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ABSTRACT
SARS-CoV-2 virus outbreak poses a major threat to humans worldwide due to its highly contagious
nature. In this study, molecular docking, molecular dynamics, and structure-activity relationship are
employed to assess the binding affinity and interaction of 76 prescription drugs against RNA
dependent RNA polymerase (RdRp) and Main Protease (Mpro) of SARS-CoV-2. The RNA-dependent
RNA polymerase is a vital enzyme of coronavirus replication/transcription complex whereas the
main protease acts on the proteolysis of replicase polyproteins. Among 76 prescription antiviral
drugs, four drugs (Raltegravir, Simeprevir, Cobicistat, and Daclatasvir) that are previously used for
human immunodeficiency virus (HIV), hepatitis C virus (HCV), Ebola, and Marburg virus show higher
binding energy and strong interaction with active sites of the receptor proteins. To explore the
dynamic nature of the interaction, 100ns molecular dynamics (MD) simulation is performed on the
selected protein-drug complexes and apo-protein. Binding free energy of the selected drugs is per-
formed by MM/PBSA. Besides docking and dynamics, partial least square (PLS) regression method is
applied for the quantitative structure activity relationship to generate and predict the binding
energy for drugs. PLS regression satisfactorily predicts the binding energy of the effective antiviral
drugs compared to binding energy achieved from molecular docking with a precision of 85%. This
study highly recommends researchers to screen these potential drugs in vitro and in vivo against
SARS-CoV-2 for further validation of utility.
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1. Introduction

SARS-CoV-2, the new seventh coronavirus, known to infect
humans, is responsible for COVID-19 (Andersen et al., 2020). The
World Health Organization (WHO) declared the virus as a global
pandemic on March 11, 2020 (Aanouz et al., 2020). The COVID-
19 pandemic is the biggest calamity since the Second World
War as no specific drug or vaccine has been approved globally
for the treatment of human coronaviruses to date. Therefore,

the outbreak of SARS-CoV-2 is considered to pose a devastating

threat to human life. This virus family circulates in animals and

some can be passed on between animals and humans

(Boopathi et al., 2020). The common signs of infection include

fever, coughing, breathing difficulties, and in severe cases, it can

cause pneumonia, multiple organ failure, and death.
SARS-CoV-2 consists of crown-shaped peplomers and a

single-stranded positive RNA genome with 50 cap and 30
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Poly-A tail, belongs to family Coronaviridae of the order
Nidovirales (Pant et al., 2020; Woo et al., 2010). This RNA
genome consists of at least six open reading frames (ORFs)
of which the first ORF (ORF1a/b) makes up the 5’ two-third
and encodes two polypeptides (pp1a and pp1ab). These two
polypeptides conduct the production of 16 nonstructural
proteins (NSPs) (R. J. Khan et al., 2020). Another five ORFs
compose the remaining one-third of the RNA genome which
generates four main structural factors of the virion known as
spike protein (S), envelope protein (E), membrane protein
(M) and nucleocapsid protein (N) (Gordon et al., 2020;
Hussain et al., 2005). The virus uses the spike (S) protein on
its surface to interact with the ACE2 (Angiotensin-converting
enzyme 2) cellular receptor of human tissues (Wong et al.,
2004). During interaction with the cell, RNA is used as a tem-
plate for direct translation of two polypeptides (pp1a and
pp1ab) that encodes a number of vital nonstructural proteins
(NSPs) including NSP5 (a cysteine 3C-like protease) known as
main protease (Mpro) and NSP3 (a papain-like protease)
(Sarma et al., 2020). These two proteins process pp1a and
pp1ab to produce 16 different NSPs (Hilgenfeld, 2014; Zhou
et al., 2020). The NSP3 processes the polypeptide to produce
NSP1-4 while the Mpro operates at 11 cleavage sites to gen-
erate the rest of the important NSPs that include helicase,
methyltransferase, and RNA-dependent RNA polymerase all
of which play a critical role in the viral infection cycle (Cui
et al., 2019). Hence, the main protease creates major and
attractive drug target to impede the assembly of nonstruc-
tural viral components and to halt the replication event in
the virus life cycle. In addition, RNA-dependent RNA polymer-
ase is one of the most versatile enzymes for coronavirus that
is indispensable for facilitating the replication of RNA from
RNA templates (Romano et al., 2020). Subsequently, these
phenomena led us to target two crucial proteins to fight
against SARS-CoV-2.

As the coronavirus outbreak is an on-going pandemic
and new drug development is very time consuming, there-
fore, the fastest way to defeat COVID-19 is to apply effect-
ive treatment strategies considering the available drugs in
the market. This raises a high and urgent need to screen
for potential drugs through either drug-repurposing or
combination therapy. Drug repurposing is an efficient
approach to combat novel diseases that spread rapidly
(Ashburn & Thor, 2004; Ciliberto & Cardone, 2020; Xu
et al., 2020) as many diseases share overlapping molecular
pathways (Hodos et al., 2016). The approved drugs are safe
and reported to be used in humans for countering certain
viral infections (H. Li et al., 2020). The screening of drugs
to repurpose has arisen as a resourceful alternative to
accelerate the drug development process against rapidly
spreading diseases like COVID-19 in recent years
(Elmezayen et al., 2020; Sun et al., 2016). This approach
has successfully led to the discoveries of potential drugs
against several diseases such as Ebola, hepatitis C, and zika
virus infection (Barrows et al., 2016; Johansen et al., 2015).
Remdesivir which has been reported as the most promising
drug against COVID-19 is an antiviral originally developed
to target the Ebola virus (Zhang & Zhou, 2020). This

provided the rationalization for drug repurposing with the
hope to discover antiviral drugs to treat COVID-19.

2. Methodologies

2.1. Protein preparation

The crystal structure of the SARS-COV-2 RNA dependent RNA
polymerase was not available when we started our study;
therefore, the polymerase structure was obtained via hom-
ology modeling (Figure S1). The template search for SARS-
COV-2 RdRp has been carried out with BLAST and HHBlits
against the SWISS-MODEL template library (SMTL) (Waterhouse
et al., 2018). The RdRp sequence was sought with BLAST
against the primary amino acid sequence contained in the
SMTL and the SARS coronavirus polymerase (PDB ID: 6NUR)
was found as a template (Remmert et al., 2011). Considering
the target-template alignment, the RdRp Model was built using
ProMod3. QMEAN scoring function (Bertoni, Kiefer, Biasini,
Bordoli, & Schwede, 2017) had been applied for the assessment
of global and per-residue model quality. Two Zn2þ ligands
existing in the template structure were transferred to the
model structure. GMQE score estimated the accuracy of the ter-
tiary structure of the resultant RdRp model. The best drugs are
also docked against the new crystal structure of RdRp (PDB ID:
6M71)(Burley et al., 2019) which was newly released on April
1st, 2020. For main protease (Mpro) of SARS-CoV-2, the crystal
structure of PDB ID: 6LU7 (Y. Li et al., 2020) was used. The RdRp
and Mpro PDB structures were energy minimized via Swiss PDB
Viewer (Guex & Peitsch, 1997).

2.2. Ligand preparation

Initial geometries of the selected 76 approved antiviral drugs
are collected from PubChem and ChemSpider databases.
Name, Drug ID, 2 D structure and reference of these drugs
are summarized in Table S1. Quantum mechanics (QM) calcu-
lations were conducted to optimize antiviral drugs. Gaussian
09 program package was used for all quantum calculations
(Frisch et al., 2009). To optimize the antiviral drugs, semi-
empirical PM6 method (Bikadi & Hazai, 2009) was used.
Subsequently the vibrational frequencies (all values are in
harmonic approximation) were calculated and the absence of
imaginary frequencies confirmed the stationary points corres-
pond to minima on the Potential Energy Surface.

2.3. Molecular docking protocols

RdRp and Mpro proteins were docked with 76 approved
antiviral drugs by AutoDock Vina protocol (Trott & Olson,
2010) and GOLD 5.7 (Genetic Optimisation for Ligand
Docking) (Jones et al., 1997). The molecular docking
approach using AutoDock Vina protocol predicted the bind-
ing affinity and the interaction of the selected antiviral drugs
with RdRp and Mpro. The docking grid box was set around
the polymerase active site considering the (A-G) conserved
motifs, around center X¼ 145.85, Y¼ 141.66, and Z¼ 156.30
and the dimensions were X: 31.08, Y: 29.76, and Z: 23.81. For
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Mpro, the grid box value remained around center X ¼
�9.83, Y¼ 14.38, and Z¼ 68.48 and where, the dimensions
were X: 24.69, Y: 31.64, and Z: 29.97 covering desired binding
site residues. Besides docking by AutoDock Vina, GOLD
docking Suite was employed to estimate the fitness score
and binding interaction of these drugs against the recep-
tor proteins. Hermes visualizer in the GOLD Suite was
used to prepare the drugs as well as SARS-CoV-2 RdRp
and Mpro proteins for docking. All other parameters were
set as default and CHEMPLP was chosen for the fitness
function. For visualization and detecting the non-covalent
interaction in the docked drug-protein complex, PyMol
(version 2.3.2) and BIOVIA Discovery Studio version 4.5
were utilized.

2.4. Molecular dynamics (MD) simulations

MD simulation was employed to validate the docking results
obtained for the best antiviral drugs. 100ns MD simulation was
performed for RdRp and Mpro in apo-form (without drug) and
holo-form (drug-protein). YASARA dynamics (Krieger et al., 2004)
program was used for all simulation applying AMBER14 force
field (Dickson et al., 2014). In the presence of a water solvent,
the total system was equilibrated with 0.9% NaCl at 298K tem-
perature. During simulation, the particle Mesh Ewald algorithm
was considered for long-range electrostatic interactions.
Berendsen thermostat process was used to regulate the simula-
tion temperature. A cubic cell was generated within 20Å on
each side of system and periodic boundary condition was pre-
ferred during the simulation. A time step of 1.25 fs was main-
tained to carry out 100 ns MD simulation and the snapshots
were taken at every 100ps. Based on our previous MD data ana-
lysis (Ahmed et al., 2020; M. J. Islam et al., 2019; R. Islam et al.,
2020; Junaid et al., 2019; A. M. Khan, Shawon, & Halim, 2017;
Shahinozzaman et al., 2019), various data including bond distan-
ces, bond angles, dihedral angles, free energy, columbic and van
der Waals interactions, solvent-accessible surface area (SASA),
molecular surface area (MolSA), root mean square fluctuation
(RMSF) and root mean square deviation (RMSD) values for alpha
carbon, backbone, and heavy atoms are retrieved from MD sim-
ulations using modified macro files.

To understand the structural and energy changes during
MD simulation of RdRp and Mpro proteins in presence of the
drug, the principal component analysis (PCA) method was
employed for analysing the different multivariate energy fac-
tors (De Jong, 1990; Wold et al., 1987). In this analysis, bond
distances, bond angles, dihedral angles, planarity, van der
Waals energies, and electrostatic energies represent struc-
tural and energy information about the two studied PCA
models. Typically, PCA analysis helps to visualize any dissimi-
larity present among different groups which are added in
the model (M. J. Islam et al., 2019; R. Islam et al., 2020). The
last 35 ns trajectory data were considered for PCA analysis
for both the two PCA models. Using centering and scaling,
data of two models were pre-processed for this analysis. The
six multivariate factors were organized in the X matrix and
decomposed them into a product of two new matrices by
the following equation:

X ¼ TkP
T
k þ E

Here, the Tk matrix represents the relation of sample to
each other, Pk is the loading matrix which correlates the vari-
ables with each other, number of factors represented by k,
and E be the representative of unmolded variance. In this
analysis, R (R Core Team, 2014), RStudio (Rstudio Team, 2019)
and in-house developed codes were employed for perform-
ing all the calculations and plots were generated by using
the package ggplot2 (Wickham, 2009).

2.5. Mm/PBSA binding free energy calculations

For binding free energy calculation, Molecular Mechanics/
Poisson-Boltzmann Surface Area method was used. YASARA
dynamics was used for all calculations. AMBER14 force field
with the ‘single trajectory approach’ was considered
(Kollman et al., 2000). Selected snapshots from the last 50 ns
MD simulation were used for all 6 protein-drug complexes.
Protein and drug binding free energy was calculated using
the following equations: (Gilson & Honig, 1988)

DGbinding ¼ DGcomplex– DGligand þ DGprotein½ �
Here, DGcomplex, DGligand and DGprotein the total free

energy of the protein-ligand complex, total energy of sepa-
rated ligand and protein in solvent, respectively.

DGbinding ¼ DGMM þ DGPB þ DGSA�TDS

¼ DGelec þ DGVdWð Þ þ DGPB þ DGSA�TDS

Where, DGMM5 molecular mechanics interaction energy
(DGelec and DGVdW are electrostatic and van der waals inter-
action energy respectively). DGPB is denoted the polar solv-
ation energy DGSA is the nonpolar solvation energy. TDS is
the contribution of entropy to the free energy
(T¼ temperature and S¼ entropy) (Razzaghi-Asl et al., 2018).

2.6. Quantitative structural activity relationships (QSAR)
for antiviral drugs

29 antiviral drugs were selected based on high rank in dock-
ing and distributed randomly into two data arrays. 19 drugs
were considered as the “training set” or “calibration samples”.
The other 10 drugs were treated as the “test set” or
“validation samples”. For the structural activity relationship,
various parameters such as TPSA (topological polar surface
area, Å2), molecular weight, XLogPs-AA, HBD (hydrogen bond
donor), HBA (hydrogen bond acceptor) and number of rotat-
able bond (ROTB), benzene ring, single bond, double bond,
hydrogen atom, carbon atom, nitrogen atom, oxygen atom,
fluorine atoms were considered for the drug candidates
relating with the drug binding affinity observed from
molecular docking via Partial-least-square (PLS) regression
applying a standard multivariate regression analysis proced-
ure (Ahmed et al., 2020). PLS regression data explored by
XLSTAT (2020XLSTAT j Statistical Software for Excel, 2017).
The PLS regression was optimized cautiously and refined
properly as required.
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3. Results

3.1. Results obtained from molecular docking

Molecular docking is performed for 76 approved antiviral
drugs to obtain their binding affinities against the RdRp and
Mpro (Table S2) by AutoDock Vina. For the second validation
of molecular docking data, the GOLD docking suite is also
used. The results which are obtained from the docking of
the selected drugs with RdRp complex and drugs with Mpro
complex using the GOLD suite are reported in ChemPLP fit-
ness scores which is the default scoring function. The drugs
with the higher fitness value, the better the docked inter-
action of the complexes. The frequency analysis shows that
the Autodock Vina binding affinity of these drugs is varied
from �3.1 kcal/mol to �10.0 kcal/mol (Figure 1A) and GOLD

fitting score is ranged from 30 to100 (Figure 1B). Around 30
drugs show the binding affinity from �6.1 to �7.0 kcal/mol.
A similar binding affinity pattern is observed for both pro-
teins, RdRp and Mpro. However, Mpro demonstrated higher
fitting score than RdRp.

In addition, the selected drugs are also docked with newly
released PDB structures (6M71 and 7BTF) to make a compari-
son with the model structure of RdRp. The docking results
are comparable (Table 1). The selected drugs are predicted
to have promising results as potential inhibitors against both
proteins of the virus, clearly indicating that they may show
better inhibitory effects than Remdesivir (Figures 1C and 2).
The better binding affinity, as well as fitness score, is
obtained for Cobicistat, Daclatasvir, Raltegravir, Simeprevir
than Remdesivir in most of the cases (Table 1).

Figure 1. Frequency distribution of 76 drugs over range of docking results and structure of promising drugs. (A) Docking score by AutoDock Vina, (B) Fitting score
by GOLD and (C) Two-dimensional structures of the four promising drugs.
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3.2. Molecular interaction of the best drugs with RdRp
and Mpro

Various types of non-covalent interactions such as hydrogen
bond, halogen bond, and hydrophobic interactions are found
to be involved in the binding of drugs with RdRp and Mpro
when the poses were predicted with AutoDock Vina (Figures
3 and 4). Among the selected drugs, the highest negative
binding affinity (RdRp �9.7 kcal/mol; Mpro �9.1 kcal/mol)
and fitting score (RdRp 53.29; Mpro 65.25) are noticed for
Raltegravir. The Raltegravir is found to form five hydrogen
bonds, one halogen bond, two hydrophobic bonds, and two
electrostatic bonds with RdRp whereas six hydrogen interac-
tions, and one hydrophobic interaction with Mpro. In
Simeprevir-RdRp complex the drug is stabilized by seven
hydrogen bonds, one hydrophobic bond, and two electro-
static bonds and with Mpro, forms five hydrogen bonds,
seven hydrophobic bonds, and one electrostatic bond. In the
Cobicistat-RdRp complex, the drug is interacted with recep-
tor protein by twelve hydrogen bonds, four hydrophobic,
and three electrostatic interactions whereas for the
Cobicistat-Mpro complex, nine hydrogen interactions, three
hydrophobic interaction, and one Pi-Sulphur bond. The
Daclatasvir-RdRp complex is formed a stable network by
eight hydrogen bonds, nine hydrophobic interactions, and
one electrostatic interaction while the Daclatasvir-Mpro com-
plex is showed five hydrogen bonds, six hydrophobic interac-
tions. In Remdesivir-RdRp complex, nine hydrogen bonds
and three hydrophobic bonds are detected whereas nine
hydrogen bonds, one hydrophobic bond and one Pi-Sulfur
bond are observed in Remdesivir-Mpro complex. Non-cova-
lent interactions are predicted by the GOLD suite are pre-
sented in Figures S2 and S3. Moreover, the residues of 6M71
interacted with Remdesivir are similar compared to the
model RdRp structure (Gao et al., 2020).

3.3. Result obtained from molecular
dynamics simulation

MD simulation for each complex of RdRp and Mpro with two
selected drugs (Raltegravir and Simeprevir) and apo-form is
performed for 100 ns. The Remdesivir-RdRp complex and the
Remdesivir-Mpro complex are also subjected to MD simula-
tion as a control. In case of RdRp, the RMSDs (0.5–2.7 Å) for
a-carbon atoms in apo-RdRp is higher than Raltegravir and
Simeprevir, thus suggesting that the unbound form of RdRp
may be unstable in physiological conditions. In Figure 5A,

RMSD values of Raltegravir are slightly increased to 2.4 Å
after 4 ns and after 90 ns, indicating that the trajectories gen-
erated during the whole run are stable. Higher structural sta-
bility in the Raltegravir-RdRp complex is detected. For
Remdesivir, the RMSD exhibits more fluctuations during the
whole run and is increased to 2.8 Å at 67 ns. The average
RMSD for Raltegravir is 1.9 Å, whereas the RMSD for
Remdesivir is detected around 2.1 Å. A repeated fluctuation
is found in Simeprevir from 18 to 65 ns with an average max-
imum deviation of 1.9 Å. It is indicated that the selected best
drugs can be a stable and better drug than the control drug,
Remdesivir. On the other hand, the RMSDs (0.4–2.7 Å) for
a-carbon atoms in apo-Mpro is higher than Remdesivir and
Simeprevir, conferring that the bound form of Mpro may be
more stable in physiological conditions. In Figure 6A, RMSD
values of Raltegravir are less in the initial run but signifi-
cantly increased after 18 ns till 38 ns with the highest value
of 6.3 Å, then again a slight increase from 58 to 62 ns, indi-
cating that the trajectories generated during these times are
unstable. However, structural stability in the Raltegravir-Mpro
complex is detected in the later run (average 2.7 Å). The
average RMSD for Remdesivir is 1.9 Å, whereas the RMSD for
Simeprevir is detected around 1.8 Å, indicates higher struc-
tural stability in both complexes. It reflects that the selected
both drugs can be a stable and better drug than the control
drug, Remdesivir.

The radius of gyration (Rg) and solvent accessible surface
area (SASA) are also observed to investigate the structural
compactness and solvent accessibility of all complexes. The
radius of gyration is described as the distance where the
entire mass is supposed to act. It is the root mean square
distance of a collection of atoms from a given axis of rota-
tion. It depicts as an indicator of protein structural compact-
ness. A bigger radius of gyration is detected for apo-form
than all complexes which suggests the loose packing of the
apo-protein structure during the whole run. A loose packing
from 30 to 65 ns is obtained for apo-RdRp (Figure 5B). The
average radius of gyration of Raltegravir, Simeprevir, and
Remdesivir is remained nearly the same (29.1 Å). Besides, a
slightly higher radius of gyration is observed for the
Raltegravir-Mpro complex (average 22.4 Å) than apo-Mpro
and other complexes. The Rg graph shows loose packing of
the apo-protein structure during the initial 50 ns but com-
pactness in the later phase. The average radius of gyration of
the Simeprevir-Mpro complex and apo-Mpro remains the
same (22.3 Å) whereas the Remdesivir-Mpro complex exhibits
more compactness than others (average 22.1 Å) (Figure 6B).
Similarly, the solvent-accessible surface area (SASA) is
assessed which shows the highest value for Simeprevir com-
plex (RdRp-average 34287 Å2; Mpro-average 13982 Å2) com-
pared to the control drug (RdRp-average 34187 Å2; Mpro-
13847 Å2) (Figure 5C). A slightly lower value is found for the
Raltegravir-RdRp complex (average 33846 Å2) than
Remdesivir and the apo-RdRp (average 33926 Å2). On the
contrary, the Raltegravir-Mpro complex showed a higher
average of 14376 Å2 than Remdesivir-Mpro (average 13847
Å2) and the apo-Mpro (14160 Å2) (Figure 6C). Based on Rg

Table 1. Binding affinity of the five drugs with different crystal structures of
RdRp and Mpro (AutoDock Vina scores are in kcal/mol).

Drug

RNA dependent RNA polymerase Main protease

AutoDock Vina
GOLD AutoDock Vina GOLD

Model 6NUR 6M71 7BTF Model 6LU7

Raltegravir �9.7 �9.1 �8.4 �8.5 53.29 �9.1 65.25
Daclatasvir �9.5 �9.4 �8.5 �7.9 67.6 �7.2 74.11
Simeprevir �9.3 �8.9 �9 �9.5 66.65 �8.7 76.18
Cobicistat �8.4 �8.2 �6.7 �7.2 73.86 �7.4 89.31
Remdesivir �7.2 �7.6 �7.9 �6.5 54.79 �7.8 81.16
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and SASA analysis, it is revealed that the best candidate
drugs are stable.

Molecular surface area (MolSA) is also determined for the
selected drug-protein complexes. In this analysis, Simeprevir-
RdRp shows the highest MolSA (average 38976 Å2) whereas

Raltegravir and Remdesivir demonstrate a slightly lower aver-
age value of 38580 and 38802 Å2, respectively (Figure 5D). In
the case of Mpro complexes, Raltegravir reveals the highest
MolSA (average 14243 Å2) than the others (Remdesivir,
13952 Å2; Simeprevir, 14103 Å2) (Figure 6D).

Figure 2. Domain organization and interaction of both proteins with drugs. The inter-domain borders are labeled with amino acid residue numbers. (A) 3 D struc-
ture of RdRp (Fingers-Blue; Palm-Red; Thumb-Green) interacting with drugs (B) 3 D structure of Mpro (Domain I-Green; Domain II-Red; Domain III-Blue) interacting
with drugs. Cobicistat is shown in Orange; Daclatasvir in Green; Raltegravir in Pink; Simeprevir in Violet; Remdesivir in Yellow.
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RMSF values are also calculated for determining the
dynamic behavior of both protein residues. In the case of
RdRp, it can be seen from Figure 5E that the RMSF of resi-
dues (261–431) and (850–919) fluctuates significantly during
protein and ligands interaction. Although a low RMSF (within
the limit of 1.3 Å) in the RdRp-Simeprevir complex is
detected for most of the residues, a high fluctuation of 4.4 Å
is noticed in the thumb domain close to the residue 848. A
maximum fluctuation of 5 Å is detected in the N terminal
extension of residues 262. Remdesivir-RdRp complex is pre-
dicted to have fluctuation with around 5.1 Å in the residue
898 of the thumb domain. The RMSF of residues Arg553,
Arg555, and Val557 (finger domain), and Asp618 (palm
domain) in the Raltegravir-RdRp complex are lower than
other complexes, reflecting that Raltegravir can stimulate
more strong interactions with these key residues than other
drugs. Since the less fluctuation indicates higher protein
structural stability, the highest degree of flexibility is
observed for apo-Mpro, and Remdesivir-Mpro, whereas a
similar fluctuation (average 1.4 Å) is noticed for Raltegravir-
Mpro and Simeprevir-Mpro. Furthermore, the visual analysis
of MD simulation trajectories suggests that all the drugs
engaged in significant binding interactions with the hotspot
residues (His163, Glu166, Cys145, Gly143, His172, Phe140,
Cys145, His41, Thr25, Met49, His41, Met165, Glu166, and
Gln189) of the Mpro protein (Figure 6E).

Hydrogen bonds play a significant role in the case of
molecular recognition and the overall stability of the protein
structure. The intermolecular hydrogen bonds formed during
the whole 100 ns, is collected from the trajectories. In Figure
5F, the maximum hydrogen bonds, which maintain the rigid-
ity of the complex, is predicted for Remdesivir and
Simeprevir (average 1392) with RdRp. On the contrary, the
highest number of hydrogen bonds with Mpro is observed
for Raltegravir (average 515) (Figure 6F). Moreover, our snap-
shot conformers exhibit that both drugs most of the time
stayed in the binding sites of both proteins during the whole
simulation run (Figure 7A and B).

Two different PCA models are developed for two different
proteins; the first PCA model is developed considering RdRp,
and the second model is explored for Mpro. In each PCA
model, four training sets (Raltegravir-Protein, Remdesivir-
Protein, Simeprevir-Protein complexes, and apo-protein struc-
ture) are included in the model to understand the structural
change of protein during MD simulation. For the RdRp PCA
model (Figure 8A), 54.3% of the variance is explained by PC1
and PC2, where PC1 explains 33.8% and PC2 explains 20.5%
of the variance. Similarly, two PCs explain 51.8% of the vari-
ance in the Mpro PCA Model (PC1¼ 32.2%, PC2¼ 19.6%)
(Figure 8B). From the scores plots of PC1 and PC2 (Figure 8A
and B) for both models, it is observed that different groups
are overlapped with each other without any significant

Figure 3. Non-covalent interactions of selected drugs with RdRp model protein (Pose predicted by AutoDock Vina).
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separation. Therefore, the structural and energy profiles are
almost unchanged for all drug-protein complexes compared
to both corresponding apo-protein during the simulation.
However, here in this study, all three drugs (Raltegravir,
Remdesivir, Simeprevir) show similar types of binding behav-
ior with both the RdRp and Mpro.

3.4. Mm/PBSA binding free energy analysis

The binding free energy is calculated for six protein-drug com-
plexes. The binding free energy values for Remdesivir-RdRp,
Raltegravir-RdRp, Simeprevir-RdRp are –32.16 ± 2.59 (kcal/mol),
–37.91 ± 3.2 (kcal/mol), and –34.05 ± 3.2 (kcal/mol), respectively
(Figure 9A, B & C). Raltegravir has the most negative binding
free energy out of this three complexes. On the other hand,
binding free energy of Remdesivir, Raltegravir and Simeprevir
against Mpro is –12.66 ± 0.94 (kcal/mol), –17.91 ± 0.64 (kcal/
mol), –21.91 ± 0.71 (kcal/mol) (Figure 9D, E & F). Simeprevir
shows the highest negative value for Mpro.

3.5. Insights from quantitative structural activity
relationships (QSAR)

Quantitative structure activity relationship (QSAR) analysis is
the most powerful and widely used method that predicts the

biological property of novel compounds. In the exchange of
experimental testing, QSAR methodology is highly recom-
mended for an ultimate validation of desired models due to
its fast throughput good hit rate (Neves et al., 2018). To
develop PLS regression, all QSARs of drugs are vital, yet, the
contribution of them may vary considerably. The most
important QSAR contributors to the PLS regression are topo-
logical polar surface area (Å2), number of hydrogen bond
donor (HBD), hydrogen atom, and single bond of the drugs
(Table S5). Beside QSAR analysis, principal component ana-
lysis (PCA) is employed for pattern recognition of drugs’
structure-activity relationship. The scores-plot of the PCA
modes is displayed in Figure 10. The PC1 elucidates 51.48%
of the variability in drug QSAR. Moreover, the PC2 describes
19.09% QSAR variability of drugs.

The scores plot illustrated a remarkable combination of
drugs. The similar drugs QSAR were clustered together on
the scores-plot. The drugs (D1, D5 (Daclatasvir), D11, D14
(Nelfinavir), D16 (Norvir), D24, D25, and D27) comprising thia-
zoyl ring and H2NCOO-, –CH2-, OH, -CONH- functional groups
attached to benzene ring are assembled on the first and
second quadrant of the scores-plot. Further, the drugs con-
sisting –CONH–, –OH and C¼O functional groups (D6, D13,
D8, D17, D21 (Raltegravir), and D23) are located on the third
and fourth quadrant of the score-plots. In D21 (Raltegravir),

Figure 4. Non-covalent interactions of selected drugs with Mpro (PDB ID:6LU7) (Pose predicted by AutoDock Vina).
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oxadiazole and pyrimidine-4(3H)-one groups are connected
to a benzene ring. Moreover a fluorine atom is also present
in the benzene ring.

The principal objective of any PLS model is to predict
upcoming drug candidates, mainly from its SAR. Hence, the
binding energies of the drug candidates are supposed to
predict via developed PLS regression. The binding energy

obtained from molecular docking with RdRp model protein
and the predicted binding energy by PLS regression for each
drug of validation drugs (test set) are exhibited in Table 4.
The capability of PLS regression to predict accurately, the
binding energy of the validated drugs is estimated by root-
mean-square-relative percent-errors (RMS%RE). The PLS
regression revealed a high accuracy of 85% for the

Figure 5. Analysis of 100 ns MD simulation of RdRp in complex with selected drugs.(A) Root mean square deviation values of C-a atom of RdRp in the complexes
with selected drugs along the 100 ns simulations. The structural changes of RdRp by means of (B) radius of gyration, (C) solvent accessible surface area, (D) molecu-
lar surface area, (E) root means square fluctuations, and (F) total number of hydrogen bonds formed during the simulation.

Figure 6. Analysis of 100 ns MD simulation of Mpro in complex with selected drugs. (A) Root mean square deviation values of C-a atom of Mpro in the complexes
with selected drugs along the 100 ns MD simulations. The structural changes of Mpro by means of (B) radius of gyration, (C) solvent accessible surface area, (D)
molecular surface area, (E) root means square fluctuations, and (F) total number of hydrogen bonds formed during the simulation.
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prediction of the binding energy of drugs compared with
the binding energy obtained from molecular docking.

4. Discussion

In the present study, we have screened 76 antiviral drugs to
assess their binding affinity and non-covalent interaction
with RdRp and Mpro proteins. Molecular docking studies,
employing Autodock Vina and GOLD, have been used.
Molecular docking results show that most of the screened
drugs interact with the active pocket residues of the RdRp
and Mpro proteins. Moreover, the selected four drugs
Cobicistat, Daclatasvir, Raltegravir, and Simeprevir also show
higher binding affinity and interaction with both proteins in
comparison to recently approved drug, Remdesivir.
Raltegravir, an inhibitor of the HIV integrase protein, is exhib-
ited the effective antiretroviral activity (Hicks & Gulick, 2009).
Whereas Simeprevir, HCV protease inhibitor, restrains or
inhibits protein synthesis and has been accepted for the
treatment of chronic hepatitis C infection, genotype 1
(Talwani et al., 2013). Simpeprevir can be used as a repurpos-
ing treatment for COVID-19 (Hosseini & Amanlou, 2020).

Another anti-HIV drug Cobicistat, mainly inhibits human
CYP3A proteins (Mathias et al., 2010). Thus, it increases the
plasma concentration of other co-administered anti-HIV
drugs without the risk of resistance and can be selected as a
potential against COVID-19 (Harrison, 2020). Moreover,
Daclatasvir is applied against Hepatitis C Virus, which directly
inhibits HCV protein NS5A to resist viral RNA replication and
protein translation (Hu et al., 2020). Although Dolutegravir
an HIV-1 integrase inhibitor) shows good binding affinity
(-8.9 kcal/mol) in our study (Table S2), we do not further
investigate it as a similar study already is reported for
Dolutegravir (R. J. Khan et al., 2020).

RdRp, also known as nsp12, is the key element of viral
replication or transcription machinery and one of the main
drug targets for SARS-CoV-2. It exists as a complex, with the
polymerase (nsp12) bound with smaller proteins named nsp7
and nsp8. It has a shape of the right hand (residues 367-
920), with fingers subdomain (residues 366-581 and 621-
679), a palm subdomain (residues 582-620 and 680-815), and
a thumb subdomain (residues 816-920). The active site of the
RdRp is consists of the conserved polymerase motifs A-G in
the palm domain. A major benefit of targeting the SARS-
CoV-2 RdRp for drug development is that scientists already

Table 2. Non-covalent interactions of the top ranked drugs with RdRp model protein (Pose predicted by AutoDock Vina).

Drug Binding affinity Hydrogen bond (AA… Ligand) Halogen bond (AA… Ligand)
Hydrophobic

interaction (AA… Ligand)
Electrostatic

interaction (AA… Ligand)

Raltegravir �9.7 TYR455 (2.686) O-H… F-C TYR455 (2.686) O-H… F-C TYR455 (3.860) Pi-Pi Stacked ARG553 (4.308) Pi-cation
SER682 (2.623) O-H…O-C ARG553 (4.940)Pi-Alkyl ASP623 (3.474) Pi-Anion
THR680 (2.824) C-O…H-N
THR680 (2.623) C-O…H-N
ASP452 (2.570)) C-O…H-C

Daclatasvir �9.5 ARG553 (2.713) N-H…O-C ALA685 (4.025) Alkyl ASP760 (3.933) Pi- Anion
ARG569 (2.225) N-H…O-C ARG555 (3.814) Alkyl
ARG569 (2.668) N-H…O-C ARG569 (4.112) Alkyl
LYS577 (2.889) N-H…O-C LEU576 (4.810) Alkyl
ASP623 (2.519) C-O…H-N LEU576 (3.913) Alkyl
ASP623 (2.688) C-O…H-N ILE494 (5.246) Alkyl
ASP623 (2.990) C-O…H-C TYR689 (5.106) Pi-Alkyl
ILE494 (2.865) C-O…H-C ALA688 (5.077) Pi-Alkyl

ALA688 (2.714) Pi-Sigma
Simeprevir �9.3 ARG553 (2.958) N-H…O-C LYS621 (4.472) Alkyl ASP760 (4.534) Pi-Anion

ASN691 (2.541) N-H…O-C GLU811 (3.928) Pi-Anion
SER814 (2.996) O-H…O-C
ASP760 (2.087) C-O…H-N
ASP618 (2.339) C-O…H-N
ASP618 (2.794) C-O…H-N
SER682 (2.629) C-H…O-S

Cobicistat �8.4 ARG553 (2.188) N-H…O-C TYR455(3.958) Pi-Pi Stacked ARG553 (4.395) Pi-Cation
THR556 (2.827) N-H…O-C CYS622 (5.167) Alkyl ARG553 (4.357) Pi-Cation
THR556 (2.703) O-H…O-C LYS798 (5.267) Alkyl ASP618 (3.458) Pi- Anion
LYS621( 2.869) N-H…O-C ARG553(4.377) Pi-Alkyl
CYS622 ( 1.942) N-H…O-C
ARG624 (3.059) N-H…O-C
ARG624 (2.085) N-H…O-C
ASP623 (2.408) C-O…H-N
ARG555 (2.527) C-H…O-C
ASP760 (2.590) C-O…H-C
THR556 (2.335) C-O…H-C
ASP760 (2.467) C-O…H-C

Remdesivir �7.2 LYS545 (3.052)) N-H…N-C TYR455 (4.616) Pi-Pi T shaped
LYS545 (2.917) N-H…N-C LYS621 (5.080) Pi-Alkyl
ARG553 (2.854)) N-H…O-P ARG624 (5.445) Pi-Alkyl
ARG553 (2.855) N-H…O-P
ASP623 (2.129) C-O…H-N
THR556 (2.265) C-O…H-N
ASP760 (3.046) C-O…H-C
THR556 (2.858) C-O…H-C
ASP623 (3.092) C-O…H-C
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have experience to design polymerase inhibitors for HIV
therapies. The binding affinities of the selected four drugs
with RdRp are compared with Remdesivir. The highest bind-
ing affinity of �9.7 kcal/mol is detected for Raltegravir while
the binding affinity of �7.2 kcal/mol is obtained for
Remdesivir. A similar fitting score is observed with the GOLD
docking for both drugs. When docking results of both meth-
ods are compared with the Remdesivir, the selected drugs
show very strong binding interactions including hydrogen

bond, hydrophobic, halogen bond, and electrostatic interac-
tions with the important amino acids of RdRp. Compared to
the Remdesivir, all four drugs show better and more appro-
priate interactions with many important residues through
hydrogen bond, Pi-Alkyl and Pi-Pi interactions. The selected
drugs can promote more interactions than Remdesivir, con-
tributing to a higher binding affinity and fitting score. Amino
acid residues, Met542, Lys545, Ser549, Lys551, Arg553,
Arg555, Val557, Asp618, Cys622, Asp623, Ser682, Asp760,

Figure 7. Binding pose of Raltegravir and Simeprevir over the course of 100 ns simulation. The crystal structures of RdRp and Mpro are shown as white surface
with Raltegravir (red) and Simeprevir (yellow) as spheres in (A) and (B) respectively.
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and Arg836 in the binding pocket of RdRp are found to par-
ticipate in non-covalent interactions with four drugs (Figure
2A, Table 2 and Table S3).

Mpro is highly conserved among Coronaviridae members
and is a homodimer with three structural domains (domain I,
II and, III). The substrate-binding site is situated in the Cys-
His catalytic dyad located in a cleft between domain I and II
where Cys act as nucleophile while His acts as a proton
acceptor. Though dimerization of the two protomers is cru-
cial, only one protomer is active at a time (Muralidharan
et al., 2020). Moreover, there are two other deeply buried
subsites known as S1, S2 and three shallow subsites (S3, S4,
and S5) in addition to the catalytic site. The S1 subsite

consists of His163, Glu166, Cys145, Gly143, His172, and
Phe140 while S2 comprises Cys145, His41, and Thr25 amino
acid residues. These residues are principally associated in
hydrophobic and electrostatic interactions. Theses shallow
subsites S3-S5 consists of Met49, His41, Met165, Glu166 and
Gln189 amino acid residues and can endure various function-
alities (S. A. Khan et al., 2020). Theses residues of the cata-
lytic site of Mpro are found to interact with our top-ranked
four drugs (Figure 2B, Table 3, and Table S4). Overall, pro-
tein-drug interactions reveal a strong inhibition of virus poly-
merase and protease.

Based on molecular docking, four drugs show better bind-
ing affinity than Remdesivir. The best two drugs (Raltegravir

Figure 8. PCA analysis of RdRp and Mpro. (A) RdRp PCA model: The scores plot presented four data clusters in different colors, where each dot represented one
time point. The clustering is attributable to: apo-RdRp (yellow), Raltegravir-RdRp complex (cyan), Remdesivir-RdRp complex (orange), Simeprevir-RdRp complex
(green). (B) Mpro PCA model: The scores plot presented four data clusters in different colors, where each dot represented one time point. The clustering is attribut-
able to: apo-Mpro (cyan), Raltegravir-Mpro complex (yellow), Remdesivir-Mpro complex (orange), Simeprevir-Mpro complex (green).

Figure 9. Histogram of the binding free energy for (A) Remdesivir-RdRp, (B) Raltegravir-RdRp (C) Simeprevir-RdRp and (D) Remdesivir-Mpro (E) Raltegravir-Mpro (F)
Simeprevir-Mpro. Here, the red color curve represents Gaussian fit.
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Figure 10. Score plot of PLS regression of quantitative structural activity relationship of drugs.

Table 3. Non-covalent interactions of top ranked drugs with Mpro (PDB ID-6LU7) (Pose predicted by AutoDock Vina).

Drug candidate
Binding
affinity

Hydrogen bond
(AA… ligand)

Hydrophobic
interaction (AA… ligand)

Electrostatic
interaction (AA… ligand) Other

Raltegravir �9.1 HIS164(2.245) C-O…H-N CYS145(5.309) Pi-Alkyl
LEU141(2.803) C-O…H-O
SER144(2.123) N-H…O-C
SER144(2.463) O-H…O-C
CYS145(2.244) N-H…O-C
HIS163(3.0656) C-H…O-H

Simeprevir �8.7 ASN142(1.875) N-H…O-S MET165(4.338) Alkyl GLU166(3.950) Pi-Anion
ASN142(2.648) C-O…H-C GLN189(2.557) Pi-Sigma
THR26(2.926) C-O…H-C MET49(3.910) Alkyl
GLU166(3.042) C-O…H-C LEU27(5.136) Alkyl
GLU166(2.902) Pi-Donor MET165(4.224) Pi-Alkyl

HIS41(4.325) Pi-Alkyl
HIS41 (4.662) Pi-Alkyl

Remdesivir �7.8 ASN142(2.202) C-O…H-N MET49(4.617) Pi-Alkyl MET165(5.618) Pi-Sulfur
PHE140(2.838) C-O…H-O
GLU166(2.456) C-O…H-O
HIS163(2.246) C-N…H-O
GLY143(2.102) N-H…O-C
HIS163(2.637) C-N…H-C
LEU141(2.640) C-H…N-C
ASN142(3.051) C-H…O-C
HIS172(3.021) C-H…O-H

Cobicistat �7.4 GLN189(2.571) C-O…H-N MET49 (4.863) Alkyl MET165(5.563) Pi-Sulfur
GLN189(2.288) C-O…H-N CYS145(4.230) Pi-Alkyl
ASN142(2.650) N-H…O-C MET49(4.644) Pi-Alkyl
SER144(2.948) O-H…O-C
GLU166(2.803) C-O…H-C
GLN189(2.691) C-O…H-C
ASN142(2.434) C-O…H-C
PHE140(2.693) C-O…H-C
GLN189(2.345) C-O…H-C

Daclatasvir �7.2 ASN142(2.319) C-O…H-N LEU50(4.214) Alkyl
GLN189(2.677) C-O…H-N LEU50(4.224) Alkyl
SER144(2.537) O-H…O-C CYS145(4.379) Alkyl
HIS163(2.527) C-N…H-C ALA191(4.919) Alkyl
ASN142(2.437) C-O…H-C ALA191(4.252) Pi-Alkyl

HIS41(4.213) Pi-Alkyl
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and Simeprevir) are chosen for analysis with molecular
dynamics. It is shown from MD simulation that the average
RMSD values of Raltegravir and Simeprevir (1.9 Å) is lower
compared to Remdesivir (2.1 Å), indicating more structural
stability with RdRp in bound states. Although Raltegravir-
Mpro complex shows much fluctuation in the primary state,
the stability increases in the later phase. Simeprevir also
shows lower RMSD value, marks its greater stability. For
RdRp, it is revealed from the Rg and SASA that Raltegravir
and Simeprevir complex are stable similar to Remdesivir
(Figure 5B and C) whereas, for Mpro, the Raltegravir-Mpro
complex shows some instability in the initial run.
Furthermore, a similar average MolSA is detected for the
Raltegravir-RdRp and the Remdesivir-RdRp whereas it is high-
est for the Simeprevir-RdRp (Figure 5D). For Mpro, the
Raltegravir-Mpro complex exhibits the highest value whereas
Simeprevir and Remdesivir have similar MolSA value. It is
observed from the RMSF values that Simeprevir has more
reasonable binding stability with RdRp (Figure 5E). Moreover,
a nearly similar RMSF value of residues is predicted for the
Raltegravir-RdRp complex when compared with the
Remdesivir-RdRp complex. Although Raltegravir exhibits
more fluctuations than the other complexes, all the drugs
demonstrate significant interaction with important residues
indicates their compactness in a complex form with Mpro
(Figure 6E). Furthermore, the binding free energy analysis
supports the MD results (Figure 9). PCA analysis confirms
that the selected drugs can be a good candidate to stabilize
both proteins as supported by the RMSD analysis (Figure 8).
Overall, all analyses from the MD simulations support the
docking results indicating that the selected drugs can
actively interact with RdRp and Mpro.

Quantitative structure activity relationships (QSAR) analysis
shows that molecular weight, TPSA (Å2), number of hydrogen
donor, hydrogen atom, and C-C single bonds contribute the
high impact on the binding affinity and non-covalent inter-
action against the protein receptor. The molecular docking
result and QSAR reveal that D21 (Raltegravir), D5
(Daclatasvir), D26 (Simeprevir), and D4 (Cobicistat from test
set) could be highly effective to target SARS-COV-2 RdRp
and Mpro.

5. Conclusion

In this study, we employ drug repurposing approach to iden-
tify potential candidates which can bind and interact with

RdRp and Mpro proteins of SARS-CoV-2. Based on binding
affinity and interaction results, Raltegravir, Simeprevir,
Cobicistat, and Daclatasvir are found to be very promising
and therefore these four drugs can further optimize to
design effective inhibitors against SARS-CoV-2. All four drugs
are stable and they form a greater number of interactions
through hydrogen bonds with both proteins. MD results
show that the selected two drugs (Raltegravir and
Simeprevir) remain in the binding pocket of the RdRp and
Mpro protein without altering protein native structures.
Moreover, MD simulation reveals that RMSD values of the
selected drugs are relatively lower compared to control
Remdesivir drug. Binding free energy calculated by MM/PBSA
demonstrates the higher binding affinity of Raltegravir and
Simeprevir compared to Remdesivir. Principal component
analysis (PCA) illustrates “QSAR pattern recognition” and dis-
closes that thiazoyl ring and H2NCOO

-, –CH2-, OH, -CONH-
functional groups attached to benzene ring are assembled
together on the first and second quadrant of the scores-plot
and drugs consisting –CONH–, –OH and C¼O functional
group located on the third and fourth quadrant of the score-
plots. The predicted values of the binding energy from PLS
regression is very close (accuracy 85%) compared with the
values obtained from molecular docking. Thus, QSAR
explores the biological properties and mechanism of drug
action against targeted protein to ensure drug efficacy.
These finding will help experimental medicinal chemist to
test the performance of these drugs against SARS-CoV-2 in
in vitro and in vivo setting.
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Sample Predicted binding energy Actual binding energy %RE
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