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Abstract

The health of a cell requires proper functioning, regulation, and quality control of its organelles, 

the membrane-enclosed compartments inside the cell that carry out its essential biochemical tasks. 

Aging commonly perturbs organelle homeostasis, causing problems to cellular health that can spur 

the initiation and progression of degenerative diseases and related pathologies. Here, we discuss 

emerging evidence indicating that age-related defects in organelle homeostasis stem in part from 

dysfunction of the autophagy-lysosome system, a pivotal player in cellular quality control and 

damage clearance. We also highlight natural examples from biology where enhanced activity of 

the autophagy-lysosome system might be harnessed to erase age-related organelle damage, raising 

potential implications for cellular rejuvenation.
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In eukaryotic cells, molecular waste and damaged materials can be delivered to lysosomes 

for enzymatic degradation via autophagy [1]. During this process, autophagic vesicles, 

termed autophagosomes, form around select cargo, then subsequently fuse with the 

lysosome to allow for targeted degradation. Though autophagosomes were first observed by 

electron microscopy in the mid-1950s [2], it was not until nearly 40 years later that the first 

autophagy genes were identified in yeast [3–5]. Since then, breakthroughs in live-cell 

imaging have enabled sophisticated, real-time imaging of the autophagic process in several 

eukaryotic species, including animals [6,7]. In addition, an expanding pharmacological 

toolkit of molecules that modify autophagic activity in vivo (Table 1) has facilitated 

manipulation of this system in live organisms and raised exciting therapeutic prospects.

A defining feature of the autophagy-lysosome system is its unique ability to recalibrate 

cellular homeostasis in response to a cell’s needs. If a cell is under intrinsic or extrinsic 

stress, activation of autophagy can help to erase molecular damage and to recycle material 
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needed to support basic biological functions [1]. When these mechanisms fail, the stress can 

amplify, leading to an irreparable collapse in cellular homeostasis. Notably, aging is 

accompanied by several molecular signs of stress. As cells get older, genetic instability 

increases, proteins cluster into non-functional aggregates, and organelles, the cellular mini-

factories that execute distinct signaling and metabolic functions, become damaged and 

inefficient [8]. Is this age-related collapse in cellular health and homeostasis linked to 

defects in autophagy?

Remarkably, researchers have found that an early-age decrease in lysosome and autophagic 

activity may be an initiating “domino” in age-related cellular deterioration [9,10]. Consistent 

with this model, modifying autophagic activity has profound effects on the aging process; 

experimental inhibition of lysosomal and/or autophagic factors accelerates aging in various 

organisms [11–14], whereas interventions that boost autophagic activity delay the 

appearance of cellular signs of aging and extend lifespan [15–17]. Even human centenarians 

[18], like long-lived mutant animals [19], have been reported to display exceptionally high 

levels of autophagic activity. These and other findings highlight the autophagy-lysosome 

system as an emerging nexus in the control of aging and longevity (Figure 1). Still, 

molecular details of this regulation remain obscure.

For one, how is different autophagic cargo handled in aging cells, and do changes to cargo 

turnover directly contribute to the aging process? Many studies have investigated how 

defective autophagy impedes protein-aggregate clearance in old cells [20]. This is an 

important line of research, given that impaired protein homeostasis (‘proteostasis’) is 

characteristic of many age-related diseases, including Alzheimer’s [21]. Yet, defective 

organelles are also common to age-related diseases [22–24], and their turnover is likewise 

sensitive to lysosome dysfunction [1,25]. To date, surprisingly little is known about the 

dynamics and control of organelle turnover in aging cells. Clarifying the regulation of 

organelle-specific autophagy during aging could provide novel clues on the biological basis 

of age-related disease, and might also hint at therapies for fighting the aging process.

Perhaps the most information is currently known regarding the age-related regulation of 

mitochondria, the energetic hubs of a cell. With age, mitochondrial function and homeostasis 

break down. Several proteins involved in oxidative phosphorylation and fatty-acid 

metabolism, two key cellular processes that occur at mitochondria, have been reported to 

decrease in abundance in old animals [26–28]. These molecular alterations, combined with 

other age-induced changes to mitochondrial protein levels and stoichiometry [29], are 

thought to impair mitochondrial activity and destabilize cellular bioenergetics and 

metabolism. As a consequence of this dysfunction, fragmented, oxidatively-damaged 

mitochondria are commonly seen in old cells of diverse eukaryotic species, ranging from 

yeasts to mammals [8,9,30–32]. Th ough healthy cells can effectively eliminate 

dysfunctional mitochondrial fragments by mitochondrial autophagy, or ‘mitophagy’ [33], 

mitochondrial-clearance mechanisms show signs of failure in old age [34,35]. This disrupts 

the balance between mitochondrial biogenesis and degradation, causing an age-dependent 

increase in damaged mitochondria that further exacerbates cell stress [34]. Mitophagy 

defects can predispose humans to degenerative disease; indeed, dysfunction of mitophagy 

factors, including Parkin and PINK1, is commonly seen in Parkinson’s disease patients 

Butsch et al. Page 2

Adv Geriatr Med Res. Author manuscript; available in PMC 2021 May 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[36,37]. Thus, impaired turnover of damaged organelles is at least partly to blame for some 

of the classic aging pathologies commonly seen in the clinic.

Importantly, impaired turnover with age does not appear to be limited to mitochondria. In 

cells, lysosomes are responsible for degrading additional types of organelles, including 

portions of the endoplasmic reticulum (ER), peroxisomes, and even other lysosomes. Like 

mitochondrial damage, ER stress accumulates in old cells [38]. Strikingly, genetic inhibition 

of ER-phagy causes progeric phenotypes and shortened lifespan in mice [39], hinting that 

ER turnover might be required to slow the pace of aging. Additionally, peroxisomes and 

lysosomes have been reported to increase in abundance in late age in some species and cell 

types [40,41]. In fact, uncleared lysosomes generate a non-degradable, autofluorescent ‘age 

pigment’, which has been used as a visual readout for biological age in multiple systems 

[42–44]. It will be important to clarify how directly these age-related changes in organelle 

number reflect impairment of the autophagy-lysosome system, and whether these changes 

bring about physiological effects on metabolic functioning in old animals.

While the general trend is that organelle turnover appears to decline with advanced age due 

to autophagy-lysosome dysfunction (Figure 1), this may not be true of all organelles, or for 

all stages of the aging process. For example, pieces of the nucleus are degraded at lysosomes 

in aging worms, even in the healthiest of individuals [45]. How nuclear autophagy 

(‘nucleophagy’) regulates organismal physiology, particularly during aging, is unclear, but it 

may be protective, as suggested in mouse models of laminopathies [46]. It remains to be 

seen whether other organelles likewise undergo regulated, active turnover in aging animals. 

Some organelles may even be degraded in early aging but start to accumulate later once 

lysosomes become dysfunctional. Understanding the dynamics and timing of organelle 

turnover at different stages of aging could reveal complexities that affect aging rate and/or 

stochasticity among different individuals in a population.

If organelle damage is generally characteristic of very old age, could harnessing organelle-

specific autophagy help an old cell to regain its vitality and youthfulness? Germ 

(reproductive) cells provide a unique opportunity to study cellular rejuvenation, because age 

is naturally reset across generations. We and others have shown that cellular damage, 

including defective mitochondria, can be rapidly reversed as oocytes prepare for fertilization 

[47,48]. Removal of dysfunctional molecules and organelles is also seen during 

gametogenesis in single-celled yeast [49]. These findings imply that damage-clearance 

mechanisms may function centrally to the biological mechanisms of transgenerational 

rejuvenation. In support of this interpretation, lysosomes are activated in maturing oocytes 

prior to fertilization [47], and, once active, they could conceivably clear various forms of 

cellular damage, including dysfunctional organelles, to reset cellular health and homeostasis 

across generations. Though the specific cargo received by oocyte lysosomes awaits full 

description, identification of natural mechanisms that renew organelle health in the immortal 

germ-cell lineage could point the way to new strategies to counteract organelle damage in 

old somatic cells.

Lysosome induction has been reported to also occur during stem-cell activation and 

differentiation [50–52]. In these contexts, as in oocyte maturation, lysosome activation is 
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linked to a developmental rewiring of cellular metabolism. Though, again, much attention 

has been paid to the role of lysosome activity in stem-cell proteostasis, there is recent 

evidence that organelle-specific autophagy plays a fundamental role in stem-cell and 

regenerative biology [53–57]. For one, impaired mitophagy leads to muscle stem-cell 

quiescence in old mice, and re-establishing autophagic flux is sufficient for old muscle stem 

cells to exit quiescence and regain stemness [58]. Importantly, defective mitophagy appears 

to cause oxidative stress and stem-cell depletion in other cell types as well [59,60]. These 

findings hint that mitochondrial turnover might be a pivotal determinant of regenerative 

capacity.

Notably, mitophagy also appears important in the generation of induced pluripotent stem 

cells (iPSCs) [57,61]. A number of rejuvenating events, including telomere re-lengthening 

and organelle renewal, have been associated with iPSC generation from differentiated cells 

[62–64]. Inhibiting mitochondrial fission, one of the early steps in mitophagy induction 

[33,65], prevents the conversion of fibroblasts to iPSCs [61]. Thus, it is exciting to speculate 

that organelle-specific autophagy may be integrated with other rejuvenating events involved 

in iPSC reprogramming, and that enhancing these activities might provide an entry point to 

improve the efficiency of this process.

Beyond mitophagy, other forms of organelle-specific autophagy are only beginning to be 

studied in the context of cellular regeneration and rejuvenation. Interestingly, elevated ER 

stress has been linked to iPSC death [66], and significant ER remodeling occurs as part of 

iPSC reprogramming [67]. In principle, ER quality control mechanisms, including ER-

phagy, could aid regenerative capacity, particularly in old animals where persistent ER stress 

abounds [38]. As a compelling corollary, the ER has been shown to undergo dramatic 

rearrangements coincident with oocyte maturation and lysosome activation in the C. elegans 
germline [68]. How the ER and lysosomes are functionally and/or mechanically linked to 

support cellular rejuvenation is an important open question moving forward, as is the 

involvement of other organelle-turnover events in cellular-rejuvenation mechanisms.

In summary, dynamic changes to the landscape of the cell occur during aging, and several of 

these age-related changes can be traced to alterations in organelle homeostasis and turnover 

(Figure 1). Harnessing the natural rejuvenating capacities of the autophagy-lysosome system 

provides one possible means to reverse age-related organelle damage and re-establish a more 

youthful cellular environment (Figure 1). In fact, pharmacological tools that boost lysosome 

function (Table 1) are currently being tested as potential anti-aging therapies in old animals 

and humans [69,70]. Looking forward, it seems likely that growing knowledge on the 

mechanistic principles that govern organelle turnover at lysosomes, and the specific parts of 

these systems that fail with old age, will open new doors for aging-biology researchers in the 

quest to promote healthy aging, particularly at a cellular level.
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Figure 1. Changes to autophagy of cellular organelles during the aging process.
Lysosomes in young, healthy cells (on the left) are acidic and effectively degrade cellular 

waste, including organelles when necessary. This maintains robust homeostasis, which 

supports proper functioning not only of a cell but of a whole organism. However, in an old 

cell (on the right), lysosome dysfunction jeopardizes autophagic turnover, causing a build-up 

of damaged organelles along with protein aggregates; this leads to several age-related 

disease pathologies and brings about changes to organismal physiology. Re-establishing the 

correct dynamics of organelle turnover at lysosomes in old cells might provide one entry 

point to trigger a rejuvenation of cellular health and homeostasis. AP, autophagosome.
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Table 1.

Example drugs that modulate autophagy in vivo.

Drug Mode of action Reference

Inducers

Rapamycin Inhibits mTOR pathway [15,71–73]

Torin1 Inhibits mTOR pathway [74,75]

PP242 Inhibits mTOR pathway [76]

Curcumin Activates Transcription factor EB; Inhibits mTOR pathway; Activates ERK1/2 pathway [77,78]

Metformin Activates Sirtuin-1 [79]

Resveratrol Activates Sirtuin-1 [80]

Trehalose Inhibits SLC2a family of glucose transporters; Activates AMPK [81]

Spermidine Regulates acetylation and deacetylation of cellular proteins [82,83]

Lithium Reduces inositol triphosphate levels [84,85]

Carbamazepine Reduces inositol triphosphate levels [86,87]

Valproic acid Reduces inositol triphosphate levels [88]

Inhibitors

Chloroquine Impairs lysosomal acidification [10,73,89]

Lys05 Impairs lysosomal acidification [90]

Wortmannin Inhibits phosphatidylinositol 3-kinases [91]

Bafilomycin A1 Inhibits V-ATPase; Inhibits autophagosome-lysosome fusion [19,92,93]

Spautin-1 Inhibits USP10 and USP13, which regulate deubiquitination of Beclin-1 [94,95]

DBeQ Inhibits p97/VCP [96]
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