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A B S T R A C T

Renal cell carcinoma (RCC) is relatively resistant to chemotherapy and radiotherapy. Clear cell RCC (ccRCC)
accounts for the majority of RCC, which have mutations or epigenetic silencing of the von Hippel–Lindau (VHL)
gene. VHL-positive Caki-2 cells are killed by an endogenous anticancer substance, 15-deoxy-Δ12, 14-pros-
taglandin J2 (15d-PGJ2). The MTT reduction assay reflecting mitochondrial succinate dehydrogenase activity
was employed for assessment of cell viability. We confirmed anticancer activities of camptothecin (topoi-
somerase I inhibitor), etoposide (topoisomerase II inhibitor), doxorubicin (topoisomerase II inhibitor) in VHL-
positive Caki-2 cells. Combination of topoisomerase inhibitors with 15d-PGJ2 exhibited the synergistic effect in
VHL-positive Caki-2 cells. However, 15d-PGJ2 did not increase cytotoxicities of topoisomerase inhibitors on
VHL-negative 786-O cells. In addition, the 15d-PGJ2-enhanced antitumor activity of topoisomerase inhibitors
was detected in neither VHL-positive nor VHL-negative RCC4 cells. Our finding indicated that 15d-PGJ2 en-
hanced the antitumor activity of topoisomerase inhibitors independently of VHL.

1. Introduction

Renal cell carcinomas (RCCs) account for approximately 2% of adult
carcinomas and arise from renal tubular epithelial cells that en-
compasses 85% of all primary renal neoplasms. RCCs are classified into
several types such as clear cell RCC (ccRCC) accounting for the majority
of RCC [1], papillary RCC and chromophobe RCC. The common genes
involved in the pathogenesis of ccRCC include von Hippel–Lindau (VHL)
[2]. VHL can be altered and transmitted in an autosomal dominant
fashion (VHL disease) or in a sporadic manner. Despite extensive eva-
luation of many different treatment modalities, advanced metastatic
RCC remains highly resistant to radiotherapy and chemotherapy [3].

To overcome the resistance of RCCs to chemotherapy, we have
studied combinations of chemotherapy with anti-cancer agents.
Responsiveness of RCCs such as VHL-positive Caki-2 cells for conven-
tional anticancer agents such as camptothecin (CPT), etoposide (VP-16)
and doxorubicin (DOX) was lower than that of other types of cancer
such as Hela cells [4–9]. CPT is a DNA topoisomerase I inhibitor,
whereas VP-16 and DOX are DNA topoisomerase II inhibitors. Pre-
viously, we have reported that the anti-tumor activity of CPT was in-
creased by 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), which is an
endogenous anticancer agent [7]. Although synergistic effect of 15d-
PGJ2 and VP-16 on Caki-2 cells could not be detected in the absence of

serum [7], 15d-PGJ2 elevated the anti-tumor activity of VP-16 in the
presence of serum [8]. Peroxisome proliferator-activated receptor-γ
(PPARγ) is a nuclear receptor for 15d-PGJ2 [10,11]. However, it does
not mediate the cytotoxicity of 15d-PGJ2 in RCCs [12,13]. Furthermore,
synergistic toxicities of 15d-PGJ2 with topoisomerase inhibitors were
also independent from PPARγ.

In cancer, the phosphoinositide 3-kinase (PI3K)/Akt and mTOR
pathway is activated via multiple mechanisms [14]. Since the PI3K
signaling is hyperactivated in RCCs, this pathway is one of targeted
therapies [15]. 15d-PGJ2 inhibits proliferation of primary neurons
[16–18] and neuroblastoma x DRG neuron hybrid cell line N18D3 [19]
via down-regulating PI3K/Akt pathway. Previously, we have reported
that the PI3K/Akt signaling mediated the cytotoxicity of 15d-PGJ2 [13].
Although a PI3K inhibitor mimicked the cytotoxicity of 15d-PGJ2, it
was not involved in the synergistic effect of 15d-PGJ2 on the anti-tumor
activity of DOX [9]. VHL has been reported to be involved in the sy-
nergy between 5-aza-2′-deoxycytidine and paclitaxel [20]. To ascertain
whether VHL was involved in the synergy between topoisomerase in-
hibitors and 15d-PGJ2, we compared the synergism of anti-cancer
agents with 15d-PGJ2, in VHL-positive cell lines (Caki-2, ACHN and
RCC4 (+)) and VHL-negative cell lines (786-O cells and RCC4(-)).
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Fig. 1. Effects of 15d-PGJ2 on the anti-cancerous activities of topoisomerase inhibitors in 786-O cells. 786-O cells were treated with CPT (A), VP-16 (B), DOX (C) or
15d-PGJ2 (D) at the indicated concentrations for 24 h. Cell viabilities were determined by MTT-reducing activity. Data are expressed as means± SE. (n=3).
*P < 0.05, compared with control, **P < 0.01, compared with control. (E) 786-O cells were treated with 1 μM CPT, 5 μM VP-16 or 10 μM DOX in the absence (open
column) or presence (closed column) of 20 μM 15d-PGJ2 for 24 h. Cell viabilities were determined by MTT-reducing activity. Data are expressed as means± SE.
(n=6). *P < 0.05, compared with control, **P < 0.01, compared with control. (F) 786-O cells were treated with 1 μM CPT, 5 μM VP-16 or 10 μM DOX in the
absence or presence of 20 μM 15d-PGJ2 for 24 h. Morphologies were photographed by phase contrast. Scale bar = 100 µm.
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2. Materials and methods

2.1. Cell lines and cell culture

Caki-2, ACHN and RCC4(+) cells are the VHL-positive human RCC
cell lines. 786-O and RCC4(-) cells are the VHL-negative human RCC
cell lines. 786-O, ACHN, and Caki-2 cells were purchased from Summit
Pharmaceuticals International (Tokyo, Japan). RCC4(+) and RCC4(-)
cells were obtained from KAC Co. Ltd. (Kyoto, Japan). The Caki-2 and
786-O cells were routinely cultured in RPMI-1640 medium supple-
mented with 10% fetal bovine serum, 50mg/ml penicillin G and
50mg/ml streptomycin (Invitrogen, Tokyo, Japan), at 37 °C in a 5%
CO2–95% room air. The RCC4(+) and RCC4(-) cells were routinely
cultured in Dulbecco's Modified Eagle's Medium (DMEM) supplemented
with 10% fetal bovine serum, 50mg/ml penicillin G and 50mg/ml
streptomycin (Invitrogen, Tokyo, Japan), at 37 °C in a 5% CO2–95%
room air.

2.2. Reagents

15d-PGJ2 (ab141717) was obtained from Abcam (Tokyo, Japan).
Camptothecin (CPT), doxorubicin (DOX), etoposide (VP-16) and RPMI-
1640 were purchased from FUJIFILM Wako Pure Chemical
Corporation, Ltd. (Osaka, Japan). 3-(4,5-dimethylthiazol-2-yl)-2,5-di-
phenyl tetrazolium bromide dye (MTT) was purchased from Dojindo
Laboratories (Kumamoto, Japan). The protein concentration was mea-
sured using the bicinchoninic acid (BCA) protein assay reagent obtained
from Takara (Shiga, Japan). The principle of the assay is based on
monovalent copper ions interact with a BCA reagent to form a violet
reactive complex, which shows a strong absorbance at 562 nm. The
peptide bonds in the protein reduce copper ions from Cu2+ to Cu+. The
quantity of reduced Cu2+ is proportional to the amount of protein. The
sample solution was added the BCA reagent and incubated at 37 °C for
30min. The colorimetric variations were analyzed by spectro-
photometer (iMark Microplate Reader, Bio Rad Laboratories, Hercules,
CA, USA) at 562 nm. The experiments were analyzed in triplicate.

2.3. Cell viability analysis

MTT reduction assay reflecting mitochondrial succinate dehy-
drogenase activity was employed. The cells were seeded on a 96-well
tissue culture plate at 10,000 cells/cm2 and incubated for 24 h prior to
drug exposure. The cells were incubated with 15d-PGJ2 and doxor-
ubicin at the indicated concentrations. After 20 h or 24 h, the cells were
incubated with MTT solution (0.1mg/ml in phosphate-buffered saline)
for an additional 3 h at 37 °C. The MTT solution was then aspirated off.
To dissolve the formazan crystals formed in viable cells, 100 μl di-
methyl sulfoxide was added to each well. Absorbance was measured at
570 nm using a spectrophotometer (iMark Microplate Reader, Bio-Rad
Laboratories, Hercules, CA, USA).

2.4. Statistical analysis

Data are given as means± SE (n= numbers of observations). We
performed two experiments at least on different days, and confirmed
their reproducibility. We analyzed　observations obtained on the same
day, and presented the typical experimental results among independent
ones on different days to minimize experimental errors. Data were
statistically analyzed with the Student's t-test for comparison with the
control group. Data on various drugs were statistically analyzed by two-
way ANOVA followed by Dunnett's test for comparison between the
groups.

3. Results

3.1. Effects of 15d-PGJ2 on the anti-cancerous agents in Caki-2 cells

Previously, we have reported synergistic effects of 15d-PGJ2 and
topoisomerase inhibitors [7–9]. In VHL-positive Caki-2 cells, CPT, VP-
16, DOX and 15d-PGJ2 induced cell death via apoptosis in a con-
centration-dependent manner. At their sublethal concentrations, cas-
pase-3 activity was markedly elevated by the combination of 15d-PGJ2
and topoisomerase inhibitors. As shown in supplemental data 1, we
confirmed that 15d-PGJ2 significantly enhanced the cytotoxicity of to-
poisomerase inhibitors.

3.2. Effects of 15d-PGJ2 on the anti-cancerous agents in 786-O cells

To ascertain whether topoisomerase inhibitors and 15d-PGJ2 sy-
nergistically exhibit the pharmacological effects on the VHL-negative
ccRCC as well as the VHL-positive ccRCC, Caki-2 cells, 786-O cells were
used as the VHL-negative ccRCC. In 786-O cells, CPT (Fig. 1A), VP-16
(Fig. 1B) or DOX (Fig. 1C) induced cell death in a concentration-de-
pendent manner. As shown in Fig. 1D, 15d-PGJ2 also induced cell death
in a concentration-dependent manner. We evaluated the synergism of
0.05 μM CPT, 5 μM VP-16 or 10 μM DOX with 20 μM 15d-PGJ2 by MTT-
reducing activity (Fig. 1E). Although 15d-PGJ2 decreased the MTT-re-
ducing activity and the cell number (Fig. 1F) significantly, it did not
increase anticancer activities of the above three drugs significantly. At
10 μM, CPT, VP-16 and DOX degenerated morphologies slightly, mod-
erately and severely, respectively. However, these degenerative
morphologies were not deteriorated by 15d-PGJ2 (Fig. 1F). Although
various concentrations of drugs were tested, we have not yet succeeded
in detecting synergistic effect of CPT, VP-16 and DOX with 15d-PGJ2.
Thus, the synergism of topoisomerase inhibitors and 15d-PGJ2 was not
detected in the VHL-negative ccRCC, suggesting that VHL might be
involved in the combinational effect of topoisomerase inhibitors and
15d-PGJ2.

3.3. Effects of 15d-PGJ2 on the anti-cancerous agents in RCC4 (-) cells

To confirm the result obtained from the VHL-negative 786-O cells,
RCC4 (-) was used as another VHL-negative RCC. In RCC4 (-) cells, CPT
(Fig. 2A), VP-16 (Fig. 2B) or DOX (Fig. 2C) induced cell death in a
concentration-dependent manner. As shown in Fig. 2D, 15d-PGJ2 in-
duced cell death in a concentration-dependent manner. We evaluated
the synergism of 0.05 μM CPT, 20 μM VP-16 or 1 μM DOX with 20 μM
15d-PGJ2 by the MTT-reducing activity (Fig. 2E) and the morphological
criteria (Fig. 2F). CPT and VP-16 decreased the MTT-reducing activity
to around 90% of control, whereas 15d-PGJ2 and DOX did it to around
70% of control. 15d-PGJ2 did not increase the anticancer activities of
the above three drugs. Morphologies of RCC4(-) were similar to those of
RCC4(+). Although cell densities appeared to be reduced by the four
drugs, morphologies of RCC4(+) were not deteriorated by them sig-
nificantly. Although various concentrations of drugs were tested, we
have not yet detected synergistic effect of CPT, VP-16 and DOX with
15d-PGJ2. Thus, 15d-PGJ2 did not increase the anti-cancerous activities
of topoisomerase inhibitors in the two VHL-negative RCCs.

3.4. Effects of 15d-PGJ2 on the anti-cancerous agents in RCC4 (+) cells

To confirm the plausible involvement of VHL in the combinational
effect of topoisomerase inhibitors and 15d-PGJ2, RCC4(+) and RCC4(-)
were evaluated as another VHL-positive and VHL-negative RCCs, re-
spectively. In RCC4(+) cells, CPT (Fig. 3A), VP-16 (Fig. 3B) or DOX
(Fig. 3C) induced cell death in a concentration-dependent manner. As
shown in Fig. 3D, 15d-PGJ2 induced cell death in a concentration-de-
pendent manner. We evaluated the synergism of 0.05 μM CPT, 20 μM
VP-16 or 1 μM DOX with 20 μM 15d-PGJ2 by the MTT-reducing activity
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Fig. 2. Effects of 15d-PGJ2 on the anti-cancerous activities of topoisomerase inhibitors in RCC4 (-) cells. RCC4 (-) cells were treated with CPT (A), VP-16 (B), DOX (C)
or 15d-PGJ2 (D) at the indicated concentrations for 24 h. Cell viabilities were determined by MTT-reducing activity. Data are expressed as means± SE. (n=6).
*P < 0.05, compared with control, **P < 0.01, compared with control. (E) RCC4 (-) cells were treated with 0.05 μM CPT, 20 μM VP-16 or 1 μM DOX in the absence
(open column) or presence (closed column) of 20 μM 15d-PGJ2 for 24 h. Cell viabilities were determined by MTT-reducing activity. Data are expressed as
means± SE. (n=6). **P < 0.01, compared with control. (F) RCC4 (-) cells were treated with 0.05 μM CPT, 20 μM VP-16 or 1 μM DOX in the absence or presence of
20 μM 15d-PGJ2 for 24 h. Morphologies were photographed by phase contrast. Scale bar = 100 µm.
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Fig. 3. Effects of 15d-PGJ2 on the anti-cancerous activities of topoisomerase inhibitors in RCC4 (+) cells. RCC4 (+) cells were treated with CPT (A), VP-16 (B), DOX
(C) or 15d-PGJ2 (D) at the indicated concentrations for 24 h. Cell viabilities were determined by MTT-reducing activity. Data are expressed as means± SE. (n=3).
*P < 0.05, compared with control, **P < 0.01, compared with control. (E) RCC4 (+) cells were treated with 0.05 μM CPT, 20 μM VP-16 or 1 μM DOX in the
absence (open column) or presence (closed column) of 20 μM 15d-PGJ2 for 24 h. Cell viabilities were determined by MTT-reducing activity. Data are expressed as
means± SE. (n=6). **P < 0.01, compared with control. ##P < 0.01, compared with each topoisomerase inhibitor alone. (F) RCC4 (+) cells were treated with
0.05 μM CPT, 20 μM VP-16 or 1 μM DOX in the 0.05 absence or presence of 20 μM 15d-PGJ2 for 24 h. Morphologies were photographed by phase contrast. Scale bar
= 100 µm.
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Fig. 4. Effects of 15d-PGJ2 on the anti-cancerous activities of topoisomerase inhibitors in ACHN cells. ACHN cells were treated with CPT (A), VP-16 (B), DOX (C) or
15d-PGJ2 (D) at the indicated concentrations for 24 h. Cell viabilities were determined by MTT-reducing activity. Data are expressed as means± SE. (n=3).
*P < 0.05, compared with control, **P < 0.01, compared with control. (E) ACHN cells were treated with 0.5 μM CPT, 50 μM VP-16 or 0.5 μM DOX in the absence
(open column) or presence (closed column) of 30 μM 15d-PGJ2 for 24 h. Cell viabilities were determined by MTT-reducing activity. Data are expressed as
means± SE. (n= 6). **P < 0.01, compared with control. ##P < 0.01, compared with each topoisomerase inhibitor alone. (F) ACHN cells were treated with
0.5 μM CPT, 50 μM VP-16 or 0.5 μM DOX in the absence or presence of 30 μM 15d-PGJ2 for 24 h. Morphologies were photographed by phase contrast. Scale bar
= 100 µm.

H. Koma et al. Biochemistry and Biophysics Reports 18 (2019) 100608

6



(Fig. 3E) and the morphological criteria (Fig. 3F). Although these four
anti-cancer agents did not alter the morphology of RCC4(+) clearly,
they exhibited cytotoxicities slightly, but significantly. 15d-PGJ2 in-
creased the anticancer activity of CPT additively, whereas it did not
those of the two topoisomerase II inhibitors. In spite of testing various
concentrations of drugs, we have not yet succeeded in detecting sy-
nergistic effect of CPT, VP-16 and DOX with 15d-PGJ2. Contrary to the
result obtained from the VHL-positive Caki-2 cells, 15d-PGJ2 did not
enhanced the anti-cancer activity of topoisomerase inhibitors sy-
nergistically in the VHL-positive RCC4(+) cells.

3.5. Effects of 15d-PGJ2 on the anti-cancerous agents in ACHN cells

To confirm the plausible involvement of VHL in the combinational
effect of topoisomerase inhibitors and 15d-PGJ2, ACHN cells were
evaluated as another VHL-positive RCCs. In ACHN cells, CPT (Fig. 4A),
VP-16 (Fig. 4B) or DOX (Fig. 4C) induced cell death in a concentration-
dependent manner. As shown in Fig. 4D, 15d-PGJ2 induced cell death in
a concentration-dependent manner. We evaluated the synergism of
0.5 μM CPT, 50 μM VP-16 or 0.5 μM DOX with 30 μM 15d-PGJ2 by the
MTT-reducing activity (Fig. 4E) and the morphological criteria
(Fig. 4F). Although these four anti-cancer agents did not alter the
morphology of ACHN clearly, they exhibited cytotoxicities slightly, but
significantly. 15d-PGJ2 did not increase the anticancer activities of the
three topoisomerase inhibitors. In spite of testing various concentra-
tions of drugs, we have not yet succeeded in detecting synergistic effect
of CPT, VP-16 and DOX with 15d-PGJ2. Contrary to the result obtained
from the VHL-positive Caki-2 cells, 15d-PGJ2 did not enhanced the anti-
cancer activity of topoisomerase inhibitors synergistically in the VHL-
positive ACHN cells.

4. Discussion

Previously, we have reported 15d-PGJ2 as the endogenous antic-
ancer agent in Caki-2 cells [7–9]. Neither nuclear receptor PPARγ nor
membrane receptor CRTH2 mediate the cytotoxicity of 15d-PGJ2. 15d-
PGJ2 also exhibited anti-cancerous effects in other RCCs such as 786-O,
RCC4(-), RCC4(+) and ACHN. Similarly to Caki-2 cells, RCC4(+),
RCC4(-) and 786-O cells are small polygonal growing cells forming
small aggregates. 15d-PGJ2 targets the cytoskeleton protein, actin, re-
sulting in alteration of cell morphologies [21]. Actin is one of adapter
proteins, which mediates the intracellular domain of integrin bind to
the cytoskeleton. Since this integrin-adapter protein (actin) -cytoske-
leton complex forms the basis of a focal adhesion, it was likely that 15d-
PGJ2 increased protrusions and made focal adhesion clear.

In the present study, we confirmed that 15d-PGJ2 enhanced the
anti-tumor activity of topoisomerase I inhibitor CPT (plant alkaloids)
[7], topoisomerase II inhibitors VP-16 (plant alkaloids) [8] and DOX
(antibiotics) [9]. Morphological alterations could not be detected at
sublethal concentrations of CPT (1 μM), VP-16 (70 μM) and DOX (1 μM)
in Caki-2 cells. Rounding cell shape and shrinking cell bodies were
markedly increased by the combination of these topoisomerase in-
hibitors with 15d-PGJ2. However, PPARγ was not involved in the en-
hancement of 15d-PGJ2 on the anti-tumor activities of topoisomerase
inhibitors [7–9]. Capase-3 is significantly activated by either 15d-PGJ2
alone or each topoisomerase inhibitor alone. The capase-3 activity is
elevated synergistically by their combination [7–9]. Thus, 15d-PGJ2
potentiated the pharmacological effect of topoisomerase inhibitors in
Caki-2 cells.

VHL is a tumor suppressor protein and localized in the nucleus or
cytoplasm. VHL forms a protein complex, which determines ubiquitin-
dependent proteolysis of large cellular proteins. When normal oxygen
levels are present, the complex binds to, and targets, α subunits of
hypoxia-inducible factors (HIF) 1 and 2 for ubiquitin-mediated de-
gradation of protein [22]. Caki-2 cell line has been established from a
primary tumor of the kidney. Although it has been primarily defined as

the ccRCC cell line, it expresses wild-type pVHL. However, a low ex-
pression of HIF-1α and no expression of HIF-2α is detected in Caki-2
cell line [23]. 786-O has many characteristics of ccRCC and is defective
in VHL expression, as it harbors mutated VHL [24]. In 786-O cells,
cytotoxicities of topoisomerase I and II inhibitors were detected. Al-
though 15d-PGJ2 induced cell death in 786-O cells, it did not potentate
the anti-tumor activity of topoisomerase inhibitors. Another cell line is
RCC4, a VHL mutant derived from a primary tumor widely used as a
model for VHL-dependent mechanisms, with a commercially available
counterpart cell line with restored wild-type gene [22]. Cytotoxicities of
CPT, VP-16 and DOX were detected in the two RCC4(-) and RCC4(+)
cells. However, 15d-PGJ2 enhanced the anti-tumor activity of these
topoisomerase inhibitors in neither RCC4(-) nor RCC4(+) cells. Thus,
the pharmacological synergism of 15d-PGJ2 and topoisomerase in-
hibitors were not depend on the state of VHL.

Previously, we have reported that the PI3K/Akt signaling played an
important role in the cytoprotection and proliferation of RCCs [13].
15d-PGJ2 markedly decreased the phosphorylation of Akt. The Akt in-
hibitor showed cytotoxicity with a low IC50 value, suggesting that 15d-
PGJ2 exerted cytotoxicity via the inactivation of Akt. The PI3K inhibitor
mimicked the anti-tumor activity of 15d-PGJ2. However, we could not
detect the synergistic effect between DOX and PI3K inhibitor. In addi-
tion, the PI3K inhibitor did not enhanced cytotoxicities of another to-
poisomerase II inhibitor, etoposide, and a topoisomerase inhibitor I,
camptothecin. Neither PPARγ nor PI3K was involved in the 15d-PGJ2-
enhanced chemosensitivity of Caki-2 cells to topoisomerase inhibitors.
Further studies are required to identify targets for 15d-PGJ2, which
reduces the chemoresistance of topoisomerase inhibitors.

5. Conclusion

In the present study, we ascertained whether VHL was involved in
the synergy between topoisomerase inhibitors and 15d-PGJ2 or not. We
demonstrated that 15d-PGJ2 enhanced anticancer activities in-
dependently of VHL status in renal cell carcinomas.
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