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Abstract

Background: Disulfiram and metals inactivate key oncoproteins resulting in anti-neoplastic activity. The goal of this
study was to determine the maximum tolerated dose of copper when administered with disulfiram in patients with
advanced solid tumors and liver involvement.

Methods: Disulfiram 250 mg was administered daily in 28-day cycles. Four doses of copper gluconate were tested
(2, 4, 6, and 8 mg of elemental copper) in a standard 3 + 3 dose escalation design. Patients were evaluated for dose
limiting toxicities and response. Protein S-glutathionylation was evaluated as a pharmacodynamic marker.

Results: Twenty-one patients were enrolled and 16 patients were evaluable for dose limiting toxicities. Among the
21 patients, there was a median of 4 lines of prior chemotherapy. Five Grade 3 toxicities were observed (anorexia,
elevated aspartate aminotransferase or AST, elevated alkaline phosphatase, fever, and fatigue). Response data was
available for 15 patients. Four patients had stable disease with the longest duration of disease control being 116
days. The median duration of treatment for evaluable patients was 55 days (range 28–124). Reasons for
discontinuation included functional decline, disease progression, and disease-associated death. Increased S-
glutathionylation of serum proteins was observed with treatment.
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Conclusion: Disulfiram 250 mg daily with copper gluconate (8 mg of elemental copper) was well-tolerated in
patients with solid tumors involving the liver and was not associated with dose limiting toxicities. While temporary
disease stabilization was noted in some patients, no objective responses were observed. Treatment was associated
with an increase in S-glutathionylation suggesting that this combination could exert a suppressive effect on cellular
growth and protein function.

Trial registration: NCT00742911, first posted 28/08/2008.
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Background
Disulfiram is a drug best known for the treatment of
alcoholism. Its anti-cancer properties were first re-
ported in the early 1960s [1]. As a lipophilic dithio-
carbamate, disulfiram crosses the cell membrane and
complexes with metal ions [2]. These complexes dis-
rupt vital signaling pathways through the formation of
reactive oxygen species [3–10], interference with
DNA expression [8, 11–14], anti-proteasome activity
[15–22], anti-angiogenesis properties [10, 23, 24], and
disruption of mitochondrial membrane permeability
and polarization [25, 26]. Apoptosis in cancer cells is
induced [14, 16, 20–22, 27–29] via activation of ERK
and JNK pathways and p38 stress-activated protein ki-
nases [8, 30, 31]. Copper supplementation of growth
media increases pro-apoptotic [29] and anti-
proteosome [16] activities of disulfiram to a greater
extent than other metals.
Disulfiram-metal complexes can also re-sensitize

tumor cells to chemotherapy by inhibiting the multidrug
resistance P-glycoprotein [32–34] or acetaldehyde de-
hydrogenase, which can be increased in cancer cells [35].
Re-sensitization to 5-fluorouracil [36], cisplatin [37],
gemcitabine [38], doxorubicin [39], and temozolomide
[40] has been observed along with possible potentiation
of cytotoxicity [38, 40, 41].
This Phase 1 trial was designed to determine the

safety of disulfiram when combined with copper glu-
conate in treating patients with refractory malignan-
cies metastatic to the liver. Early phase clinical trials
of disulfiram-metal combinations have demonstrated a
favorable safety profile across a variety of doses and
schedules (Supplementary Table 1) [42–46]. The liver
is a common site of metastasis for a variety of solid
tumors, most commonly adenocarcinomas of the
colon, pancreas, or breast [47]. Hepatic metastases
portend a poor prognosis and there is a need for
novel therapies to improve outcomes in this popula-
tion. Hepatic antineoplastic activity is supported by a
report of a patient with stage IV ocular melanoma
with hepatic metastases who obtained a clinical re-
mission for 53 months after treatment with zinc glu-
conate and disulfiram [11].

Methods
Patient selection
Patients 18 years of age or older with solid tumors, hep-
atic metastases, and an expected survival of at least 3
months were eligible. Patients were to have exhausted or
refused standard therapies for their disease. Patients had
to refrain from alcoholic beverages while on study and
could not be receiving other chemotherapy while en-
rolled. Baseline aspartate aminotransferase (AST) and
alanine transaminase (ALT) levels less than 5 times the
upper limit of normal, normal serum copper levels, and
serum ceruloplasmin greater than 17mg/dL were re-
quired. Of note, the trial was amended to change the eli-
gibility criteria for baseline AST and ALT from less than
2.5 times the upper limit of normal to less than 5 times
the upper limit of normal. With this being a trial that in-
volves liver metastasis, it is expected that patients will
have elevated liver enzymes in this setting. As a result of
the change in eligibility, the dose limiting toxicity (DLT)
criteria were amended at the same time to exclude
Grade 3 or 4 liver function abnormalities as DLT if the
patient had Grade 3 or 4 liver function abnormalities at
baseline. These patients were closely monitored to see if
any trend could be seen relating to study drug adminis-
tration. This amendment did not impact any previous
patient enrollments.
Exclusion criteria included active liver disease other

than metastatic cancer, Eastern Cooperative Oncology
Group (ECOG) performance status of 3 or 4, pregnant
or nursing women, and women of childbearing potential
who were not using contraception. Patients with a family
history of Wilson’s disease or hemochromatosis were ex-
cluded as were those taking medications metabolized by
cytochrome P450 2E1 or those whose metabolism is
likely influenced by disulfiram.

Study design and treatment
Patients were enrolled between 2008 and 2011 at the
University of Utah Huntsman Cancer Institute. The
study was conducted under Investigational New Drug
(IND) #100,937 and approved by the University of Utah
Institutional Review Board. The study was designed as a
standard 3 + 3 dose escalation to determine the
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maximum tolerated dose (MTD) or maximum adminis-
tered dose (MAD) of copper gluconate with a fixed dose
of disulfiram. Toxicities were Graded according to the
Cancer Therapy Evaluation Program Common Termin-
ology Criteria for Adverse Events Version 3. To be eva-
luable for dose-limiting toxicity (DLT) assessment,
patients were required to complete 28 days of treatment.
A DLT was defined as Grade 3 or higher nausea, persist-
ent Grade 4 neutropenia, febrile neutropenia, Grade 4
thrombocytopenia or Grade 3 thrombocytopenia with
bleeding or transfusion needs, Grade 4 anemia, or any
Grade 4 non-hematologic toxicity.
Patients were assigned to one of 4 dose cohorts of

copper gluconate with an 8mg maximum dose of elem-
ental copper (Table 1) together with disulfiram at a fixed
dose of 250 mg orally per day. Disulfiram was prescribed
from commercial sources. Copper gluconate was ob-
tained from Twin Labs (American Fork, UT). Disulfiram
was taken with the evening meal separate from copper
gluconate in the morning to minimize gastrointestinal
toxicity. 28-day treatment cycles continued until toxicity
or disease progression. All patients, including those who
discontinue protocol therapy early, were followed for re-
sponse until progression and for survival for up to 2
years from the date of registration.

Outcomes
The primary outcome was the safety, tolerability, and
MTD of disulfiram and copper gluconate in patients
with hepatic metastases. Secondary outcomes included
treatment response using RECIST v.1.0 criteria (data
analysis occurred prior to RECIST v. 1.1) and a qualita-
tive assessment of the induction of S-glutathionylation
in proteins of circulating leukocytes. Treatment response
was assessed with measurement of tumor markers with
each cycle and CT scans of the chest, abdomen, and pel-
vis which were obtained after every two cycles of treat-
ment to evaluate response.

Statistical analysis
Statistical analysis was descriptive as the power of a 3 +
3 study to accurately determine the real rate of toxicity
at a given dose is limited. Response rates and correlative
studies likewise involved small sample numbers of

different malignancies and thus these outcome measures
are also descriptive in nature.

Pharmacodynamics
We hypothesized that this combination would inactivate
proteins important for malignant cell growth through S-
glutathionylation of cysteine residues on proteins. S-glu-
tathionylation assays were performed on plasma proteins
at baseline and on day 8 of treatment. Plasma proteins
were isolated from the peripheral blood and 30 mcg of
protein were separated by SDS-PAGE under non-
reducing conditions. Following transfer, S-glutathionyla-
tion levels were evaluated using Western blotting proce-
dures with primary anti-glutathione mouse monoclonal
antibody (ViroGen, Watertown, MA). Loading control
was performed with a mouse anti-human IgG (Sigma-
Aldrich, St. Louis, MO).

Results
Patients
Twenty-one patients were enrolled and treated. Sixteen
were evaluable for DLTs. Of those, 11 were women.
Thirteen patients were Caucasian, two were Native
American/Alaska Native, and 1 was Asian. Five patients
were not evaluable because they received less than 28
days of treatment (Supplementary Table 2). The median
age of the evaluable patients was 58 (range 27–81).
Tumor types included pancreatic adenocarcinoma, colo-
rectal adenocarcinoma, non-small cell lung carcinoma,
cutaneous and ocular melanoma, thymic carcinoma, and
breast carcinoma. The median number of prior lines of
treatment was 4 (range 0–12) with 11 of the 16 evalu-
able patients also having received prior radiation
(Table 2).

Safety
No DLTs were observed. Overall, there were 53 adverse
events felt to be possibly, probably, or definitely related
to study treatment in the evaluable patients. These are
summarized in Table 3. The most common adverse
events were abnormalities in liver function tests, fatigue,
nausea, dysgeusia, and vomiting. The majority of events
(n = 30) occurred in Cohort 4 including three of the 5
Grade 3 events. These included elevated AST and alka-
line phosphatase, fatigue, anorexia, and fever. There
were no Grade 4 or 5 events attributed to study
treatment.
In Cohort 1, three of the 7 patients enrolled were eva-

luable. Reasons for lack of evaluation included medica-
tion non-adherence in 1 patient and rapid disease
progression in 3 patients.
Three patients in Cohort 2 were evaluable. Two Grade

3 adverse events were recorded that were possibly re-
lated to the study treatment and included elevated

Table 1 Dose escalation scheme

Cohort Copper Gluconate Disulfiram

1 2 mga 250mg

2 4mg

3 6mg

4 8mg
amg milligrams of elemental copper
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alkaline phosphatase and AST. The Grade 3 alkaline
phosphatase elevation event occurred 1month after
treatment initiation in a patient with extensive hepatic
involvement. This improved after discontinuation; how-
ever, this may have reflected a treatment response as the
patient also had decreasing tumor markers with the next
line of therapy.
Three of the 4 patients in Cohort 3 were evaluable. No

Grade 3 or higher events occurred within this cohort.
One patient was not evaluable due to death related to
disease progression 18 days after starting treatment.
Seven patients were enrolled in Cohort 4. One patient

experienced Grade 3 fatigue and anorexia. This patient
was also noted to have Grade 2 dysgeusia that likely
contributed to decreased oral intake. These side effects
resolved within 2 weeks of treatment discontinuation for
disease progression. Grade 3 fever was experienced by
one patient in this Cohort. In addition to the above, re-
versible and low-Grade neurologic side effects were ob-
served including memory impairment (n = 1) and
headache (n = 1) in Cohort 1, and dizziness (n = 3) and
auditory changes (n = 1) in Cohort 4.
There were five Grade 1–2 adverse events recorded

among non-evaluable patients including a Grade 2 aller-
gic reaction to disulfiram occurring in Cohort 1. All
other events occurred in Cohort 2.

Efficacy
Response data was available for 15 of the 16 evaluable
subjects (Table 4). Patient 9 died prior to first imaging

Table 2 Characteristics of evaluable patients

ID Cohort Age Sex Racea Primary Tumor Type Prior Treatmentsb

1 1 63 M NA Pancreas 3

2 34 M NA Colon 6

3 62 F C Lung 5

4 2 57 F C Melanoma (Ocular) 1

5 27 M C Thymic 3

6 44 F C Breast 12

7 3 66 F C Melanoma (Cutaneous) 1

8 70 F C Melanoma (Cutaneous) 1

9 70 M C Melanoma (Cutaneous) 1

10 4 43 F C Breast 7

11 59 F C Melanoma (Ocular) 0

12 57 M C Melanoma (Cutaneous) 5

13 81 F C Melanoma (Ocular) 0

14 57 F C Breast 6

15 61 F A Breast 9

16 53 F C Breast 6
a C Caucasian, NA Native American or Alaska Native, A Asian
b Including chemotherapy and endocrine therapy. ID identification, M male, F female

Table 3 Common toxicities attributable to study treatment in
evaluable patients

Event Grade 1 Grade 2 Grade 3 Total

Elevated AST 3 2 1 6

Fatigue 4 1 1 6

Elevated ALT 3 1 0 4

Nausea 3 1 0 4

Taste changes 2 1 0 3

Vomiting 2 1 0 3

Dizziness 3 0 0 3

Elevated alkaline phosphatase 1 1 1 3

Anorexia 1 0 1 2

Hyperbilirubinemia 1 1 0 2

Thrombocytopenia 1 1 0 2

Hypocalcemia 1 0 0 1

Hypokalemia 1 0 0 1

Hyponatremia 1 0 0 1

Hypoalbuminemia 1 0 0 1

Constipation 1 0 0 1

Flatulence 1 0 0 1

Cough 1 0 0 1

Fever 0 0 1 1

Headache 1 0 0 1

Hypertension 1 0 0 1

Memory impairment 1 0 0 1

Pain (leg) 1 0 0 1
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assessment. Eleven patients had disease progression
and 4 had stable disease (mean 96 days, range 42–
124). One patient in Cohort 3 was characterized as
having symptomatic progression without evidence of
progression per RECIST and was categorized as hav-
ing stable disease. No partial or complete responses
were observed. One heavily pretreated patient with
colorectal cancer had disease stabilization for 124 days
in Cohort 1.

Pharmacodynamics
Pharmacodynamic data were available for 9 patients. In-
creased serum protein S-glutathionylation was observed
in 6 patients (Fig. 1). Two of the patients had no change
in serum protein S-glutathionylation and one patient
had a decrease.

Discussion
Daily disulfiram at 250 mg with a maximum 8mg of
elemental copper was well-tolerated with no DLTs. Ele-
vation of liver function tests may have been treatment-
related. However, this population was selected for hep-
atic metastases. Neurologic side effects were of low
grade and reversible though more common with higher
doses of copper. A decline in performance status due to
other factors such as anorexia, disease progression, or
concomitant central nervous system disease in some pa-
tients make the exact attribution of these neurologic ad-
verse events difficult in this small study.
Different cancers are associated with increased intratu-

moral copper levels or altered systemic copper distribu-
tion [48]. Copper promotes tumor progression by
playing critical roles in angiogenesis and metastasis [48].
Consequently, copper-chelating agents (such as tetra-
thiomolibdate) have been proposed for the treatment of
malignancies. However, it has been suggested that cop-
per chelation alone is insufficient to kill malignant cells
and that for cancer treatment, chelating agents should
be combined with other drugs [48]. On the other hand,
disulfiram-metal complexes show promising anti-cancer
activity both in preclinical models and early phase clin-
ical trials. The limited data currently available demon-
strate mixed results in regard to efficacy, though an
increase in survival was observed in a study of disulfiram
and chemotherapy in non-small cell lung cancer [46].
Data suggest that disulfiram alone or in combination
with chemotherapy or metals is safe and well-tolerated
with disulfiram dosing ranging from 40mg three times
daily to 2000 mg/m2.
In our study no partial or complete responses were

seen. This may be due in part to inadequate drug con-
centrations with once daily dosing, or the fact that we
enrolled heavily pretreated patients, or the small sample
size of our study. Patients with solid tumors or those
with metastases may not be ideal responders to
disulfiram-metal combinations. Combining disulfiram-
metal treatment with cytotoxic chemotherapy may yield

Table 4 Best Response in all evaluable patients

ID Cohort Best Responsea Days on Study

1 1 PD 43

2 SD 124

3 PD 32

4 2 PD 40

5 PD 55

6 PD 26

7 3 SD 42

8 PD 56

10 4 PD 56

11 SD 109

12 PD 28

13 SD 109

14 PD 34

15 PD 43

16 PD 56
aPD progressive disease, NA not available

Fig. 1 Western blot assays were performed on serum sampled from patients prior to treatment, and at one-week post treatment. UT = untreated,
T = treated. White space delineates cropping of original gel image for clarity, all important bands retained
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synergistic responses and remains a promising area of
investigation.
There is a clear need for predictive biomarkers. Dele-

tion p16 in B-cell ALL cells and in patient-derived xeno-
grafts may predict efficacy of disulfiram and copper [49].
Similarly, BRCA-deficient cells have demonstrated in-
creased responses to disulfiram in in vitro models due to
increased susceptibility to acetaldehyde toxicity [50].
Loss of 16q, a genetic abnormality observed in many
tumor types, may increase the bioavailability of copper
and therefore the potency of treatment [51].
In their study of the combination of disulfiram and

zinc, Brar et al. have suggested that dithiocarbamate/
metal complexes disrupt transcription factor binding to
DNA by inducing S-glutathionylation [11]. In addition,
Paranjpe et al. have shown that disulfiram, with or with-
out copper, induces degradation of NF-κB, and induces
S-glutathionylation and degradation of p53 [52]. Degrad-
ation of p53 and NF-κB correlates with decreases in
their specific binding to DNA, suggesting that S-glu-
tathionylation inhibits the functional activity of the pro-
teins. We therefore hypothesized that the combination
of disulfiram and copper could induce protein S-glu-
tathionylation in vivo. Our pharmacodynamics data
show that S-glutathionylation of serum proteins tends to
increase following treatment with disulfiram and copper.
In S-glutathionylation, glutathione is reversibly conju-
gated to free thiols on protein cysteine residues forming
mixed disulfide bonds [53] with resultant inhibition of
protein function. Disulfiram induces S-glutathionylation
and inactivation of proteins important for cell survival
[11] including Jun, NF-κB, ATF/CREB, and other pro-
teins involved in cell proliferation [54, 55]. S-glutathio-
nylation inhibits glycolysis [56] and thus may exert a
negative effect on tumor metabolism. While S-glutathio-
nylation of serum proteins does not necessarily imply
protein S-glutathionylation in tumor cells, our findings
suggest that such a mechanism may contribute to the
antineoplastic activity of the combination. Our sample
size was too small to allow correlation between S-glu-
tathionylation and response. However, this will be im-
portant to investigate in future larger trials.

Conclusions
This Phase 1 trial of disulfiram in combination with up
to 8 mg of elemental copper demonstrated safety and
tolerability in patients with metastatic solid tumors to
the liver. While some patients had stable disease, no ob-
jective responses were observed. Given likely non-
overlapping toxicities and potential for synergy, use of
disulfiram-metal combinations with cytotoxic chemo-
therapy is an attractive avenue of investigation which en-
hance efficacy. As supported by promising emerging
preclinical data, application of this therapy to other

disease states including hematologic malignancies in a
biomarker-driven fashion may result in more significant
clinical benefit [51]. The excellent safety profile of this
combination together with the presence of multiple
identified therapeutic targets, ease of use, drug availabil-
ity, and low-cost warrant further study of disulfiram and
metals in the treatment of cancer.
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