
OR I G I N A L A R T I C L E

Serum proteome modulations upon treatment provides
biological insight on response to treatment in relapsed mantle
cell lymphoma

Lavanya Lokhande1 | Venera Kuci Emruli1 | Christian Winther Eskelund2,3 |

Arne Kolstad4 | Martin Hutchings2 | Riikka Räty5 | Carsten Utoft Niemann6 |

Kirsten Grønbæk2,3,7 | Mats Jerkeman8 | Sara Ek1

1Department of Immunotechnology, Lund

University, Lund, Sweden

2Department of Haematology, Rigshospitalet,

Copenhagen University Hospital, Copenhagen,

Denmark

3Biotech Research and Innovation Centre

BRIC, University of Copenhagen, Copenhagen,

Denmark

4Oslo University Hospital, Oslo, Norway

5Department of Hematology, Helsinki

University Central Hospital, Helsinki, Finland

6Department of Clinical Medicine, University

of Copenhagen, Copenhagen, Denmark

7The Danish Stem Cell Center (Danstem),

Faculty of Health and Medical Sciences,

University of Copenhagen, Copenhagen,

Denmark

8Department of Oncology, Lund University,

Lund, Sweden

Correspondence

Sara Ek, Department of Immunotechnology,

Lund University, Lund, Sweden.

Email: sara.ek@immun.lth.se

Funding information

Cancerfonden, Grant/Award Numbers:

2016/465, 2019/0309; Fru Berta Kamprads

Stiftelse, Grant/Award Number: FBKS-

2018-7-(149); Horizon 2020 Framework

Programme, Grant/Award Number: EU-

H2020-MSCA-COFUND-2016-754299

Abstract

Background: The possibility to monitor patient's serum proteome during treatment can

provide deepened understanding of the biology associated with response to specific

drugs. Non-invasive serum sampling provides an opportunity for sustainable repetitive

sampling of patients, which allows for more frequent evaluation of the biological

response and enhanced flexibility in treatment selection in contrast to tissue biopsies.

Aim: To pin-point biologically relevant changes in pre- and on-treatment serum pro-

teome samples in relapsed mantle cell lymphoma (MCL) patients, leading to insight

into mechanisms behind response to treatment in sub-groups of patients.

Methods: Pre- and on-treatment serum samples from relapsed MCL patients treated

with a triple combination therapy of rituximab, ibrutinib and lenalidomide were avail-

able for the study, together with detailed clinicopathological information. A microar-

ray technology targeting 158 serum proteins using 371 antibody-fragments was used

to compare the serum proteome at the two time-points.

Results: Proteins modulated by the treatment were shown to be associated to a MCL

sub-group with ATM/TP53 alterations, which emphasizes the importance of treatment

stratification. Absolute values of serum protein levels in on-treatment samples were highly

variable and showed no correlation to outcome. To circumvent the challenge of variability

in absolute serum protein levels, the velocity of change of individual serum proteins was

used to identify proteins associated with clinical response. Increased values of TGF-β1,

CD40 and complement component 4 comparing pre- and on-treatment samples were

associated with remaining minimal residual disease (MRD) and increased BTK was associ-

ated with short progression-free survival (PFS).

Conclusion: We show that the genetic sub-type of MCL affects the biological

response to treatment in serum and that the change in defined serum proteins

reveals the biology associated with clinical response.
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1 | INTRODUCTION

Mantle cell lymphoma (MCL) remains a subtype of non-Hodgkin's lym-

phoma (NHL) with high relapse rates and poor prognosis.1 Over the

last few decades, the increase in understanding of the molecular path-

ogenesis of this disease has enabled development of new therapeutic

regimens with emphasis on anti-CD20 monoclonal antibody immuno-

therapies in conjugation with prevalent chemotherapeutic strategies.2

This has improved the overall survival and lowered the progression

rate. However, further improvement in combinatorial therapeutics is

needed for better outcome, particularly in patients with relapsed/

refractory (R/R) MCL.

To aid in this process, improved insight of how the current thera-

pies modulate the biology is essential. Using serum, it is possible to

analyze the effect on the systemic immune profile by various treat-

ments, as samples across multiple time-points easily can be collected.

Changes in serum proteome can then be used to gain clinically rele-

vant insights.3,4 This is especially important for aggressive systemic

diseases like MCL where repeated invasive sampling through tissues

biopsies is not feasible.

Serum proteins have proven to be extremely valuable to gain

diagnostic and prognostic information in various cancer types with

several biomarkers being clinically implemented; either as individual

markers (e.g., prostate-specific antigen [PSA] for prostate cancer diag-

nosis and prognosis) or combined signatures (e.g., OVA1 five protein

panel for ovarian cancer).5,6 The focus of serum analysis in most publi-

shed studies is on pre-treatment cohorts for biomarker discovery in

relation to diagnosis and treatment outcome predictions. As serum

proteins are in a state of constant flux, especially when the patient's

treatment status changes, there is additional information to be col-

lected in on-treatment sampling for improved understanding of dis-

ease progression. Few studies have analyzed the on-treatment

modulation of serum proteins for B-cell lymphomas before and during

treatment,7–9 and none for MCL.

In the present study, we took benefit of the combined collection

of pre- and on-treatment serum samples and clinicopathological infor-

mation from the Nordic MCL6-Philemon clinical trial for relapsed/

refractory (R/R) MCL.10,11 The trial includes immunomodulatory treat-

ment with lenalidomide, BTKi ibrutinib and anti-CD20 antibody

rituximab. In a previous study, a prognostic signature (RIS; relapsed

immune signature) based on 11 serum proteins correlated to overall

survival was developed using the pre-treatment samples.12 Clinical

and biological information was integrated and the MCL international

index/relapsed immune signature (MIPIris) was developed and showed

improved stratification of patients into three risk groups.12 A separate

previous study has also investigated the most common genetic alter-

ations, including ATM and TP53 and their correlation to clinical out-

come in MCL.13 In this follow-up study, the IMMray™ protein

microarray technology was used to investigate changes in serum pro-

teome pre- and on-treatment.

The aim of the study is to pin-point changes in pre- and on-

treatment serum proteome samples, leading to improved biological

insight of relapsed MCL and response to treatment.

2 | METHODS

2.1 | Patient samples and information

Serum samples were collected from patients included in R/R

MCL6-Philemon clinical trial (NCT02460276) conducted by the

Nordic Lymphoma group (patients enrolled 2015–2016, with last

follow-up date in December 2019). The patients received induction

treatment with lenalidomide, ibrutinib and rituximab (12 cycles,

28 days each).10 This was followed by a maintenance phase of

rituximab and ibrutinib. Samples were collected pre-treatment (Base-

line samples, n = 44), and on-treatment (at cycle 4, after 12 weeks of

treatment, n = 36) which is the second time-point used for serum

analyses in the present study.11 Samples from eight patients were lac-

king at the second time point. Five samples were lacking due to death

of the patients, whereas three serum samples were not available and

hence, not evaluated in the microarray (Figure 1). Serum samples were

stored at �80�C until the day of the experiment. The overall patient

characteristics are shown in Figure 1 and in Table S1.

The patient information and material collected from this trial was

previously used to assess the treatment regimen efficacy10,11 and to

identify gene mutations or deletions.11 Serum analysis on the pre-

treatment samples has been published, which led to the formation of

a prognostic serum protein signature strengthening the established

MIPI, and the development of the MIPIris.
12 The current study is a

follow-up of the previous serum analysis to study the effect of treat-

ment on the serum proteome, and which biological information can be

retrieved on response to therapy in the relapsed setting. The experi-

mental setup is identical to the published study and explained in detail

in Lokhande et al, 2020.12

For this cohort of patients (n = 44), the median follow-up time is

around 5 years, with a median survival of 40.3 months and a median

progression free survival of 17.6 months. Additionally, 25% of patients

(n = 11) had ATM mutation and 52% (n = 23) of patients had TP53

aberrations (mutations or deletions; Figure 1). In total, 15.9% (n = 7) of

patients had aberrations in both ATM and TP53 (Figure 1). The muta-

tion status was analyzed from DNA extracted from bone marrow sam-

ples, using a custom-designed multiplex Ion Ampliseq panel (Ampliseq

designer, Thermo Fischer Scientific, Waltham, MA) described in

Eskelund et al.13 As reported previously,11 no significant correlation

between survival and TP53 aberrations was seen, in contrast to studies

where patients have been treated with chemotherapy-based regimens

in which TP53mutations is a poor prognostic marker.14,15 To determine

minimal residual disease (MRD), PCR amplification of immunoglobulin

heavy chain genes (IGH) and CCND1-IGH t(11;14) translocations were

assessed from bone marrow derived DNA, as previously described.11

2.2 | Serum protein microarray and data
pre-processing

The serum samples (n = 80) were analyzed using an antibody microar-

ray platform with 371 single chain antibody fragments targeting
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158 immunoregulatory serum proteins. The antibody-target list can be

found in Table S2 and the experimental protocol has been explained in

detail in Lokhande et al.12 The generated dataset was quality controlled,

followed by ComBat normalization (using surrogate variable analysis

[SVA] package, www.r-project.org) to remove batch effects.12

2.3 | Data analysis

Two-group comparison and p-value filtering (α-cutoff = .05) using

Qlucore (Qlucore, Lund, Sweden) was used to identify differentially

regulated proteins in paired samples (B vs. C4). GraphPad prism 9 (Gra-

phPad software, San Diego, CA) was used to create the box-and-

whisker plots and to perform two-tailed paired t-test for assessing the

intensity distribution before and after-treatment.

The difference was defined as the log ratio of signal intensity of

paired samples (n = 36), hereafter named as velocity of change or δC4,
representing the rate of change in serum expression comparing pre and

on-treatment expression profiles. Thus, δC4 < 0 indicated higher expres-

sion and δC4 > 0 indicated lower expression in the on-treatment samples

in comparison to the pre-treatment samples. Qlucore omics explorer

(Version 3.6, Qlucore, Lund, Sweden) was used for heatmap, volcano

plot and feature reduction using group comparison with a p-value cut-

off of .05. To identify key biomarkers in relation to time-to-progression

(TTP), patients were grouped based on PFS (Figure S1(A)). Early progres-

sion and late progression were classified as patients that progressed

within the first year (n = 17) and during/post fourth year (n = 16),

respectively (Figure S1).

The remaining graphs and other analysis (Kaplan–Meier curve,

time-series graph, log-rank tests) were created using R and R studio

(www.r-project.org). For functional analysis of proteins, pathway

analysis was performed using STRING: The Search Tool for the

Retrieval of Interacting Genes/Proteins (http://stringdb.org). The

entire analysis workflow for the study is given in Figure S2.

3 | RESULTS

3.1 | Differentially expressed biomarkers between
pre- and on-treatment samples are associated with
specific genetic subtypes

With the aim of increasing biological understanding of disease pro-

gression, we performed comparative analysis of serum proteins in

pre- and on-treatment samples to find differentially regulated pro-

teins. Feature reduction of the entire antibody panel in conjunction

with paired (n = 35) two-group comparison (Qlucore), yielded three

statistically significantly (p < .05) differentially regulated proteins: Poly

(ADP-Ribose) Polymerase 1 (PARP1), Aprataxin, PNK-like factor

(APLF) and Golgi reassembly-stacking protein 2 (GOLPH6; Figure 2

(A)). The three proteins had reduced expression in the on-treatment

samples. However, this decrease was exclusively contributed by

patients with aberrations of TP53 and/or ATM (Figure 2(B)). Co-

current ATM/TP53 aberrations showed association with decreased

expression for both GOLPH6 and PARP1 (p � .0008 and p � .0017

respectively) (Figure 2(B),(D)). APLF showed decreased serum expres-

sion at C4 with the most significant difference in the ATM mutated

patients (p � .0005; Figure 2(C), (D)). The non-mutated patients did

not exhibit any differential profile between pre- and on-treatment

samples for the three identified proteins (Figure 2(D)). The association

to ATM and TP53 mutations indicates that genomic status plays a role

in treatment-dependent protein modulation.

Gender

Male

Female

NAMRD Status

MRD Positive

MRD Negative

Mutation Status

Mutated/Deleted
Non-mutated

Risk group

Low risk

Intermediate risk

High risk

Ki67 Score

Less than 30%

Greated than 30% 

Survival Event

Live

Death

Progression within the 1st year

Baseline - 12 weeks (C4)

12 - 24 weeks (C7)

24 - 36 weeks (C10)

36 weeks - 1st year

Progression within the 1st year

By 2nd year

By 3rd year

By 4th year

After 4th year

F IGURE 1 Mapping of the most important outcome and clinicopathological parameters including OS, PFS, survival event at latest follow-up,
ATM and TP53 aberrations, Ki-67, MRD, MIPI, MIPIris and gender (upper panel). Patients are sorted according to OS (low (black) to high (pink)).
Likewise, PFS is also represented in a range (low(black) to high (orange). NA (gray) represents missing data points. The minimal residual disease
(MRD) status (*) was measured at 6 months after treatment initiation using bone marrow. For each patient, the time to progression is shown as a
color code (lower panel)
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3.2 | Evaluation of previously defined
RIS-signature

To evaluate if the previously defined RIS-signature is stable at on-

treatment, the signature was evaluated using the serum protein levels

in on-treatment samples. We show that the trend with higher expres-

sion of the RIS-proteins in the low-risk group remains the same

(Figure S3). However, when using absolute values and comparing

high/low-risk MIPIris groups, no analytes were significantly regulated

within the MIPIris subgroups in the on-treatment samples, while more

than 200 analytes (data not shown) were statistically differentially

regulated between high/low MIPIris in pre-treatment samples. Thus,

we concluded that although trends identified in pre-treatment sam-

ples remain the same in on-treatment samples, the biological variation

induced by the treatment causes a major challenge in using absolute

values in on-treatment samples.

(B)    

(A)    

(C)    

(D)    

F IGURE 2 Serum expression levels for each of the three proteins differentially expressed comparing pre- and on-treatment samples.
(A) Three proteins PARP1, APLF and GOLPH6 were identified using Qlucore™ after variance and p-value (α < .05) filtering using two group
comparison. Differential serum expression levels between pre- and on-treatment patients with (B) ATM-TP53 co-current aberrations for PARP1,
APLF and GOLPH6 respectively and (C) APLF profile for ATM mutated patients. (D) Table with the p-value (paired analysis) of the three serum
proteins in the different genetic sub-types of MCL. Boxes are colored in accordance with p-value (green: non-significant [ns], pink: p < .05, yellow:
p < .01 and blue: p < .001). Based on the overall analysis, ATM aberrations seem to be more significant, but co-current samples overall contribute
the most to the expression profile. *p < .05, **p < .01, ***p < .001
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3.3 | Velocity profile (δC4) circumvents
heterogeneity in protein modulation and pinpoints
additional biomarkers associated to MRD and
progression

To be able to analyze the patient specific response independent of

absolute serum protein values, we exploited a strategy of using the

velocity of change between pre- and on-treatment samples. This

strategy has successfully been employed previously in a similar

dataset obtained by the IMMray™ technology for breast cancer clini-

cal cohort study for prediction of metastasis.16

By assessing the panel of proteins using δC4, and associating it to

outcome and important clinical parameters, we identified three pro-

teins that were differentially regulated between MRD+ and MRD�
patients. TGF-β1 was the most significant (p-value = .0186) analyte

followed by CD40 (p-value = .0275) and complement component 4

(p-value = .048). Overall, MRD+ were associated with increased pro-

tein expression in on- compared to pre-treatment samples for the sig-

nificantly de-regulated proteins (Figure 3).

To identify key biomarkers in relation to TTP, patients were cate-

gorically classified as early and late progression as defined in the

Methods section. Using δC4 and the two-group comparison in

Qlucore™, we identified the top 20 differentially regulated serum pro-

teins comparing early and later progression. These proteins mainly

consisted of inflammatory cytokines, chemokines and proteins

belonging to the complement cascade and can be directly correlated

to the immunomodulatory treatment (Figure 4(A)). Among the top 20

proteins, BTK (p = .026) was significantly modulated between the

F IGURE 3 Heatmap showing the expression of the three proteins
differentially regulated between patients with MRD (Yellow) and
without MRD (Blue) using δC4. MRD was measured using bone
marrow samples 6 months after treatment initiation. δC4 < 0 indicates
higher expression and δC4 > 0 indicates lower expression in the on-
treatment samples in comparison to the pre-treatment samples.
#Refers to complement component 4

(C)(A)

(B)

F IGURE 4 Serum proteins associated with time to progression. (A) Pathway analysis of the top 20 serum proteins differentially modulated

(δC4) comparing patients with early and late progression. The identified proteins are broadly associated with interleukin signaling (red),
complement cascade (blue) or in signal transduction (yellow). (B) Volcano plot identifying BTK to be significantly (p-value cutoff = .05)
overexpressed (comparing on- and pre-treatment samples) in patients with early progression. (C) Heatmap of the top 20 serum proteins sorted in
accordance with decreasing p-value. The heatmap shows the formation of two major clusters based on the protein expression profile of the
velocity of change. Various clinical parameters including mutational status, progression and survival have been mapped to the cluster distribution.
δC4 < 0 indicates higher expression and δC4 > 0 indicates lower expression in the on-treatment samples in comparison to the pre-treatment
samples. *Represents protein identified by second antibody clone. #C4/C5 represents complement component 4/5, respectively
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early and late progression (Figure 4(B) and Figure S4). Heatmap visual-

ization led to the formation of two clusters of patients with either

higher (C4 > B (n = 13)) or lower expression of these top 20 proteins

comparing pre- and on-treatment samples (C4 < B (n = 11)) (Figure 4

(C)). In general, patients with early progression (87.5%) showed

increased expression upon treatment for proteins associated with

time to progression. In the group with high expression of the top

20 proteins identified by hierarchical clustering, 53% of the patients

died during the treatment period, with an average OS of 26.9 months.

Contrarily, only 9% of the patients associated with low expression of

the top 20 proteins died during the same time period and had an aver-

age OS of 43.1 months. The differences in OS were not explained by

the frequency of TP53 mutations (data not shown). Based on the

above, we conclude that increasing serum levels of BTK is indicative

of continued tumor growth and associated with progression before

12 months. Increasing serum expression of BTK is indicative of poor

response to treatment and results in early progression and lower sur-

vival (Figure 4 and Figure S4).

4 | DISCUSSION

A biologically oriented approach to treatment selection and adapta-

tion is a must to improve outcome in relapsed MCL. Here we explored

the biology behind treatment response through investigations of pre-

and on-treatment samples from a clinical trial including a combination

of targeted and immune-stimulatory agents. By measuring serum pro-

teins, a global view of both the systemic immune response against the

tumor as well as the proteins secreted or leaked from the tumor can

be assessed, and the non-invasive sampling allows repetitive collec-

tion over time.

Based on our study, we conclude that, (a) MCL subtypes with

specific mutations in TP53 and ATM affect the way that the serum

proteome changes upon treatment, emphasizing that the response is

dependent on specific features of the tumor biology. (b) Using the rate

of change/velocity profile, which circumvents the heterogeneity of

absolute protein serum levels, serum protein changes associated with

early progression and MRD status could be identified.

Comparing pre- and on treatment serum samples, we show that

three proteins, that is, PARP1, APLF, GOLPH6 were differentially reg-

ulated with lower expression after 3 months of treatment and the

reduction was primarily seen in patients with alterations in either

TP53 and/or ATM. Thus, it seems that MCL patients with a specific

mutational spectrum respond more homogenously to the treatment.

In particular, PARP1 has been extensively studied in various cancer

types,17–21 with a focus towards PARP1 inhibitors and synthetic

lethality.22 The efficacy of these inhibitors in inducing lethality in ATM

and ATM-TP53 double deficient MCL was previously validated using

in vitro and in vivo models.23–27 Thus, the modulation in PARP1

expression in ATM-TP53 aberrated MCLs could be a result of the

increased DNA repair burden and targeting PARP1 in these tumors is

an interesting clinical option. A potential cause of decreased PARP1

serum expression could be a result of tumor reduction upon

treatment, which needs to be further investigated. Ibrutinib that is

included in the treatment is known to activate caspase signaling that

in the next step causes PARP1 cleavage, a known hallmark of cell

death through apoptosis.28–33 In this study, the antibody-fragment

used targeting PARP1 is directed to the C-terminal part of the protein

and will thus detect either the full protein or the 89 kDa caspase-

cleaved subunit, both including the C-terminal domain.

APLF and GOLPH6, have not previously been studied in relation

Ibrutinib/Lenalidomide or Rituximab. However, APLF functions

together with PARP1 in DNA repair mechanisms34 and there is also

evidence that GOLPH6 is cleaved by caspase-3 during apoptosis.35

Thus, we speculate that the serum expression profile of these three

proteins is a result of increased apoptosis of tumor cells.

To improve the biological understanding of treatment effect on

serum proteome, as a surrogate marker for local response in the

tumor, comparative analysis of the change in serum levels for pre- and

on-treatment samples was performed. We showed that the absolute

values in on-treatment samples were highly variable and no correla-

tion to outcome was seen, thus the velocity of change (δC4) in serum

protein levels was used to assess changes more robustly. The concept

of using the velocity of change has been extensively studied, espe-

cially for prostate-specific antigen (PSA), since the most common

problem with PSA has been its variable detection, which leads to

overdiagnosis and thus, overtreatment.36,37 The use of PSA velocity

(PSAV) has been proposed and comprehensively reviewed.38–40

In our study, we show that the velocity of change (δC4) of TGF-β1

serum protein along with CD40 and complement component

4 (C4) was different comparing patients with/without MRD at

6 months of treatment. TGF-β1 has been demonstrated to negatively

contribute to persistent MRD positive status in several types of can-

cer.41–43 TGF-β1 can act as a metastatic driver, inducer of EMT transi-

tion and impair anti-tumorigenic response.44–46 Thus, our results

where increased serum TGF-β1 at 3 months of treatment predicts

6-months MRD status suggest that targeting and/or using TGF-β1 to

monitor MCL patients is an interesting prognostic tool.

Furthermore, we show that the velocity of change (δC4) of BTK

was associated with disease progression. As there is no evidence that

BTK is secreted, the serum profile could be a result of the proteins

being released from lymphoma cells upon treatment. The possibility

to measure BTK in serum as a surrogate marker for tumor burden is

an attractive alternative that should be further studied.

In summary, in this conceptually novel study of pre- and on-

treatment serum samples in relapsed MCL, we were able to pin-point

novel biological findings with a tentative future clinical implication.

We show that the genetic background influences the way that the

serum proteome changes upon treatment, confirming that genetic

testing is important for treatment selection. We further conclude that

using velocity of change between pre- and on-treatment samples

enables us to circumvent the heterogeneity in absolute serum levels

of biologically interesting markers. Thus, we propose that non-

invasive sampling of serum is useful to monitor patients and provides

the possibility to adjust treatment based on biological response.

Serum sampling at/or before 12 weeks of treatment should be
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introduced in future clinical trials to allow similar studies for a wider

set of treatment regimens. Based on our data, we conclude that a risk

score combining MIPI, key genetic alterations including TP53 and

ATM, and velocity of change of key serum markers, is a way forward

to reach more personalized MCL treatment plans.
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