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Abstract

Host-pathogen interactions are complex relationships, and a central challenge is to reveal the interactions between
pathogens and their hosts. Bacillus bombysepticus (Bb) which can produces spores and parasporal crystals was firstly
separated from the corpses of the infected silkworms (Bombyx mori). Bb naturally infects the silkworm can cause an acute
fuliginosa septicaemia and kill the silkworm larvae generally within one day in the hot and humid season. Bb pathogen of
the silkworm can be used for investigating the host responses after the infection. Gene expression profiling during four
time-points of silkworm whole larvae after Bb infection was performed to gain insight into the mechanism of Bb-associated
host whole body effect. Genome-wide survey of the host genes demonstrated many genes and pathways modulated after
the infection. GO analysis of the induced genes indicated that their functions could be divided into 14 categories. KEGG
pathway analysis identified that six types of basal metabolic pathway were regulated, including genetic information
processing and transcription, carbohydrate metabolism, amino acid and nitrogen metabolism, nucleotide metabolism,
metabolism of cofactors and vitamins, and xenobiotic biodegradation and metabolism. Similar to Bacillus thuringiensis (Bt),
Bb can also induce a silkworm poisoning-related response. In this process, genes encoding midgut peritrophic membrane
proteins, aminopeptidase N receptors and sodium/calcium exchange protein showed modulation. For the first time, we
found that Bb induced a lot of genes involved in juvenile hormone synthesis and metabolism pathway upregulated. Bb also
triggered the host immune responses, including cellular immune response and serine protease cascade melanization
response. Real time PCR analysis showed that Bb can induce the silkworm systemic immune response, mainly by the Toll
pathway. Anti-microorganism peptides (AMPs), including of Attacin, Lebocin, Enbocin, Gloverin and Moricin families, were
upregulated at 24 hours post the infection.
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Introduction

A lot species of bacteria belonging to the genus Bacillus have

established a systemic infection in a variety of hosts including

humans, animals and insects [1–3]. Some species of Bacillus are

investigated more than others for their closer connection with

human beings. For example, Bacillus thuringiensis, as a good model,

was well studied on its insecticidal mechanism by producing crystal

proteins and has been developed as commercial biological

products to control insect pests [4–6]. Bacillus cereus can produce

food poisoning toxins generally causes summer food poisoning

[7,8]. Studies revealed that fur gene of Bacillus cereus regulates iron

metabolism and is required for full virulence [9]. Bacillus anthracis

infection results in the anthrax disease of human and animals

[10,11]. In the process of infection host macrophages, B. anthracis

can rapidly adapt to the intracellular environment, and modulate

its metabolic pathways such as energy metabolism and biosynthe-

sis of cofactors for its intracellular growth [12]. For other

pathogens, systematic gene expression such as basal metabolic

pathways also can be modulated during its infection. For example,

during the developmental cycle and iron depletion-mediated

persistence of Chlamydophila pneumoniae, its transcriptome changes in

many functional groups such as the cell envelope and the

translation machinery [13].

On the host side, hosts’ behaviours can be significantly dominated

by pathogens infection. B. anthracis ames spores also significantly affect

the expression of approximately 580 host genes in murine lung,

spleen, and heart tissues at 8- and 48-h time points [14]. Recently, the

genome-wide analysis of the interaction between the endosymbiotic

bacterium Wolbachia and its Drosophila host also showed involvement

of antimicrobial humoral response and negative regulation of cell

proliferation of its host [15]. Studies on transcriptional response of

Choristoneura fumiferana to Cry1Ab protoxin from B. thuringiensis showed

a number of metabolic and stress-related genes that were either

transcriptionally enhanced or repressed after protoxin exposure,

including DNA polymerase processivity factor1, fatty acid binding,

cytoskeletal constituent, serine proteinase inhibitor, serpin, translation

initiation factor and so on [16].
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Bacillus remains the major pathogenic bacterium isolated in

majority of areas for Bombyx mori [17]. Among them, Bacillus

bombysepticus (Bb) was first separated from the sick silkworm larvae

cadavers and identified by Hartman in 1931 [18]. As a Gram-

positive bacterium, Bb can produce spores and parasporal crystals.

Bb is a resistant species among silkworm bacterial pathogens in the

natural environment. Bb natural infection the silkworm results a

typical symptom of a disease: a peutz first appears on its

thoracoabdominal region or the first 1–3 abdominal aspect, and

then expands to the whole body. So far, however, the pathogenesis

of Bb or interaction between Bb and its host silkworm is rarely

reported.

The silkworm genome contains about 14,623 genes and larvae

multiple tissue transcriptional data were obtained using a 22,987

oligonucleotide probe microarray [19–21]. The genome-wide

analysis of model insects showed that the numbers of immunity-

related genes in A. gamibae and D. melanogaster are greater than those

in B. mori and A. mellifera, but their innate immune signal

transduction pathways are rather primitive [22,23]. Using the

particular advantages of GeneChips, Bb infection can be used to

survey the host silkworm genome-wide responses, including its

innate immune response to the pathogen at transcriptional level

and to provide another detailed comprehension of the interaction

between a Bacillus pathogen and its host. The results demonstrated

that Bb induced the host strong response. A lot of basal metabolic

pathways were significantly modulated. Genes related to poisoning

that might be a key to silkworm fuliginosa septicaemia, are also

regulated. Furthermore, genes of juvenile hormone synthesis and

metabolism related showed upregulation, suggesting that juvenile

hormone participate in host modulation during the infection.

Moreover, host cellular and systemic immune responses are also

induced.

Results

An Overview of Bb Oral Infection
Bb is close to B. cereus and Bt. by its 16S rRNA gene

sequence analysis. We cloned a 1.5-kb sequence of the 16S

rRNA gene of Bb using universal primers and registered it in

GenBank (accession number: GQ281063). Searching GenBank,

this is the first registration sequence of bombysepticus species. After

comparison of the Bb 16S rRNA gene sequence with 16S rRNA

sequences in the NCBI database, the resulting phylogenetic tree

clearly indicated that Bb belongs to Bacillus (Fig. 1a). The

dendrogram showed that Bb is similar to Bacillus cereus and that

Bt. Bacillus anthracis is a distant relative. As a typical species of

Bacillus, Bb can produce spores and parasporal crystals (Fig. 1a).

The extraordinary versatility of Bacillus species is reflected by their

ability to survive in nature. As a consequence, they are virulent

toward insects and humans [24]. However, Bb is the first

bacterium of this genus found to be highly pathogenic by

natural infection for the silkworm in the sericulture production.

Bb strain cultured in LB medium is pathogenic to the

silkworm. To determine the pathogenicity of the Bb strain

cultured in LB medium, survival ratios were obtained by oral

infection using silkworm larvae at day 3 of the fifth instar. The

results showed that Bb induced .50% mortality within 30 hours

after oral infection and the remaining hosts died within about

60 hours under the rearing condition of temperature of 30uC and

humidity of 90%. From 20–40 h, there was a significant reduction

in survival from about 90% to 10% under this condition. Rearing

under the temperature of 25uC and humidity of 70%, the host

died much more slowly. However, most of the silkworms died

during the two infection conditions, indicating that this Bb line is

pathogenic for the silkworm (Fig. 1b). The results demonstrated

that the pathogenicity of Bb strain cultured in LB medium

warrants further analysis. Comparison of the corpses of larvae dies

naturally or due to oral infection showed that that the peutz of

natural infection larvae was mainly in the anterior chest, whereas

that of oral infection larvae was much larger around the middle

chest, caused by substantial microorganism invasion of the

digestive tract after oral infection (Fig. 1c). The peutz pattern of

Bb oral infection larvae indicated a stronger reaction than natural

infection.

Bb induces strong silkworm response and changes in

expression profiles. Bb oral infection can change the

expression of many silkworm genes, as shown by transcriptional

analysis. A total of 2,436 genes were modulated, using a 2.0-fold

cut-off, between 3 and 24 hours post-infection. At the beginning of

the infection (3 hours post-infection, 3 hpi), the number of

regulated genes showed a small peak owing to a large-scale

microbial attack. At this time, 120 genes were upregulated and 374

were downregulated. At the mid-point of the infection (6 hpi to

12 hpi), Bb was counterattacked by the host defense system and

the reproduction level of the surviving mircoorganisms in the

silkworm midgut was much slower than in the medium, so the

gene expression changes were relatively weak; 124 and 164 genes

were modulated at 6 hpi and 12 hpi, respectively. At 6 hpi, the

numbers of upregulated and downregulated genes were similar (59

and 65, respectively). At 12 hpi, the number of upregulated genes

was approximately half the number of downregulated genes (49

and 115, respectively). At 24 hpi, as bacteria adapt to the internal

environment of the host midgut, they enter exponential growth

phase and increase bacterial toxic production. Thus, the induced

gene number peaked. These genes included many metabolic

system- and immune system-related genes. At this time, 1,063

genes were upregulated and 980 were downregulated (Fig. 2a).

Overall, the cluster analysis of expression profiles of all induced

genes showed time-specific patterns. By average linkage of

hierarchical cluster analysis, 12 clusters of gene expression profiles

could be defined using Bb oral infection microarray data (Fig. 3).

Among the clusters, cluster 1 and cluster 12 were interesting for

the significant down- and up-regulation, respectively, of large

numbers of genes at 24 hpi. Their mean log2 ratios were close to

21.5 and 1.5. Clusters 8 and 11 were also notable for their

dynamic exchange from down- to upregulation from 3 hpi to

24 hpi. Clusters 3 and 6 were significantly upregulated at 3 hpi.

Clusters 7 and 4 were significant upregulated at 6 hpi, and cluster

5 was significantly upregulated at 12 hpi. The ratios and

annotations of all these genes are shown in Table S2.

By GO analysis of these induced genes, their functions could be

classified to 14 categories (Fig. 2b) [25–27]. Among these 14

families, catalytic activity, physiological process and cellular

process were the largest, with 201, 193 and 182 members,

respectively. These data indicate that Bb oral infection of the

silkworm could induce a large number of enzymes involved in

many basal metabolic pathways. The induced genes were then

analyzed further.

Bb induces a strong midgut response–by tissue

expression analysis. Pathogen infections always have tissue-

specific features [28]. Multiple tissue expression data from day 3 of

the fifth instar showed that 1,403 of the 2,436 induced genes have

multiple tissue expression, indicating that almost all of the

silkworm tissues were affected by the infection [19]. At the same

time, Bb induced genes that showed some organizational

preference, as more genes were highly expressed in the midgut,

integument and testis (Fig. 4a). Of the 1,403 genes, 886 (63%)

genes were expressed in the midgut (signal value.400), of which

B. mori Host Response to Bb
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Figure 1. Phylogenetic tree of 16S rRNA sequences and survival curve of Bb infection the silkworm. (a) Phylogenetic tree with the
sequences of 16S rRNA gene of Bb and its related species. Bb can produce spores and parasporal crystal. (b) Survival curve of Bb oral infection
silkworm on day 3 of the fifth instar. Control 1: ddH2O feed silkworm rearing under the condition of temperature of 30uC and humidity of 90%.
Control 2: ddH2O feed silkworm rearing under the condition of temperature of 25uC and humidity of 70%. Induced 1: Bb feed silkworm rearing under
the condition of temperature of 30uC and humidity of 90%. Induced 2: Bb feed silkworm rearing under the condition of temperature of 25uC and
humidity of 70%. (c) Natural infection and oral infection both can cause silkworm cuticle peutz.
doi:10.1371/journal.pone.0008098.g001
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68 were midgut tissue-specific; these 68 accounted for 30.56% of

all the midgut specific genes, the highest level for all tissues

(Fig. 4b). Many of the induced midgut genes encode

metalloproteinases, hydrolases, lipases and chitin structural

proteins. The midgut, as the direct infection organ, showed a

relatively high level of tissue-specific gene expression.

Basal Metabolic Pathways Involved after Bb Infection
The basic metabolism is important for organisms to maintain

their normal physiological activities. Analysis of pathogen-induced

host basal metabolic pathways will help us to investigate the

interaction between them. Using the significant standard criteria of

pathway prediction value P,0.05 and induced ratios.2 or ,0.5,

we searched the KEGG database to filter out the host metabolic

pathway-related genes [29–33]. In total, six types of basal metabolic

systems were identified after the infection, including genetic

information processing and transcription, nucleic acid metabolism,

metabolism of cofactors and vitamins, xenobiotics biodegradation

and metabolism, amino acid metabolism and nitrogen metabolism,

and carbohydrate metabolism (Fig. 5). These pathways are involved

in many normal silkworm physiological metabolic processes. The

detailed enzyme names, gene IDs, KEGG prediction P-values and

their typical catalytic reactions are shown in Table S1, and the ratios

of the pathway groups are shown in Table S4.

Basic genetic information processing and transcription

genes. Nucleotide biosynthesis is critical for growth of bacteria

in human blood [34]. For the silkworm, both the maintenance of

normal growth and development for itself and proliferation of

bacteria in its hemolymph need nucleotide acids for the

transmission of genetic information and protein synthesis. As a

result, the genes encoding RNA polymerases and basic

transcription factors were modulated (Fig. 5). Nine RNA

polymerases were upregulated at 24 hpi, including eukaryotic

Pol II B4, eukaryotic Pol I A12, eukaryotic Pol III C11, archaeal

N, eukaryotic Pol III C25, eukaryotic Pol II B6, eukaryotic Pol III

C5, eukaryotic Pol II B3 and eukaryotic Pol II B5. Similarly, basic

transcription factors were also induced by Bb infection, including

TFIID11, TFIID1, TFIIA1, TFIIE2 and TFIID10. Only TFIID1

was downregulated, and the other five genes were upregulated.

These data indicated that the synthesis of nucleic acids and

proteins was increased after infection. The basic genetic

information processing and transcription genes upregulation

Figure 2. General statistics on the genes regulated after Bb oral
infection. (a) The number of up- and down-regulated genes after Bb
oral infection at 3 h, 6 h, 12 h and 24 h time points (h: hours post
infection). (b) GO categories of total Bb oral induced genes.
doi:10.1371/journal.pone.0008098.g002

Figure 3. Differentially regulated genes during Bb infection. (a)
Clustered expression profiles of regulated 2436 genes taken 2.0-fold
cutoff criterion from 3 h to 24 h. For expanded ratios and annotation
details, see Table S2. (b) Mean expression values of genes (log2) located
in the defined clusters.
doi:10.1371/journal.pone.0008098.g003
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after Bb infection are consistent with those of Neill and Ridpath for

ubiquitous viral pathogen of cattle bovine viral diarrhoea virus

(BVDV)-infected Madin-Darby bovine kidney cells, indicating the

modulation of these genes might be general after pathogens

infection [35].

Pyrimidine and purine metabolism. In vivo, nucleic acid

metabolism has an important role [36]. Disruption of an

organism’s nucleic acid metabolism can cause serious diseases

such as gout in humans [37]. Twenty-two genes involved in

pyrimidine metabolism pathway were induced after the infection

(Fig. 5), including 11 types of enzymes that can catalyze at least 11

typical biochemical reactions (Table S1). The largest subfamily

was that of RNA uridylyltransferase (EC 2.7.7.6), containing

nine members. The second largest subfamily was DNA
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deoxynucleotidyltransferase (DNA-directed) (EC 2.7.7.7),

containing four members. These two subfamilies are also

involved in the purine metabolism pathway. Twenty of the 22

genes were upregulated. More genes of the purine metabolism

pathway were modulated; 37 were modulated, 26 of which were

upregulated. These genes included 15 types of enzymes that

catalyze at least 15 typical biochemical reactions in the purine

pathway. Genes coding 15 types of enzymes were upregulated,

including 59-phosphoribosyl-5-amino-4-imidazolecarboxamide

formyltransferase (EC 2.1.2.3), nucleoside-triphosphatase (EC

3.6.1.15) and so on. These results also show that Bb infection

accelerates the silkworm nucleic acid metabolism.

Cofactor and vitamin metabolism. Vitamins are essential

small compounds to maintain normal activities. After Bb infection,

cofactor and vitamin metabolic pathway genes were modulated,

including genes from the porphyrin and chlorophyll metabolism

Figure 5. Cluster analysis of basal metabolism pathways. Detailed expression profiles of functionally pathways related sets of genes. The gene
ID of SilkDB are shown on the left (for each gene ID, we used the letter A to substitute letters BGIBMGA to simplify the expression) and the serial
number of KEGG database are shown on the right. For a detailed view, see Table S1 and Table S4.
doi:10.1371/journal.pone.0008098.g005
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pathways, pantothenate and CoA biosynthesis pathways and one

carbon pool by folate. Eight genes encoding enzymes involved in

porphyrin and chlorophyll metabolism were regulated, of which six

and two were up- and downregulated, respectively (Fig. 5 and Table

S4). They encoded eight types of enzymes in this pathway, including

uroporphyrinogen-III carboxy-lyase (EC 4.1.1.37), hydrolases (EC

3.2.1.31), NADP+7, 8-oxidoreductase (EC 1.3.1.33) (Table S1).

Five genes related to pantothenate and CoA biosynthesis were

modulated, including 39-dephospho-CoA 39-phosphotransferase

(EC 2.7.1.24), 2-oxoglutarate aminotransferase (EC 2.6.1.42), (R)-

pantothenate 49phosphotransferase (EC 2.7.1.33) and 5, 6-

dihydropyrimidine amidohydrolase (EC 3.5.2.2). In addition,

three genes related to one carbon pool by folate were also

modulated, including tetrahydrofolate ligase (EC 6.3.4.3), dUMP

C-methyltransferase (EC 2.1.1.45) and transferases (EC 2.1.2.3).

These results show that the three cofactor and vitamin metabolic

pathways were sensitive to the infection.

Xenobiotics biodegradation and metabolism. Pathways

involved in xenobiotic biodegradation including 2,4-dichlorobenzoate

degradation, benzoate degradation via hydroxylation and styrene

degradation were induced after Bb oral infection; most of these genes

were upregulated (Fig. 5, Table S1 and Table S4). The 2,4-

dichlorobenzoate degradation pathway-related genes encoding

hydrolases (EC 3.1.1.-) and oxygen 4, 5-oxidoreductase (EC

1.13.11.8) were modulated. The expression of oxygen 4, 5-

oxidoreductase was increased more than six-fold at 24 hpi, when the

bacteria produced large quantities of bacterial toxins within the

silkworm host, indicating that oxygen 4,5-oxidoreductase might be

involved in the detoxification of bacterial toxins such as parasporal

crystal [38]. Four genes involved in benzoate degradation via the

hydroxylation pathway were also regulated. In addition to the above-

mentioned oxygen 4, 5-oxidoreductase gene, acyl-CoA:acetyl-CoA C-

acyltransferase (EC 2.3.1.16), mandelate racemase (EC 5.1.2.2) and

lyases (EC 4.1.1-) were also regulated. For example, lyases, which have

also been shown to be related to the pyruvate metabolism pathway,

were highly expressed in the midgut and malpighian tubules; at 24 hpi,

expression levels were more than three times the baseline levels. Thus,

we speculated that lyases might be involved in the detoxification of

midgut and malpighian tubules. In addition, three genes involved in

the styrene degradation pathway were modulated, including acylamide

amidohydrolase (EC 3.5.1.4) and 4-maleylacetoacetate cis-trans-

isomerase (EC 5.2.1.2). Also, three members of the cytochrome

family involved in detoxification, including the cytochrome P450

family 4 (A001003) and cytochrome P450 (A013237, A013241), were

upregulated. These results illustrated that Bb infection accelerated the

xenobiotics biodegradation and metabolism, probably mainly caused

by the released bacterial toxins.

Amino acid metabolism and nitrogen metabolism. Amino

acids are important molecules in every organism. Pathways of

tryptophan metabolism, histidine metabolism, valine, leucine

and isoleucine degradation, urea cycle and amino group

metabolism, and aminophosphonate metabolism involved in

amino acid metabolism and nitrogen metabolism were

modulated by the infection (Fig. 5, Table S1 and Table S4). Of

the genes involved in amino acid metabolism, more were

upregulated than downregulated. For example, 14 genes

involved in the tryptophan metabolism pathway, including (S)-

3-hydroxyacyl-CoA: NAD+ oxidoreductase (EC 1.1.1.35),

transferases (EC 2.1.1.-), and acylamide amidohydrolase (EC

3.5.1.4), eleven of the 14 genes were upregulated and only 3 were

downregulated. These results show that Bb infection promoted

the amino acid metabolism. Nitrogen metabolism is a basic

pathway that maintains the balance of nitrogen in organisms.

After Bb infection, all of the seven nitrogen-pathway regulated

genes including NAD (P) +oxidoreductase (EC 1.4.1.3) were

downregulated, indicating that nitrogen metabolism was slowed

by the infection.

Carbohydrate metabolism. Carbohydrate metabolism is a

basal metabolic process and provides carbon and energy for

organisms [39,40]. Enzyme-encoding genes of basic

carbohydrate metabolic pathways were modulated by the

infection, including those responsible for pentose and

glucuronate interconversions, the citrate cycle (TCA cycle),

pyruvate metabolism, the pentose phosphate pathway and

butanoate metabolism (Fig. 5, Table S1 and Table S4). Many

genes related to these pathways were upregulated. For example,

for the pentose and glucuronate interconversions pathways, five

genes were induced, including glucuronosyltransferase (EC

2.4.1.17), beta-D-glucuronoside glucuronosohydrolase (EC

3.2.1.31), NAD (P)+ 1-oxidoreductase (EC 1.1.1.21), NADP+
4-oxidoreductase (EC 1.1.1.10) and L (or D)-ribulose 5-

phosphotransferase (EC 2.7.1.16). Four of these five genes were

upregulated at 24 hpi. For example, NADP+ 4-oxidoreductase

(EC 1.1.1.10) was highly expressed in the fat body, and the

expression was increased by a factor of four. The fat body is the

site of energy storage, thus we speculated that the energy

metabolism of the silkworm fat body was accelerated. Ten genes

involved in the TCA cycle were regulated, including CoA ligase

(EC 6.2.1.5), NAD+ oxidoreductase (EC 1.1.1.41), oxaloacetate

carboxy-lyase (EC 4.1.1.32), and carbon-dioxide ligase (EC

6.4.1.1), however, many of which were downregulated at 24 hpi.

Similar to amino acid metabolism, for carbohydrate metabolism,

more genes were upregulated than downregulated, indicating

that carbohydrate metabolism was accelerated to provide more

energy.

Similar to Bt, Bb Can Induce Silkworm Larvae Poisoning
Related Response

As a typical Bacillus, Bb can produce spores and crystal toxins.

Bb toxins and spores are thought to induce a similar host response

compared to Bt. The poisoning happened in the midgut. First,

when Bb enters the midgut of the silkworm, parasporal crystal

was released and degraded by proteases of the host midgut. The

dissolved monomer of the toxin is activated and poisonous

[41–47]. Parasporal crystal, as a type of protein, can be degraded

by serine proteases [48]. As expected, the host expression levels of

proteases including trypsins, other serine proteases, and zinc

carboxypeptidase were regulated (Fig. 6a). Trypsins, as a type of

serine protease that can selectively hydrolyze proteins, were

considered to be the main hydrolases responsible for Bt toxin

hydrolysis in the insect midgut [49,50]. In our study, 20 trypsins

were induced after the infection, many of which were

upregulated. For example, A008513, with tissue expression only

in the midgut, was upregulated by more than 5-fold at 24 hpi.

Other serine proteases, the usual role of which is to disrupt

macromolecular protein peptide bonds, were also regulated,

including seven other serine proteases, including peptidase_S24

(PF00717, A001027 and A012810), peptidase_S28 (PF05577,

A012452 and A008167), peptidase_S51 (PF03575, A003141)

and peptidase_S9 (PF00326, A006179 and A001272). Among

these seven proteases, A001027, A012810, A012452 and

A003141 were significantly upregulated at 24 hpi. Three

members of the zinc carboxypeptidase family (Peptidase_M14,

PF00246), with the general function of hydrolysis of carboxyl

terminal amino acids, were only or highly expressed in the

midgut and were also upregulated after the infection [51].

The dissolved Bb crystal toxin can damage the silkworm midgut

peritrophic membrane (PM) [52]. The PM of the insect midgut is

B. mori Host Response to Bb
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Figure 6. Functional groups of silkworm poisoning related genes. (a) Cluster analysis of silkworm poisoning related genes referencing to
Bacillus thuringiensis toxins. For a detailed view of the cluster ratios, see Table S4. (b) SEM pictures of the silkworm middle gut epithelium after Bb
infection. The pictures showed Bb crystals accumulated in the host intestinal epithelial cells and pores were formed in the host intestinal epithelial
cells after Bb oral infection. (c) Schematic overview of the process that Bb damage silkworm midgut, into the hemolymph. After oral infection, Bb
interred the ingestion of silkworm. The parasporal crystal (PC) produced by Bb could be digested by midgut proteases. The digested PC could pass
through the peritrophic membrane (PM) to bind the aminopeptidase N receptors (APNs) of the midgut epithelial cells to damage them. Bb can go to
hemolymph from the damaged midgut.
doi:10.1371/journal.pone.0008098.g006
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considered as a non-cell semi-permeable membrane mainly

composed of chitins and proteins [53,54]. The PM can promote

insect digestion and prevent the invasion of pathogenic microor-

ganisms by forming a natural barrier of midgut epithelial cells. After

the infection, four PM structural protein genes (domain CBM_14,

PF01607), with high tissue expression only in the midgut, were

downregulated at 24 hpi (Fig. 6a). Among them, the expression level

of A009641 showed a dynamic change from more than twice of up-

regulation at 3 hpi to about twice of down-regulation at 24 hpi. The

results indicated that, with time, the production of PM proteins

decreased, resulting in damage of the PM and allowing passage of

the Bb crystal toxin. Thus, the toxins can be observed accumulated

on the host intestinal epithelial cells (Fig. 6b).

The activated toxin can bind the metallopeptidase receptors of

the brush-border membrane vesicles of the host midgut epithelial

cells, which allows it to cross the cell membrane [55].

Aminopeptidase N receptors (APNs), members of the zinc

metallopeptidase M1 family (PF01433), are a specific type of

exonuclease that can digest proteins or peptides from their N-

terminal amino acids. Previous studies have shown that the APNs

of insects are the receptors for the Cry toxin [56–58]. A total of 16

APNs containing the Peptidase_M1 domain can be identified in

the silkworm genome, 3 of which have also been identified as Cry

toxin receptors: BmAPN1 (A008059, NCBI No. AF084257 and

AF352574), BmAPN2 (A008017, NCBI No. AB011497) and

BmAPN4 (A008060, NCBI No. AB013400) [44,46,59]. In this

study, nine APN receptors were modulated by the infection

(Fig. 6a). Most showed dynamic expression changes, which

manifested as a low level of upregulation at 3 hpi and

downregulation at 24 hpi. A010679 and A008061 showed more

intense upregulation than the other genes; the increase in

expression level was approximately double at 3 hpi and 12 hpi.

Three of the above-mentioned Cry toxin receptors, however,

showed weak upregulation from 3 hpi to 12 hpi than A010679

and A008061. This result reflected the selective binding features of

the silkworm APNs.

Some genes involved in infiltration balance also showed

regulation after the infection. For example, the sodium/calcium

exchange protein A000688 was upregulated by a factor of about

seven at 3 hpi, indicating that Bb can rapidly create a sodium/

calcium exchange imbalance [60] (Fig. 6a). ABC transporters are

involved in the transmembrane export or import of a wide variety

of substrates from small ions to macromolecules [61,62]. After Bb

oral infection, 12 ABC transporter-encoding genes were regulated.

Most were downregulated by the infection, indicating that

exchange between the outside and inside of the membrane was

weakened. A nucleoplasmin protein, A009067, which is only

expressed in the midgut, showed upregulation at 24 hpi.

Nucleoplasmin, a nuclear molecular chaperone, is usually

considered to be involved in nucleosome assembly, chromatin

reconstruction, material transport, and cell apoptosis [63,64]. The

upregulation of this gene might indicate increased exchange

between the nucleus and cytoplasm after the infection. Finally, the

infiltration balance and material exchange of the insect body are

disrupted. Pores can be observed in the host intestinal epithelial

cells and intestinal epithelial cells microvillus were vacuolated

(Fig. 6c). Infiltration balance disorder is the main cause of insect

death due to Cry toxin [65]. Thus, these results indicate that Bb can

poison the silkworm via a similar mechanism as the Bt Cry toxin.

Bb Induced Juvenile Hormone Synthesis and
Metabolism-Related Gene Upregulation

Juvenile hormone (JH) is the main hormone that regulates

maintenance of the physical form of larvae, pigment occurrence in

larvae and reproduction activities [66,67]. The silkworm JH

biosynthetic pathway can be divided into two main stages: the

early steps, up to farnesyl diphosphate (FPP) formation, belong to

the mevalonate pathway, and the late steps control the conversion

of FPP into JH [68]. JH is then metabolized to JH acid diol and JH

diol phosphate [69]. On the other hand, JH can bind to JH-

binding proteins and regulate target gene expression. So far, little

is known about the pathogen infection and modulation of insect

JH. Interestingly, in this analysis, a lot of JH synthesis, metabolism

and JH-binding genes were shown to be upregulated after Bb oral

infection (Fig. 7).

The expression of the HMG-CoA synthase gene (HMGS,

A004001), responsible for catalysis of acetoacethl-CoA to HMG-

CoA, was increased by nearly three-fold [70]. Phosphomevalonate

kinase gene (MevPK, A001556), encoding an enzyme that converts

phosphomevalonate to diphosphomevalonate, was upregulated by

more than two-fold [68]. Short-chain dehydrogenase gene (SDR,

A002886), which converts farnesal to farnesoic acid, was

upregulated by more than three-fold [71]. The JH acid

methyltransferase (JHAMT) is an enzyme that converts JH acids

or inactive precursors of JHs to active JHs at the final step of JH

biosynthesis pathway in insects [72]. One of the two JHAMT

coding gene (A010563) was upregulated from 3 hpi to 24 hpi,

whereas the other (A010392) was downregulated from 3 hpi to

24 hpi. At the same time, the Farnesoic acid O-methyltransferase

(FAMeT, A002604), which is involved in the conversion of

farnesoic to methyl farnesoate, was downregulated, indicating

that the JH acid branch pathway might be a method of JH

biosynthetic after Bb infection [73].

Similarly, some genes related to JH metabolism were also

modulated. Two JH epoxide hydrolase genes (JHEH, A011468

and A013929), involved in the regulation from JH to JH diol, were

upregulated at 12 hpi and 6 hpi, respectively [74]. However, JH

esterase (JHE, A000772) on HJ to JH acid diol pathway branch,

showed downregulation from 3 hpi to 24 hpi. Two genes coding

JH diol kinase (JHDK, A008813 and A008815), involved in the

conversion of JH diol to JH diol phosphate, both showed more

than three-fold upregulation at 24 hpi [69]. JH binding protein

(JHBP) can bind to JH and transport JH from the corpus allatum

to target tissues [75]. Two genes encoding JHBPs (A011457 and

A011458) were upregulated from 3 hpi to 24 hpi. FKBP39, a

Drosophila homolog, can bind the immunosuppressive drug FK506

and mediate the binding of the target element of JH and showed a

dynamic upregulation from 3 hpi to 24 hpi [76].

The general function of insect JH is to maintain larvae

morphology. After a microorganism infection, insects will pupate

earlier than normal and lay eggs to preserve their future

generations. However, after a pathogenic granulovirus infection,

the insect cannot pupate, indicating that the JH concentration is

maintained at a high level after the infection [77]. At the same

time, we detected a lot of JH-related genes which were also

upregulated after NPV oral infection (data not shown). In

addition, synthetic JH can improve the production of NPV in

insect cells, indicating the role of JH in the reproduction of NPV

[78,79]. Hence, we speculate that Bb might active silkworm JH

synthesis, metabolism and binding related genes to extend the

silkworm larvae stage and provide nutrients for its reproduction,

similar to NPV.

Bb Induced Silkworm Immune Response
Bb can induce silkworm cellular response. Once a

pathogenic microorganism crosses the natural barrier of its host,

it has to face a strong host immune response. For insects, the non-

specific cellular immune response, which is mainly mediated by
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hemocytes including crystocyte, plasmatocyte and lamellocyte, is

the first barrier to prevent and remove most viruses and many

bacteria, parasites and fungal infections [80]. Many immune

effectors, such as lysozyme, lectin, and scavenger receptors (SCRs),

also work for the cellular immune response [81].

After Bb enters the silkworm hemolymph, the cellular immune

response is triggered (Fig. 8a, Table S4). The expression levels of

two lysozymes, which can dissolve and kill bacteria, were

modulated. For example, the expression of A007987, a bacterio-

phage T7 lysozyme-like protein 1 (BTL-LP1), was upregulated

more than three-fold at 24 hpi. The encapsulation process

involved in cell adhesion, can lead to bacterial death [80]. Lectins,

a type of hemonectin, can condense microorganisms while

immune response [82,83]. The condensed microorganisms can

then easily be phagocytosed or encapsulated by plasmatocytes and

cystocytes, ultimately leading to the formation of black knots. Four

of the 21 identified C-type lectin genes were regulated dynamically

[23]. Also, C-type lectins (CLTs) participate in signal regulation,

whereas the immune signal is transduced during melanization

[84]. Of the SCRs, 2 of the 13 identified SCR class B and one class

C member were modulated. One class B SCR gene, known to be

involved in the phagocytosis of microorganisms in Drosophila,

SCRB10, was upregulated at 3 hpi and 24 hpi. In addition, Cu/

Zn superoxide dismutase (SOD1), which can limit parasite

development in Anopheles, was also upregulation during the

infection [23]. Another SOD gene, SOD2, was upregulated too

at 24 hpi. Members of the immunoglobulin superfamily (IgSF),

which are related to the specific immune response in vertebrate

blood, can also be induced in insects in response to pathogens [85].

After Bb oral infection, the expression levels of 18 IgSF genes were

modulated. Boi (A008552), a signal transduction protein, showed

upregulation at 24 hpi. Lrig1 (A006920), a leucine-rich repeat

immunoglobulin involved in the pathogen response, was also

upregulated at 24 hpi [86]. However, two dscam genes (dscam2

and dscam5), known to be involved in cell adherence, were shown

to be downregulated in this study [87,88].

Bb induced host serine protease cascade melanization

pathway. Melanin formation in the hemolymph is caused by

the serine protease cascade melanization pathway after pathogen

infection [89–91]. After Bb oral infection has induced an immune

response, the serine protease cascade melanization pathway was

activated. First, expression of two of the six peptidoglycan

recognition protein short-type proteins, PGRP-S2 and PGRP-

S5, was induced [23](Fig. 8b). PGRP-S2 (A007987), which is only

expressed in the midgut, showed almost five-fold upregulation at

24 hpi. PGRP-S5 (A012866), which is expressed at high levels in

the integument and fat body, showed more than three-fold up-

regulation at 24 hpi, indicating that Bb can be recognized by

PGRP in the fat body and integument [23]. However, none of the

six long-type PGRPs showed melanization-related regulation in

Drosophila, and four of the b-glucan recognition proteins (bGRP)

involved in the PPO-activating system in the silkworm in previous

Figure 7. Diagram showing the induced biosynthesis, metabolism and signal transduction related genes of juvenile hormone in the
silkworm. The expression pattern of each gene was indicated near the gene name. Diagram of the pathway is referenced form Schooley and Baker,
1985. For a detailed view of the cluster ratios, see Table S4.
doi:10.1371/journal.pone.0008098.g007
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Figure 8. Bb induced silkworm cellular immune response and serine protease cascade melanization pathway. (a) Cluster of cellular
immune response families. (b) Cluster diagram of the induced synthesis of melanin by serine protease cascade melanization pathway related genes.
For a detailed view of the cluster ratios, see Table S4. (c) Real time PCR analysis of ppo1 and ppo2 ratios of Bb infected whole larvae comparing to
non-induced control and 490 nm absorbance of hemolymph during the infection, and the picture of the hemolymph melanization 3 h after Bb oral
infection.
doi:10.1371/journal.pone.0008098.g008
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study, showed significant regulation in this analysis [92]. PGRPs

are also related to the Toll and Imd signal transduction pathways

of the insect innate immune system [93]. Thioester-containing

proteins (TEPs) also showed recognition receptor activity in A.

gambiae during malaria parasite infection [84]. Unlike A. gambiae,

which contains 15 TEPs, the silkworm only contains three TEPs.

During Bb infection, only TEP3 (A013565), which has no

orthologs in Drosophila and Anopheles, was downregulated at

24 hpi. After microorganism recognition, regulators of the serine

protease cascade, including the CLIP serine proteases (CLIPs),

serpins (SPNs) and CTLs showed modulation [84]. Expression

levels of two of the 15 silkworm CLIPs, CLIP1 (A008668) and

CLIP2 (A014603), were regulated [23]. CLIP1, which is only

expressed in the integument and head, showed about twice of up-

to down- regulation from 3 hpi to 24 hpi. Expression levels of

three of the 26 serpins, SPN1(A010213), SPN2 (A004726) and

SPN3 (A008831), were regulated [23]. The expression level of

SPN1, which is highly expressed in the integument, head and

hemocyte, was doubled during the early stages of infection (3 hpi).

Finally, melanization effectors, including three prophenoloxidase

genes (proPOs, PPOs), were activated. PPO1 (A012764) and the

PPO1 subunit (PPO-1S, A012763), which are expressed at very

high levels in the hemolymph, were upregulated from 3 hpi to

12 hpi. The PPO-2 subunit (A013115), whish is highly expressed

in the hemolymph and head, also showed upregulation from 3 hpi

to 12 hpi [94,95]. The real time PCR analysis of PPO1 (A012764)

and PPO2 (A013115) supported the above result (Fig. 8c).

Activated PPO can catalyze the oxidation of mono- and

diphenoles to orthoquinones, which non-enzymatically

polymerize to melanin. These results show that many of the

melanization pathway genes were upregulated from 3 hpi to

12 hpi, indicating that melanization occurred during the early

stages of infection. Also, the dissected body and 490 nm

hemolymph absorbance showed that the host hemolymph

became markedly darker compared with uninfected insects at

the early stage of infection (Fig. 8c).

Bb induced host systemic immune response. To combat

microorganism infections, the insects rely on multiple innate

defence reactions such as local and systemic immune responses

[96]. Systemic immune responses involve pathogen recognition,

signal transduction, and AMP expression. In this analysis, two

short PGRPs were upregulated as expounded in serine protease

cascade melanization pathway section. The insect systemic

immune response, involves signal transduction of the Toll, Imd,

and JAK/STAT pathways [80,97]. However, for the silkworm,

little is known about the corresponding pathway by which AMPs

are induced. To determine this question, we searched the

microarray data of the silkworm Toll, Imd and JAK/STAT

signaling pathway genes. However, microarray data did not show

any regulation due to its much lower sensitivity (signal values of

most of them are less than 400 and therefore can not be identified

‘‘expression’’ to current standards) (Table S6). So, the real-time

RT-PCR analysis of the genes indicating the regulation of innate

immunity (SPZ1, Toll1, Toll6, Myd88, Tube and Rel of Toll pathway

and Hop, Dome and Stat1 of JAK/STAT) was performed (Fig. 9b, c,

Table S6). Comparison the microarray data and the real time

PCR data, although the degree of modulation was different, the

tendency of regulation of most genes were similar. Because

previous RT-PCR analysis of the IMD pathway genes showed

very weak modulation, we gave up its testing by real time PCR

analysis (data not shown).

Most of our knowledge of the Toll pathway was obtained from

the initial studies in Drosophila, and it has been shown to be activated

by fungi and Gram-positive bacterial infection. The Toll receptor is

activated upon binding by a cleaved form of spätzle, which is

proteolytically processed after activation by secreted recognition

molecules (PGRP-SA, GNBP1) [98,99]. Mature spätzle binds as a

dimer to Toll, thereby inducing its dimerization at the plasma

membrane. This causes the recruitment of three death-domain-

containing proteins, MyD88, Tube and Pelle [100–102]. Then, the

Rel transcription factors are released from the cytoplasm to the

nucleus to active APMs expression [103,104]. In the silkworm, the

Toll pathway is conserved in terms of innate immunity [23]. Our

real time PCR analysis showed that Spz1, Toll1, Toll6, MyD88, Tube

and RelA can be induced after Bb infection at 6 hpi and 12 hpi

(Fig. 9b). Spz1, mature peptide injection of which to the silkworm

can significantly upregulate transcription of eight antimicrobial

peptide genes (attacin 2, cecropin A1, -B1, -D1, gloverin A5, -B, lebocin-3,

and moricin-A1), are highly expressed at the beginning of the

infection and showed marked upregulation from 3 hpi to 48 hpi

[99]. The Toll receptor Toll1, Toll6 also showed upregulation, as did

the adapters MyD88 and Tube. MyD88 is only expressed after Bb

infection. The Rel transcription factor RelA, which can markedly

activate lebocin 4, was upregulated more than 6 times [105]. Thus,

we can speculate that the silkworm Toll pathway can be activated

by Bb oral infection.

The JAK/STAT pathway, originally identified through its role

in embryonic segmentation, has three main cellular components in

Drosophila: the receptor Domeless, the Janus Kinase (JAK)

Hopscotch, and the STAT transcriptional factor [106–108]. This

pathway is thought to participate in antiviral and inflammatory

responses [109,110]. After Bb oral infection, the membrane

receptor Dome was upregulated at 12 hpi (Fig. 9c). Hop and stat1

also showed upregulation 12 hpi. This results illustrated that Bb

oral infections can cause a weak JAK/STAT1 pathway response.

After that, AMP genes, including those of the attacin, enbocin,

gloverin, lebocin and moricin subfamilies, showed upregulation at

24 hpi, indicating that Bb can induce the silkworm systemic

immune response. The moricin subfamily, which shows the

greatest expression levels in the malpighian tubules, showed the

greatest upregulation at 24 hpi; the expression level was increased

more than eight-fold. In general, these results show that Bb is

recognized by silkworm PGRPs and the signals can be transduced

mainly by the Toll pathway, leading to the production of AMPs.

Discussion

B. bombysepticus is closely related to B. cereus and B. thuringiensis,

and is a typical natural pathogen of the silkworm B. mori. The host

transcriptional analysis after Bb oral infection presented here will

help us to understand the relationship between the Bacillus

pathogen and B. mori host. In this report, we found that many

pathways involved in the silkworm physiological functions were

changed after the infection.

First, the basal metabolic pathways were most involved. The

results demonstrated that Bb can affect six types of basal metabolic

system-related genes, leading to overexpression or reduced

expression. These types include genetic information processing

and transcription, carbohydrate metabolism, amino acid metab-

olism and nitrogen metabolism, nucleotide metabolism, metabo-

lism of cofactors and vitamins, and xenobiotic biodegradation and

metabolism. During Bb infection, particularly after the pathogen

entered the hemolymph, the silkworm has to meet the basic

material and energy needs of Bb growth and reproduction, leading

to the upregulation of some metabolic pathway genes. During Bb

infection, a partial energy originally used for silk protein synthesis

will be assigned to microorganism reproduction. A previous study

on the functional genomics of Buchnera and the ecology of aphid
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hosts showed that Buchnera have lost many capabilities, indicating

that the host must compensate for gene losses and integrate

symbiont functions into the mutualistic system [111]. However,

the mechanisms of the basal metabolic pathways modulation for

both host and pathogen are not exactly known, becoming a

particularly intriguing question to investigate.

Bb can produce spores and parasporal crystal. Therefore, it is

thought to have similar pathogenicity to Bt, and a further study has

confirmed this. Seven of the nine APNs showed substantial or

modest upregulation from 3 hpi to 12 hpi. Three APNs for Bt

toxins (A008017, A008060 and A008059) did not show the highest

expression levels in this analysis, but did show modest upregula-

tion. These results demonstrated the specific relationship between

host APNs and pathogen toxins. However, at 24 hpi, all of the

nine APNs showed downregulation. The SEM picture showed that

toxins accumulated on intestinal epithelial cells and the midgut

epithelial cells and microvillus had been damaged by the toxins.

Thus, the infiltration balance was broken.

In higher vertebrates, immunomodulator hormones such as

glucocorticoids and growth hormones can communicate between

the immune and nervous systems during infection [112]. In

insects, although relationships between hormones and pathogens

infection are rarely studied, insects can be regulated by JH during

development and metamorphosis is well known [68]. Interestingly,

JH biosynthesis- and metabolism-related genes were upregulated

after the infection in this study. Also, many of these genes were
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Figure 9. Bb induced silkworm systemic immune response. (a)Bb can be recognized by short-type of peptidoglycan recognition proteins
(PGRPs) PGRP-S2 and PGRP-S5, then, mainly through Toll signal pathway, antimicrobial peptide coding genes were induced (the asterisk indicated a
family, for the probe can not distinguish a member out from highly homologous sequences). (b) Toll pathway signal transduction diagrammatic
sketch and real time PCR ratios of corresponding genes. (c) JAK/STAT sinal transduction diagrammatic sketch and real time PCR ratios of
corresponding genes. For a detailed view of the cluster ratios, see Table S4.
doi:10.1371/journal.pone.0008098.g009
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upregulated after B. bassiana and NPV oral infection of the

silkworm (data not shown). Previous studies have shown that JH

expression is beneficial for NPV reproduction. Indeed, after a

powerful pathogen infection, JH regulation is an effective method

to prevent host insect metamorphosis and provide material and

energy for pathogen reproduction. At the same time, we found the

ecdysone receptor gene 20E (A006767) was downregulated at

24 hpi. Further studies are required to resolve this issue.

Melanin accumulation can form peutz after pathogen infection,

and this generally occurs in the insect midgut and integument.

Peutz formation after bacterial infection is universal. A Bb natural

infection can lead to the formation of a typical peutz of the

silkworm thoracic cuticle. In addition to encapsulation, serpin

cascade melanization genes and the silkworm tyrosine hydroxy-

lase-coding gene (TH, A000563), which can catalyze tyrosine to

dopa and then to dopamine melanin, were upregulated from 3 hpi

to 6 hpi [113]. Three hours after Bb oral infection, the hemolymph

was substantially darker, indicating that the infection signal can be

rapidly transduced to the hemolymph from the midgut and that

hemolymph melanization occurs during the early stages of

infection. Thus, after clotting, encapsulation of bacteria, as well

as the melanotic encapsulation caused by the PPO cascade and

tyrosine melanization pathway, the cuticle peutz is formed [80].

The hemolymph clots and melanin can accumulate in the chest

integument and finally cause cuticle peutz on the silkworm corpse.

Furthermore, we also detected 20 cuticle-protein-encoding genes

that were upregulated at 24 hpi. These might be related to

formation of the cuticle peutz.

Bb induced the silkworm systemic immune response. By real

time PCR analysis, we found that Bb, as a Gram-positive

bacterium, can induce the silkworm Toll pathway, which is

similar to results from Drosophila [114]. Most AMPs, including

those of the attacin, lebocin, enbocin, gloverin and moricin

families, showed upregulation at 24 hpi. At this time, the

microorganisms had passed through the midgut into the

hemolymph and other organs, becoming increasingly likely to

evade the host’s immune responses. After the oral infection, the

AMP expression pattern differed to that seen after direct injection;

the latter can rapidly induce AMP upregulation in the fat body

(data not shown). It remains to be determined in the silkworm

whether AMPs are induced by the Toll signal pathway or the

interaction with Imd and/or JAK/STAT pathway.

Concluding Remarks
B. bombysepticus oral infection the host silkworm triggered a strong

host response. Basal metabolic pathways were most involved after the

infection, including those of genetic information processing and

transcription, carbohydrate metabolism, amino acid metabolism and

nitrogen metabolism, nucleotide metabolism, metabolism of cofactors

and vitamins, and xenobiotic biodegradation and metabolism.

Similar to Bt, Bb can induce the modulation of silkworm poisoning-

related genes, such as APNs. Interestingly, the host JH synthesis,

metabolism and binding-related genes showed to be upregulated after

the infection. On the other hand, the silkworm immune responses,

including the cellular immune response and melanization and the

systemic immune response were also induced. The relationship

between Bb and the silkworm can be used as a model to investigate

pathogen-host interaction.

Materials and Methods

Insect Strain
The Chinese silkworm strain Dazao was used in this study. The

silkworm was reared at a stable temperature of 25uC. The larvae

stopped feeding on day 3 of the fifth instar for the infection

experiments.

Bacterial Strain
A strain of bacterium Bb was kindly provided by Professor

Yanwen Wang (silkworm Diseases Laboratory of Shandong

Agriculture University, China). This strain was separated from

the corpses of silkworms that had died due to Bb natural infection

in Daiyue district, Taian city, Shandong province, China.

16S rRNA PCR Amplification, Sequencing and Phylogeny
The 16S rRNA gene was PCR amplified with universal primers

using the Pfu DNA polymerase according to the manufacturer’s

instructions (Takara). The PCR product was fully sequenced, and

each nucleotide of both strands was read at least twice.

Phylogenetic trees were first constructed using the NCBI database

and the Blast and tree construction programs. Then, several

sequences representing their species were selected for the final tree

reconstruction using Mega 4.0 software. Primers used in this

report were shown in Table S5.

Silkworm Oral Infection by Bb Bacterium
For insects, direct bacterium injection to the body cavity is not

thought to be a natural infection process. To overcome this

limitation, a method of oral infection was developed [115]. In this

study, oral infection method was used.

Approximately 250 day 3 of the fifth instar larvae were placed in

a petri dish without food to ensure hunger before infection.

Bacteria were concentrated from an overnight culture in LB

medium with 100 mg/ml ampicillin to avoid contamination with

other type of bacterium. Then, the bacterial pellet was washed

three times with diluted water to extract the bacterial toxin before

optical density (OD) assessment. About 125 grams of artificial feed

and 50 ml of concentrated bacterial solution (OD600<100) were

thoroughly mixed in a beaker and were then cut into fine grains

and given to the silkworms. After 3 hours, most of the bacterial

meal had been eaten by the larvae. Then, the larvae were divided

into four groups and transferred to four large petri dishes and

reared with normal artificial feed. One group was raised at 25uC
with approximately 70% humidity, and larvae were collected at

different time intervals after infection for microarray analysis and

real time PCR analysis. The other three groups were raised at

30uC with approximately 90% humidity, and dead larvae were

counted at different time intervals for calculation of survival rate.

For the survival rate raised under the condition of temperature of

25uC and humidity of 70%, 150 fifth instar larvae were fed with

the same concentration of Bb as before, and raised under the

condition of temperature of 25uC and humidity of 70%, and dead

larvae were counted at different time intervals for calculation of

survival rate. For the non-induced control, the same volume of

ddH2O was mixed in the feed for the silkworm and the rearing

conditions kept the same as Bb induced.

Analysis of mRNA Expression Using Oligonucleotide
Arrays

RNA Extraction. For infection material, three larvae were

collected at different time points and snap-frozen in liquid

nitrogen immediately as one sample. Three independent samples

were got. After homogenation of the larvae in liquid nitrogen, the

resulting powders were added to 2.0 ml centrifuge tubes (each

containing approximately 0.1 g), TRIzol reagent (Invitrogen) was

added and total RNA was extracted according to the manufac-

turer’s instructions. The total RNA templates were quantified by
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spectrophotometry and subjected to 1.0% formaldehyde dena-

tured agarose gel electrophoresis. Then, samples were precipitated

in 100% ethanol and sent to CapitalBio Corp for microarray

analysis or stored at 280uC for further analysis.

Microarray Hybridization and Original Data Normalization. Gene

expression analysis was performed using the Affymetrix Silkworm

GeneChip kit according to instructions in the Affymetrix

GeneChip expression manual. The microarray hybridization

and data normalization analysis were performed by CapitalBio

Corp [19]. Procedures were performed as described in detail on

the website of CapitalBio (http://www.capitalbio.com). Briefly,

total RNA was purified using NucleoSpinH RNA clean-up kit

(MACHEREY-NAGEL, Germany). Then, formaldehyde dena-

turing gel electrophoresis was used to detect the RNA quality. The

cDNA targets were prepared from 5 mg of total RNA and were

labeled with a fluorescent dye (Cy5 and Cy3-dCTP). Analyses

were performed twice per sample, using a dyereversal procedure in

which cDNA from the control was labeled with Cy3 and cDNA

from Bb induced was labeled with Cy5. In the second analysis,

control cDNA was labeled with Cy5 and cDNA from Bb induced

was labeled with Cy3. This dye reversal helps to minimize error

due to fluor-associated bias. Labeled cDNA were hybridized to the

23k silkworm genome oligonucleotide chip (CapitalBio), which has

22,987 oligonucleotide 70-mer probes. Chips were scanned using a

Lux-Scan 10KA dual pathways laser scanner (CapitalBio), and

images were analyzed by LuxScan3.0 image analysis software. At

least two independent replicates were performed.

Data Analysis
The microarray data of multiple tissues expression of day 3 of

the fifth instar were downloaded from the silkworm genome

database (http://www.silkdb.org/microarray/download.html)

(10,393 active transcripts) [excel]. The expression data of each

gene in each tissue were averaged form four to six repeats. For

each gene, if its averaged expression signal was more than 400, it

was considered having expression. Genes only showed expression

in one tissue or more than 10 times than other tissues were

considered as tissues specific genes.

The transcript values of infected larvae were subtracted from

those of unchallenged control larvae to account for the

development-regulated genes in the further steps. The data from

the independent experiments were then averaged. Transcripts

were selected when they displayed at least a 2-fold change in

expression level compared with control larvae. The induced gene

ontology analysis was predicted using the online molecule

annotation system of CapitalBio Corp (http://www.capitalbio.

com/zh-hans/support/MAS). The typical enzyme-catalyzed re-

actions were predicted using the online pathway relationship

database KEGG (http://www.genome.jp/kegg/). All the data

used reporting this report is presented in Table S2.

Real Time PCR Confirmation of Microarray Data
Seven pairs of primers were designed to confirm microarray

data. The primers sequences are listed in additional file 5. The real

time RT-PCR confirmation results were performed using the

SYBR Premix Ex Taq kit (TaKaRa, China) and each reaction was

prepared in 25 ml containing 70 ng cDNA (2 m1), SYBR Premix

Ex Taq 12.5 m1, 10 mM each of sense and anti-sense primers

0.5 m1. After 40 cycles of amplification, the results were read by

ABI Prism 7000 Sequence Detection System (Applied Biosystems).

The real time RT-PCR was performed in duplicate for at least

three biological replicates. For internal standardization primers,

sw22934 (transcription initiation factor 2 gene) was used [116].

For each pair of primers, cDNA samples of four time points of

induced and non-induced were performed.

Gene Identification
Genes were identified using the proteins of SilkDB (http://

silkworm.swu.edu.cn/silkdb/) to blast homologs in NCBI database

(http://www.ncbi.nlm.nih.gov/) and PFAM domain database

(http://pfam.sanger.ac.uk/search). E-values less than 1e-5 were

used. For most silkworm immune related genes used in this study,

we referenced Tanaka et al who identified silkworm innate

immunity genes [23].

Scanning Electron Microscopy (SEM)
Infected silkworm larvae guts were dissected into 0.9% NaCl

medium. The intestinal contents were removed and the guts were

washed in 0.9% NaCl medium for twice to wash off all the

intestinal contents. The Bb bacteria were cultured in LB solid

medium for 36 hours. The cleared guts and Bb bacteria were

immediately fixed with 2.5% glutaraldehyde for 2 hours. The

fixed samples were rinsed in 0.01 M phosphate buffer (pH 7.4) for

20 minutes for three times. The samples were post fixed in 1%

osmium tetroxide for 2 hours and rinsed in ddH2O for 15 minutes

for three times. Then, the fixed samples were immersed in a series

of ethanol-water washes (30%, 50%, 60%, 70%, 80%, 90% and

100%) for 15 minutes per gradient and immersed in a series of

tert-butyl alcohol (50%, 75% and 100%) gradient dehydration for

10 minutes per gradient and immersed in solvents of tert-butyl

alcohol: acetonitrile 2:1 and tert-butyl alcohol: acetonitrile 1:1 for

10 minutes respectively. Finally, the samples were kept in 100%

acetonitrile solvent. Samples were dried using a critical point

drying apparatus and CO2 coated specimens with gold/palladium

(60-40) using a sputter coater. Remove the samples from the dryer

and attach them to SEM. The samples were observed with Hitachi

S-3000N scanning electron microscope (Japan).

Hemolymph Absorbance Detection
Three infected silkworm hemolymph were got together in

1.5 ml tube at different time points. Three samples were got for

each time point. About 10 mg phenylthiourea was added into each

sample tube immediately to prevent hemolymph melanization.

490 nm absorbance of hemolymph was detected using DUH
800 UV/Visible spectrophotometer (USA).

Supporting Information

Table S1 Bb induced enzymes involved in general metabolism of

silkworm by KEGG prediction.

Found at: doi:10.1371/journal.pone.0008098.s001 (0.06 MB

PDF)

Table S2 Ratios and anatation of all Bb induced genes.

Found at: doi:10.1371/journal.pone.0008098.s002 (0.27 MB

PDF)

Table S3 Multiple tissues expression data of the induced genes.

Found at: doi:10.1371/journal.pone.0008098.s003 (0.17 MB

PDF)

Table S4 The ratios of genes mentioned in this report.

Found at: doi:10.1371/journal.pone.0008098.s004 (0.03 MB

PDF)

Table S5 Primers used for cloning the 16S rRNA gene clone,

real time PCR analysis.

Found at: doi:10.1371/journal.pone.0008098.s005 (0.01 MB

PDF)
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Table S6 The microarray data and Real-Time PCR data of

innate immune signaling genes.

Found at: doi:10.1371/journal.pone.0008098.s006 (0.01 MB

PDF)
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