoustic exposure associated with the passage of hurricane Irma, and (ii) identify and

quantify temporal changes within the biophony in response to Irma with emphasis on daily

and diurnal soundscape patterns.

Materials and methods

Study system

Underwater soundscape characterization was conducted within the lower (Zone D) FKNMS,

which comprises a network of marine reserve types and regulated fishing habitats designated

in 1990 [101] (Fig 2). This region is part of the Florida Keys Coral Reef Tract, a large bank-bar-

rier reef system that extends 350 km from the Florida Straits northward to St. Lucie Inlet, Mar-

tin County [102]. The lower FKNMS habitat includes a mosaic of shallow, marginal reef

systems with spur-and-groove reef formations, reef rubble and a diverse array of hardbottom

habitat (e.g. stony corals, soft corals, sponges, macroalgae, adjacent seagrass beds). No-take,

marine reserves within the FKNMS vary in size, yet most are relatively small (~0.2 to 0.5km2).
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The Lower Keys often have higher salinity and turbidity relative to the Middle and Upper Keys

region due to nearshore transport of nutrient-rich deep water [103] facilitated by the Florida

Current, gyre system [104, 105].

As a part of a larger study by our research group, eight hydrophones were deployed in July

2017 across several marine reserve zones. The research was permitted by the Florida Keys

National Marine Sanctuary Program (FKNMS-2016-111-A1) and the National Wildlife Ser-

vice (NW5-SAJ-2016-02423). After the passage of Hurricane Irma (Category 4) in the lower

Florida Keys on September 2017, only 2 of 8 hydrophones were recovered: (1) Eastern Sambo,

a no-entry reserve, and (2) Western Dry Rocks, which is open to fishing (Fig 2). The other

hydrophones were lost, presumably due to wave action and surge from the hurricane. The

hydrophone at Western Dry Rocks was recovered after the hurricane lying in sand near the

mooring, which removed our ability to use these data to quantitatively assess the post-distur-

bance soundscape. Western Dry Rocks (WDR—24.445˚N, 81.926˚W) is a regulated fishing

site ~22 km southeast of Key West, FL within the FKNMS. This reef is characterized by wide

Fig 1. Before-after impacts of hurricane Irma on coral reefs in the Florida Keys, with before images taken in August 2017 and after images taken in

December 2017. (A) Brain coral at Eastern Sambo study site taken in August 2017 and (B) its structural damage after Irma in December 2017. (C) Divers

observed fish aggregations near and underneath collapsed reef ledges at Looe Key reef (~26 km northeast of Eastern Sambo study site), and the (D) same site

with high amounts of reef rubble after Irma. Photo credit K. Simmons.

https://doi.org/10.1371/journal.pone.0244599.g001
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spur-and-groove sand channels with high relief ledges and a mean depth of 6m. Although live

coral cover is relatively low compared to protected reefs, the benthos consists of gorgonians,

coral rubble, and hard-bottom substrate. Eastern Sambo (ESB—24.491˚N, 81.664˚W) is one of

four Special-Use Areas (SUA) or no-entry/no-take zones within the FKNMS, and is no-access

except for permitted scientific research, restoration, monitoring, or educational purposes. This

reef is characterized as a spur-and-groove bank reef with a mean depth of 5m comprised of

massive reef building corals, sponges, and gorgonians.

Environmental data collection

Hurricane Irma’s track, wind swath and landfall data were accessed from NOAA’s National

Hurricane Center report on Irma (https://www.nhc.noaa.gov/data/tcr/AL112017_Irma.pdf).

Hurricane Irma made landfall near Cudjoe Key in the lower Florida Keys at 08:00 Eastern

Standard Time (EST) on September 10, 2017 (Fig 2) before continuing north toward central

Florida. Maximum wind speeds reached 115kts with a minimum barometric pressure of 931

hPa at landfall. Wind swath radii were defined as maximum sustained 1-minute wind speed

values for tropical storm force winds (34kts), storm force winds (50kts) and hurricane force

winds (64kts).

Barometric pressure data were used, independent of the acoustic time series, to delineate

the passage of the storm over the reef. Storm duration was defined as the time window over

which the pressure fell and remained below its 2.5% quantile level for data collected between

July and October 2017. Barometric pressure data were obtained from the Sand Key Light-

house, Buoy Station ID SANF1 (24.456˚N, 81.877˚W), located ~ 5km from WDR. These data

were recorded hourly with a standard barometer elevation at 14.6 m above the mean sea level.

Fig 2. Study site–FKNMS Zone D. Sites are denoted by initials: Western Dry Rocks (WDR) is shown in red and

Eastern Sambo (ESB) is shown in blue. NOAA wind swath data are shown as contour lines for maximum sustained

wind speeds for 2mins/10meters at 34kts (yellow), 50kts (orange), and 64kts (red). Credit: NOAA NHC Best Track

Data updated 06/30/2018.

https://doi.org/10.1371/journal.pone.0244599.g002
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Because underwater acoustic time series are non-stationary (i.e., have time dependent

mean and variance), soundscape changes must be evaluated within time windows before and

after the storm that minimize the effect of processes, such as lunar phase (e.g., [85, 106, 107]),

that are likely to influence biological sound production on relevant timescales. To account for

this potential influence, 18-day and 24-day periods spanning the same portion of the lunar

cycle around the New Moon were identified before (New Moon on August 21st) and after

(New Moon on September 20th) the hurricane. These time periods were constrained by the

timing of the storm and length of our acoustic time series. Astronomical data were obtained

from the US Naval Observatory Portal (www.usno.navy.mil/USNO).

Acoustic data collection and analysis

The coral reef soundscape was monitored via bottom-mounted hydrophones (Soundtrap

ST300, Ocean Instruments NZ) suspended ~0.15m above the sandy bottom of the fore-reef at

each reef site. Both hydrophones began recording on 14 July 2017 and ended on 01 October

2017 (WDR) and 17 October 2017 (ESB). Both recorders were recovered by a dive team on

December 2017. The WDR hydrophone was found lying flat in the sand and detached from

the mooring. A spectrogram of the WDR data (Fig 5) indicates a change in acoustic coupling

after the hydrophone came into contact with the seabed. Although fish chorusing and snap-

ping shrimp activity are still evident in the time series, the post-storm WDR data were

excluded from our quantitative before-after comparisons of the soundscape.

The hydrophone recorders were calibrated with a flat frequency response over the ~0.02-

40kHz band. Hydrophones were programmed to record 2 minutes of acoustic data every 20

minutes (72 files/day) with 16-bit A/D conversion and at a sample rate of 48kHz. Acoustic

recordings were processed in MATLAB using purpose-written code. The mean spectrum of

the acoustic data was calculated for each 2-minute recording using the fast Fourier transform,

with a window length (NFFT) of 214 samples and a frequency resolution (Δf) of 2.93 Hz.

Hydrophones were also equipped with a temperature sensor that recorded once during each

acoustic sampling period.

Fish sounds occupy the low-frequency spectrum (<50Hz to several kHz), often competing

with background environmental noise (i.e. wind, wave action) in similar frequency bands [86,

108]. Sound Pressure Levels (SPLs) were calculated at several frequency bands of ecological

interest: (1) a low frequency band L1 (50-300Hz) representative of the fish families Serranidae

[109–111], Holocentridae [112], and Pomacentridae [113], (2) a low frequency band L2 (1.2–

1.8kHz) representative of Haemulidae [114, 115], Lutjanidae [116], Scaridae [81], Sciaenidae

[116, 117], and (3) a high frequency band H (7-20kHz) representative of snapping shrimp

(Alpheidae), which are a dominant sound producer in coral reef habitats [82, 83, 118, 119]. See

S1 Fig for examples of fish calls in each representative band.

To minimize the potential influence of anthropogenic noise and “fish bump” signals in the

acoustic time series, SPL data before and after the storm were trimmed to exclude files consti-

tuting the loudest 2% of the data over these combined intervals (S2A Fig). Incidental fish

bumps are transient signals caused by the physical interaction of an animal with the hydro-

phone or hydrophone mooring, generating artifacts in the acoustic data [120–122]. Trimming

excludes those files containing large amplitude fish bumps (S2B and S2C Fig), as well as files

with anomalously large SPLs due to transient boat noise (S2D Fig). For a given recording win-

dow (i.e. 00:00, 00:20, . . ..23:40), the trimmed mean SPLs before and after the storm were cal-

culated for each band (L1, L2, and H). Uncertainty (68% confidence interval) was estimated

using a bootstrap resampling procedure (see below).
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Generally, for reefs in the South Atlantic and Caribbean, as well as in other coral reef sys-

tems, biologic sound production varies diurnally. These patterns often reflect the abundance

or acoustic behavior of multiple species, with times of peak acoustic activity in a given fre-

quency band varying between reef systems [e.g., 57, 83, 106, 123, 124]. Because these daily

acoustic patterns tend to persist, even as average SPLs may rise and fall, the disruption of this

pattern following a disturbance event may indicate changes in the abundance or acoustic

behavior of the impacted species. We therefore investigated the daily SPL patterns (over the 72

recordings made each day), as well as the diurnal (daytime vs. nighttime) differences in SPLs

within each of the ecologically relevant frequency bands. The decibel difference between day-

time and nighttime SPL provides way to normalize for the non-stationarity of the acoustic

time series on longer time scales—as opposed to making inferences based on small changes in

the absolute SPL before and after the storm. Daily and diurnal patterns are absent or masked

during the storm, and therefore not discussed.

For each 24-hour period, daytime and nighttime mean SPLs were also calculated from the

trimmed SPL time series. Daytime was defined as the period between local sunrise (05:48–

06:19 EST) and sunset (18:15–19:18 EST), whereas nighttime was defined as the period

between sunset and sunrise. Uncertainties (68% confidence interval) in the means were esti-

mated using a bootstrap resampling (5000 draws). The probability that the mean daytime SPL

was higher than the mean nighttime SPL on each day was estimated from the portion of

resampled outcomes with SPLday > SPLnight. Values of p� 1 indicate significantly higher day-

time sound levels, and values of p� 0 indicate significantly higher nighttime sound levels on a

given day.

For the 18- and 24-day windows assessed before and after the hurricane, the mean differ-

ence between daytime and nighttime SPLs, and the confidence intervals for this difference,

were estimated using a paired resampling (5000 draws) of the nighttime and daytime means

for each 24-hour period. The probability that daytime SPL was greater than nighttime SPL was

calculated from the resampled differences, where p� 1 indicates significantly higher daytime

sound levels, and p� 0 indicates significantly higher nighttime sound levels over the assess-

ment window.

Hurricane acoustic energy exposure

Hurricanes represent broadly distributed acoustic sources, with the sounds recorded at each

hydrophone arriving from a range of azimuths and incidence angles. However, to place the

acoustic exposure at these reef sites in context and make comparisons with other sound

sources, we quantified the acoustic exposure by representing all storm related noise as being

sourced from a point at the sea surface directly above each hydrophone and calculating the

equivalent energy.

Over the four-day duration of the storm, the received root mean square SPLs calculated for

each file were corrected to acoustic source levels (referenced @ 1m) assuming spherical spread-

ing loss between the sea surface and seafloor. The equivalent acoustic power (J/s) that radiated

into the water column (i.e., across a 1 m radius hemisphere with surface area 2π) was then esti-

mated assuming a constant water density (1030 kg/m3) and sound velocity (1485 m/s) [125].

The acoustic energy was determined by integrating these power values over the duration of the

storm, assuming each two minute file is representative of a surrounding 20 minute time win-

dow, and then subtracting the energy that would be calculated if the procedure was repeated

using the mean background (pre-storm) noise levels. This energy exposure value can then be

compared to the equivalent energy that would be associated with common natural and anthro-

pogenic sources (e.g. fishing vessels) operating over a set duration (e.g., [126, 127]) if these
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sources were fixed in position at the sea surface directly above the hydrophone. This value,

however, does not represent the total acoustic energy imparted by the storm.

Results

Environmental conditions

Barometric pressure data exhibited semidiurnal oscillations characteristic of the Florida Keys

region (Fig 3A). The passage of the storm is marked by a period of low (< 1011 hPa) baromet-

ric pressure, which extends from ~12:00 on September 8, 2017 to ~12:00 September 12, 2017

(4 days), reaching a trough at 966 hPa on September 10, 2017 at 06:50 (all times EST). In

Fig 3. Environmental data. (A) Barometric pressure data from Sand Key Lighthouse, FL (Station ID SANF1 24.456˚N, 81.877˚W) NOAA-National

Data Buoy Center is shown as a black line with the median (dashed red) and the lower 2.5% confidence interval (solid red). (B) Mean hourly bottom

temperature (˚C) from hydrophone sensor for Western Dry Rocks (red) and Eastern Sambo (blue). The orange bar represents Hurricane Irma

duration and the black arrow indicates the times of landfall at Cudjoe Key FL on September 10, 2017 08:00 EST.

https://doi.org/10.1371/journal.pone.0244599.g003
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analyzing the soundscape during the pre- and post-storm windows, a 1-day buffer was applied

on either side of the hurricane, such that the pre-storm period ends on September 7th at 12:00

and the post-storm period begins on September 13th at 12:00.

Before and after the storm, daily bottom temperatures at WDR and ESB varied between

26–28˚C, except for a short period of slightly increased temperatures at ESB between August

15 to August 19, 2017, which was likely influenced by the lunar spring tide. Both sites exhibited

a sharp decline in bottom temperature reaching 25˚C shortly after the hurricane made landfall.

(Fig 3B). Post-hurricane, cooler water temperatures remained a few days longer at ESB than

WDR before returning to pre-disturbance daily temperature oscillations.

Acoustic spectra

The acoustic spectra were assessed over the peak of the storm period (September 9th– 10th)

and compared with the spectra over four-day periods immediately before (September 3rd– 7th)

and after (September 13th– 17th) the storm (Fig 3). Over the four days before the hurricane, the

spectra at each site was elevated broadly across the 50–300 Hz frequency range, with additional

low amplitude spectral peaks in the frequency ranges of 600-900Hz and 1600-1900Hz being

observed most clearly at ESB (Fig 4A). During the peak of the hurricane, the low frequency

component of the soundscape was impacted most dramatically and median spectral power

increased by 40–50 dB over pre-storm levels in the ~10–100 Hz frequency range, and with

multiple narrow band spectral peaks at frequencies of 100’s to 1000’s Hz observed at both sites

(Fig 4C and 4D). Within the four-day window after the hurricane, spectra at ESB remained

elevated in the 50–300 Hz and 1600-1900Hz frequencies (Fig 4E), yet the pre-storm peak

between 600-900Hz was absent.

Acoustic energy exposure

WDR experienced a higher cumulative energy exposure than ESB estimated at 9.9 x 103 J and

4.8 x 103 J, respectively. In comparison to other acoustic energy disturbances commonly expe-

rienced in the lower Florida Keys region, the exposure over the duration of Hurricane Irma

was comparable to small vessel (SL = 153 dB re 1μPa @ 1m) operating continuously [128–130]

directly overhead for 1 week (ESB) to 2 weeks (WDR). The WDR hydrophone presumably

detached from its mooring at some point during the storm; however, the exact timing of this

event was not readily identifiable, and no corrections were made to account for potential

changes in sensitivity of the instrument. Estimates of acoustic exposure also do not account for

the signals produced by debris impacting the hydrophone and mooring, since this effect is not

easily disentangled from the acoustic wavefield.

Biophony

Both sites showed temporal patterns in the biophony evident with their long-term spectro-

grams (Figs 5 and 6). A daily pattern of fish vocalizations within the L1 frequency band was

apparent at WDR and ESB over the ~2 month recording period before the hurricane, with

increased sound levels around the full moons in August and September (Fig 5). Fish calls

within both low frequency bands were masked or absent during the storm, before reappearing

immediately after the storm (Figs 5 and 6). The apparent post-storm shift in high-frequency

sound levels at WDR likely reflected a change in sensitivity of the hydrophone after it became

detached from the mooring (Fig 5A). The low frequency bands at ESB diminished in intensity

during the waning part of the lunar cycle and became more pronounced approaching the

October full moon (Fig 5B). Additionally, the less pronounced, yet persistent fish calling evi-

dent in the L2 band was observed before and after the storm at ESB (Figs 5B and 6). The L2
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Fig 4. Power Spectral Density (PSD) plot. Power spectral density plot of Eastern Sambo (left) and Western Dry Rocks (right) pre-storm (A,

B), peak-storm (C, D), and post-storm (E). The colors show the probability distribution of the spectral amplitudes, and white lines show the 5,

50, and 95% quantiles of power spectral density as a function of frequency.

https://doi.org/10.1371/journal.pone.0244599.g004
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band captured broadband fish calls, including the upper range of pulsated “grunts”

(>1000Hz) and aggregated “knocks” between 1200-2500Hz, as well as including the lower

range of snapping shrimp sound production in the high frequency band. Snapping shrimp

activity within the H band persisted before and after the storm at both sites (Fig 5).

Temporal soundscape patterns

The daily patterns in SPLs before and after the storm were examined for the ESB site. Within

the three frequency bands, trimmed means were calculated for each recording interval (00:00,

00:20. . . 23:40) over the 18- and 24-day windows capturing the same portion of the lunar cycle

Fig 5. Deployment period spectrogram. Spectrogram displaying the power spectral density (PSD in dB re 1μPa2/Hz) for Western Dry Rocks (A) and Eastern

Sambo (B). Frequency bands are denoted as follows: H, high frequency (7,000–20,000Hz); L1 low frequency (50-300Hz); L2 low frequency (1,200–1,800Hz).

Open and filled circles indicate the full and new moons respectively. Hurricane Irma made landfall on September 10, 2017. Data within the WDR post-window

was not valid or used for quantitative analysis. Spectrogram was generated from the average spectra within each two-minute recording (NFFT = 214, (Δf) = 2.93

Hz).

https://doi.org/10.1371/journal.pone.0244599.g005
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before and after the storm. The results for the 18-day windows are displayed in Fig 7, along

with their bootstrapped confidence intervals. The dominant temporal pattern was a diurnal

rhythm (day vs. night) in sound production, along with a small increase in high frequency

noise during crepuscular periods. The daily pattern of low and high frequency sound produc-

tion was largely maintained after the storm, with only small shifts in the average loudness.

Within the L1 band, a small decrease in the average SPL is observed during the nighttime

hours, with little change in the average level during the daytime hours. For the L2 band, a

small decrease in the average SPL is observed during the daytime hours, with little change

observed at night.

To investigate the diurnal patterns in more detail, the mean daytime and nighttime SPLs,

along with their bootstrapped confidence intervals, were calculated daily for each frequency

band (Fig 8). For each 24-hour period, the probability that the mean daytime SPL is greater

than the mean nighttime SPL was estimated from the resampled means. Within the L1 fre-

quency band, daytime SPL was consistently higher than nighttime SPL (p� 1), except for the

time window when the storm passed over the reef (Fig 8A). Within the L2 frequency band,

daytime SPL was consistently higher than nighttime SPL (p� 1) before the storm; however,

there was no consistent diurnal pattern after the storm (Fig 8B). Within the H frequency band,

Fig 6. Short-duration spectrograms from Eastern Sambo. Spectrograms displaying the low frequency patterns of sound production during 5-day windows

around the full moons that occurred (a) before and (b) after the passage of Hurricane Irma. Spectrograms are derived using the average spectra with each two

minute recording. Time-axis ticks indicate midnight EST. Sound pressure levels are elevated during daytime hours, relative to the nighttime hours. The daily

pattern of sound production reflects the acoustic activity and/or presence of multiple species (see call example in S1 Fig). The diurnal pattern in low-frequency

(L1) sound production is present before and after the storm. The diurnal pattern of mid-frequency (L2) sound production is a less pronounced, and appears to

weaken after the passage of the storm. Panels on the right show average sound pressure levels during daytime and nighttime recordings averaged over the 5-day

windows.

https://doi.org/10.1371/journal.pone.0244599.g006
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there was no persistent diurnal pattern before the storm, yet daytime sound production

decreased slightly after the storm creating a persistent pattern of higher nighttime SPL relative

to daytime SPL (p� 0) (Fig 8C).

Fig 7. Polar diagram for Eastern Sambo. Polar diagram of Sound Pressure Levels (SPLs) for ESB for the 18-day observation window before (magenta) and

after (black) the hurricane. Means for each recording interval are shown with 3-point moving average. Error bars represent the 68% confidence interval of

mean. Data are displayed for A) L1 frequency band (50-300Hz); B) L2 frequency band (1,200–1,800Hz); and C) H frequency band (7,000–20,000Hz). Local

sunrise (05:48–06:19 EST) and sunset (18:15–19:18 EST) times during the deployment are shown in cyan and blue, respectively.

https://doi.org/10.1371/journal.pone.0244599.g007
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The magnitude and significance of these diurnal patterns in SPLs were quantified further

by resampling the paired daytime and nighttime means over the 18- and 24-day windows

before and after the storm. Fig 9 summarizes these results, reporting the mean diurnal differ-

ence (Δavg) and its 95% confidence interval. Time windows with p� 1, and positive confidence

intervals, exhibited significantly higher daytime SPL, relative to nighttime SPL; or conversely,

time windows with p� 0, and negative confidence intervals, exhibited significantly higher

nighttime SPL, relative to daytime SPL.

Before the hurricane, daytime SPL over the 18-day window was higher than nighttime SPL

in the L1 band at both WDR (Δavg = 6.42dB) and ESB (Δavg = 3.02dB), with p� 1. This diurnal

difference was maintained with similar amplitude at ESB after the storm (Δavg = 3.78dB, p�
1). The same pattern of higher daytime SPL than nighttime SPL was observed over the 24-day

windows. Within the L2 band, before the storm daytime SPL also was higher than nighttime

SPL at both WDR (Δavg = 2.31dB) and ESB (Δavg = 1.47dB), with p� 1. This pattern weakened

slightly at ESB after the storm, within both the 18- (Δavg = 0.47dB) and 24-day (Δavg = 0.25dB)

windows, p = ~0.98. Within the H band prior to the storm, a small diurnal difference was

observed only at WDR (Δavg = 0.15dB, p = 0.98). After the storm, however, the nighttime SPLs

Fig 8. Eastern Sambo diurnal patterns. Mean daytime (red) and nighttime (blue) SPL during the deployment period July 14th–October 15th. Error bars

represent the 68% confidence interval for the mean daytime and nighttime SPL within each 24-hour period. Data are displayed for the A) L1 frequency band

(50-300Hz); B) L2 frequency band (1,200–1,800Hz); and C) H frequency band (7,000–20,000Hz). The color bar shows probability that daytime SPL is greater

than nighttime SPL, p� 1 indicates significantly higher daytime sound levels, and p� 0 indicates significantly higher nighttime sound levels on a given day.

Test periods are within an 18-day lunar cycle before the hurricane August 14th–September 1st (includes August 21st new moon) and after the hurricane

September 13th–October 1st (includes September 20th new moon).

https://doi.org/10.1371/journal.pone.0244599.g008
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were elevated slightly relative to daytime SPL within both the 18- (Δavg = -0.93dB) and 24-day

(Δavg = -0.89dB) windows, p� 0 at ESB.

Discussion

This study used passive acoustics to characterize the impacts of a major hurricane on a coral

reef soundscape and the underlying temporal changes within the biophony that reflect biologi-

cal behavior and activity. Observing changes in temporal patterns at hourly and daily scales for

both the high and low frequency band, representative of ecologically important soniferous

Fig 9. Pairwise bootstrap analysis results. Pairwise bootstrap (n = 5000) of mean differences, 95% confidence, and

probabilities (p) daytime mean SPL> nighttime mean SPL for 18-day observation window at Western Dry Rocks (A)

and Eastern Sambo (B). An additional pairwise analysis is given for Eastern Sambo for 24-day observation window (C).

Frequency bands are denoted as follows: L1 low frequency (50-300Hz); L2 low frequency (1,200–1,800Hz); H, high

frequency (7,000–20,000Hz). The color-bar represents the change in SPL (dB) between daytime-nighttime paired

SPLs, with the 95% confidence range for decibel differences given in brackets. High p values and positive changes in

decibel levels indicate periods when the average daytime SPL was higher than average nighttime SPL. Low p values and

negative changes in decibel levels indicate periods when the average nighttime SPL was higher than average daytime

SPL.

https://doi.org/10.1371/journal.pone.0244599.g009
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taxa, provided evidence that coral reef soundscapes may be resilient to a natural, acute distur-

bance despite experiencing physically destructive conditions. The extent to which a coral reef

soundscape recovers to pre-disturbance patterns in sound pressure levels may depend on

known characteristics of resilience in coral reef ecosystems, such as structural complexity or

relative abundance of herbivorous species [131 and references therein], as well as characteris-

tics of the storm itself, such as wind-speed, direction and duration.

The influence of abiotic factors on the underwater soundscape during a

disturbance

The expanse of the hurricane wind swath (64kt radius) exposed both sites (WDR and ESB) to

high levels of acoustic energy, yet the potential of inflated exposure estimates from WDR’s

hydrophone as it detached and presumably came into contact with fast moving sediment and

debris did not allow for uncertainty estimates. Spectral densities during the hurricane did

increase and produced narrow, wave-like peaks at high frequencies that may be explained by

hydrodynamic processes. For example, previous studies indicate air-sea interactions can gen-

erate bubble formations that vary with wind speed intensity [132, 133], and bubble formation

and dissipation can be produced via wave action [134, 135]. Moreover, air-sea interactions and

the resulting swell of waves can vary depending on water depth and the structural complexity

of the reef as current velocities can change when interacting with physical features. As previ-

ously described, WDR is characterized by relatively wide spur-and-groove channels, whereas

ESB is dominated by a matrix of massive reef building corals and micro-patch reefs with rela-

tively low sloping sand channels. Down-welling current velocities can intensify along the reef

slope (spur) and increase vertically over the grooves of spur-and-groove reef formations [136].

Physical attributes of reef formations also drive other hydrodynamic processes such as refrac-

tion, dissipation, and shoaling—attributes that dictate the force and momentum of flow within

the water column [137]. Therefore, the difference in sound spectral densities at each site dur-

ing the storm passage may relate to stronger circulatory flows of wave action funneling into

deep groove channels at WDR compared to ESB. Environmental changes during the hurri-

cane, such as a decrease in bottom temperature and barometric pressure, may have had mini-

mal impacts on the biophony as the presence of resident soniferous species immediately

following the storm provides an alternative perspective on pre-storm migration patterns of

fish and sharks seen in related studies [138, 139].

Hurricane impacts to coral reef soundscapes

There are very few examples of how coral reef soundscapes respond to hurricane impacts, and

of those, there is little quantitative information on specific impacts to soniferous reef fish

groups. In contrast with previous coral reef soundscape studies that observe temporal patterns

in the low frequency band across a wide frequency range (e.g. 0-3kHz), our results partitioned

the low band to distinguish between reef fish families such Serranidae, Holocentridae, and

Pomacentridae (represented by the L1 frequency band), and Haemulidae, Lutjanidae, Scari-

dae, and Sciaenidae (represented by the L2 frequency band). Nonetheless, the increased SPL at

low frequencies during the daytime, relative to the nighttime, can likely be viewed as the inte-

grated signature of multiple soniferous species with varying abundances and acoustic

behaviors.

Reef fish chorusing around lunar phases were more prominent at ESB than WDR, and the

presence of both the L1 and L2 frequency bands suggest the presence of a range of fish families

during the same lunar phase despite impacts from Hurricane Irma. Fish chorusing was some-

times indicative of spawning behavior, and essential spawning locations are commonly
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populated by multiple species [140–143]. In a related study, Hurricane Charley (category 4)

passed directly over Charlotte Harbor, Florida, USA yet nightly fish chorusing during spawn-

ing events yielded louder SPLs during and a few days after the hurricane than before, suggest-

ing fish distribution patterns or behavior may not have been impacted by the hurricane [144].

Although the magnitude of change in low frequency-band sound pressure levels within the

Irma observation windows (18- and 24-days) tested in this study were not significant,

increased spatial coverage of soundscape characterization within a site using multiple hydro-

phones may have revealed different results.

The magnitude of change in diurnal sound pressure levels varied for each frequency band

across the observation windows in this study. The L1 band at ESB was most resilient to change

as average daytime sound levels maintained louder sound levels than paired nighttime sound

levels during both observation windows. The L2 band also followed a similar diurnal trend as

the L1 band at both sites; however, diurnal patterns in ESB’s L2 band weakened post-hurricane

due to a decrease in daytime SPLs. This result differs from observations within the coral reefs

Puerto Rico, where nighttime chorusing is reported to have increased following the passage of

Hurricanes Irma and Maria [145, 146].

Diel migrations and nocturnal activity documented by acoustic tagging (telemetry), repre-

sented by the L2 band in this study, has been observed for grunts [147] and snappers [148,

149]. These species typically form mixed-species schools in refuge space underneath reef out-

croppings or ledges during daylight hours before migrating to forage on adjacent seagrass beds

around dusk [150–153]. The reductions in habitat quality (e.g. habitat degradation, turbidity)

following a hurricane may have provided enhanced opportunities for cryptic or nocturnal spe-

cies to forage or find mates during low visibility conditions and presumably low predation

risk, which could promote a relatively broad range of vocalizations among reef fish [146, 154].

Diurnal snapping shrimp activity, as characterized by the H-frequency band, appeared

resilient to the hurricane disturbance, with little change in snapping shrimp activity in the

weeks following the storm. The H band at ESB did not show any significant difference between

day-night SPLs before Irma, with only a small (~0.2 dB) difference developed in the weeks

after the storms as daytime SPL decreased slightly. Recent studies in Puerto Rico revealed

snapping shrimp inhabiting a shallow reef were silenced or masked during Hurricane Maria

and did not return to crepuscular peaks in sound production until several days after hurricane

passage [145, 146].

In this study, the coral reef soundscape post-Irma reflected the response of both fish and

invertebrate behavior (e.g. daily, diurnal chorusing patterns) to a large-episodic disturbance in

the form of a Category 4 Hurricane. Temporal patterns in the biophony at ESB appeared resil-

ient to the acoustic energy exposure, change in environmental variables, and physical damage

caused by Hurricane Irma. There are very few studies of how the soundscape of an ecosystem

responds to a major environmental disturbance. Gasc et al. [52] highlighted changes in acous-

tic composition of an isolated desert after a wildfire event in which not only was acoustic activ-

ity diminished at burned sites, but the soundscape also reflected a change in taxonomic species

distribution (e.g. insects, birds) and vegetative response (e.g. floral regeneration) post-distur-

bance. Their results are supported by traditional disturbance ecology studies where the result-

ing ecosystem reflected the severity of the disturbance and revealed which biological legacies

(i.e. taxa-specific traits of survivors, remaining habitat structure) contribute to the re-establish-

ment of an ecosystem [15, 155, 156].

In conclusion, this study characterized environmental variables associated with the passage

of a Category 4 hurricane on a coral reef, and the associated temporal patterns in the biophony

before, during, and after a natural disturbance. The short-term response of Eastern Sambo’s

coral reef soundscape appeared resilient to the acoustic energy exposure, change in
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environmental variables, and physical damage caused by Hurricane Irma. Underwater sound-

scapes can be a complimentary ecological tool useful in characterizing small, yet important

shifts in ecological communities during disturbances with localized impacts.

Supporting information

S1 Fig. Fish call spectrograms. Representative waveforms (top) and spectrograms (bottom)

for the L1 low frequency band 50-300Hz: (A) Serranid growl, (B) fish “chirps”; and the L2 low

frequency band 1200-1800Hz: (C) Haemulid “grunts”, (D) rapid aggregated “knocks”. Mean

amplitudes were calculated using a bandpass filter 30-3000Hz and a steepness of 0.65. Spectro-

grams were calculated using a window length of 2048Hz with 50% overlap.

(TIF)

S2 Fig. Illustration of trimmed sound pressure level time series. S1 Illustration of the

trimmed sound pressure level time series applied to a section of the pre-storm storm data from

Eastern Sambo site. The red line in panel A) shows the original broadband time series gener-

ated by calculating the root-mean-square (rms) sound pressure level in each 2-minute record-

ing collected every 20 minutes. The blue line shows the time series after eliminating those files

with the largest 2% of the amplitudes during the combined pre- and post-storm window.

These trimmed data were used in calculating daytime and nighttime means. The largest ampli-

tude spikes removed by this process are associated with files that contain one or more fish

bumps. These signals do not represent sound, but can have a major influence on the calculated

sound pressure levels. For example, the sound pressure level of the file shown in panel B) has a

value of 113 dB rms re 1 μPa when averaged over the first 90 seconds of the file; this is consis-

tent with expected background noise levels. However, when the series of fish bumps are

included in the calculation, the amplitude rises by more than 30 decibels. Panel C) shows an

individual bump signal. These signals are often clustered temporally, but typically occur in no

more than 1 or 2 files per day. The trimming of the time series also removes a handful of files

(3–4 per week) containing the sounds of a nearby small boat, as shown in panel D). The result-

ing trimmed time series better represents the underlying diurnal pattern of acoustic noise with

the environment and is used to assess patterns of biophony.

(TIF)
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11. Gardner TA, Côté IM, Gill JA, Grant A, Watkinson AR. Long-term region-wide declines in Caribbean

corals. science. 2003; 301(5635):958–60. https://doi.org/10.1126/science.1086050 PMID: 12869698

12. Hughes TP, Rodrigues MJ, Bellwood DR, Ceccarelli D, Hoegh-Guldberg O, McCook L, et al. Phase

shifts, herbivory, and the resilience of coral reefs to climate change. Current biology. 2007; 17(4):360–

5. https://doi.org/10.1016/j.cub.2006.12.049 PMID: 17291763

13. Duffy JE. Biodiversity and ecosystem function: the consumer connection. Oikos. 2002; 99(2):201–19.

https://doi.org/10.1034/j.1600-0706.2002.990201.x

PLOS ONE Hurricane impacts on a coral reef soundscape

PLOS ONE | https://doi.org/10.1371/journal.pone.0244599 February 24, 2021 20 / 27

https://doi.org/10.1111/gcb.13950
http://www.ncbi.nlm.nih.gov/pubmed/29055083
https://doi.org/10.1002/eap.1639
http://www.ncbi.nlm.nih.gov/pubmed/29035010
https://doi.org/10.1016/j.ecolmodel.2017.11.007
https://doi.org/10.1002/ecy.2838
http://www.ncbi.nlm.nih.gov/pubmed/31330045
https://doi.org/10.1371/journal.pone.0101204
http://www.ncbi.nlm.nih.gov/pubmed/24983747
https://doi.org/10.1098/rspb.2013.1993
http://www.ncbi.nlm.nih.gov/pubmed/24403321
https://doi.org/10.1002/ecs2.3066
https://doi.org/10.1146/annurev.ecolsys.35.021103.105711
https://doi.org/10.1098/rspb.2005.3276
https://doi.org/10.1098/rspb.2005.3276
http://www.ncbi.nlm.nih.gov/pubmed/16519241
https://doi.org/10.1126/science.265.5178.1547
http://www.ncbi.nlm.nih.gov/pubmed/17801530
https://doi.org/10.1126/science.1086050
http://www.ncbi.nlm.nih.gov/pubmed/12869698
https://doi.org/10.1016/j.cub.2006.12.049
http://www.ncbi.nlm.nih.gov/pubmed/17291763
https://doi.org/10.1034/j.1600-0706.2002.990201.x
https://doi.org/10.1371/journal.pone.0244599


14. Pandolfi JM, Bradbury RH, Sala E, Hughes TP, Bjorndal KA, Cooke RG, et al. Global trajectories of

the long-term decline of coral reef ecosystems. Science. 2003; 301(5635):955–8. https://doi.org/10.

1126/science.1085706 PMID: 12920296

15. Connell J. Disturbance and recovery of coral assemblages. Coral Reefs. 1997; 16:S101–S113.

https://doi.org/10.1007/s003380050246

16. Hatcher BG. Coral reef ecosystems: how much greater is the whole than the sum of the parts?. Coral

Reefs. 1997; 16(1):S77–91.

17. Nyström M, Folke C, Moberg F. Coral reef disturbance and resilience in a human-dominated environ-

ment. Trends in ecology & evolution. 2000; 15(10):413–7. https://doi.org/10.106/S0169-5347(00)

01948-0
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