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Abstract

Background: The autosomal recessively inherited ataxia with oculomotor apraxia 2 (AOA?2) is a
neurodegenerative disorder characterized by juvenile or adolescent age of onset, gait ataxia,
cerebellar atrophy, axonal sensorimotor neuropathy, oculomotor apraxia, and elevated serum AFP
levels. AOA2 is caused by mutations within the senataxin gene (SETX). The majority of known
mutations are nonsense, missense, and splice site mutations, as well as small deletions and

insertions.

Methods: To detect mutations in patients showing a clinical phenotype consistent with AOA2, the
coding region including splice sites of the SETX gene was sequenced and dosage analyses for all
exons were performed on genomic DNA. The sequence of cDNA fragments of alternative

transcripts isolated after RT-PCR was determined.

Results: Sequence analyses of the SETX gene in four patients revealed a heterozygous nonsense
mutation or a 4 bp deletion in three cases. In another patient, PCR amplification of exon || to 15
dropped out. Dosage analyses and breakpoint localisation yielded a 1.3 kb LINEI insertion in exon
12 (patient PI) and a 6.1 kb deletion between intron || and intron 14 (patient P2) in addition to
the heterozygous nonsense mutation R1606X. Patient P3 was compound heterozygous for a 4 bp
deletion in exon 10 and a 20.7 kb deletion between intron 10 and |5. This deletion was present in

a homozygous state in patient P4.

Conclusion: Our findings indicate that gross mutations seem to be a frequent cause of AOA?2 and

reveal the importance of additional copy number analysis for routine diagnostics.
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Background

The autosomal recessive cerebellar ataxias (ARCA) repre-
sent a phenotypically and genetically heterogeneous
group of neurodegenerative disorders mainly beginning
before 20 years of age.

More than 20 different forms of ARCA have been
described. Friedreich ataxia (FRDA) is the most frequent
form in Europe followed by ataxia with oculomotor
apraxia 2 (AOA2, OMIM #606002) [1]. AOA2 is geneti-
cally defined by mutations in the senataxin gene (SETX)
(OMIM *608465) located on chromosome 9q34. Patients
typically present with early onset ataxia (range: 3-30
years), peripheral axonal sensorimotor neuropathy with
areflexia (> 90% of individuals), oculomotor apraxia
(«<50% of individuals), marked cerebellar atrophy on
MRI, and slow progression [2]. Dystonic hand posture,
choreic movements, and head or postural tremor are
present in about 20% of individuals. Serum a-fetoprotein
(AFP) concentration is elevated in >90% of affected indi-
viduals. In 50% of patients, serum cholesterol levels are
increased. Serum creatine kinase (CK) may be abnormal
in patients with severe amyotrophy.

Mutations in SETX were first reported in 2004 [2]. The
SETX gene consisting of 26 exons (coding exons 3-26)
encodes for senataxin, a 2677 amino acid protein contain-
ing a putative DNA/RNA helicase domain. This helicase
domain possesses strong homology to yeast RNA helicase
Senlp. To date, at least 51 mutations within the SETX
gene responsible for the AOA2 phenotype are known [2-
14]. The majority are nonsense, missense, and splice site
mutations as well as small deletions and insertions. AOA2
is allelic to ALS4, one form of amyotrophic lateral sclero-
sis with juvenile onset and autosomal dominant inherit-
ance [6,15].

In addition to numerous mutations of single or few nucle-
otides, four cases with large gene rearrangements within
SETX have been described in patients with AOA2. A ~20.6
kb deletion (intron 15 to intron 23) was identified in an
Italian family [7], a ~10 kb duplication was found in a
German patient [4] and in two families from Algeria a
deletion of exon 7 and a deletion of exon 19 and 20 have
been reported [14].

Samples of patients with gait instability, areflexia, neurop-
athy, cerebellar dysarthria, and oculomotor signs were
screened for mutations in the SETX gene. In six patients,
clinical diagnosis of AOA2 could be confirmed by
sequence analyses [13]. Additionally, there was evidence
for compound heterozygous deletions, insertions as well
as homozygous deletions in AOA2 patients.

http://www.biomedcentral.com/1471-2350/10/87

Methods

Patients

After obtaining informed consent, DNA and RNA were
extracted from peripheral blood leukocytes using stand-
ard procedures. The study was approved by the Ethic
Committee of the University to Liibeck (reference
number: 09-041) in compliance with the Helsinki Decla-
ration. Clinical data are summarized in Table 1.

Patient P1 showed first signs of gait imbalance at 12 years
of age. At the age of 25 years, he presented with marked
ataxia and used a stroller. He also had oculomotor signs
including oculomotor apraxia, cerebellar dysarthria, neu-
ropathy with muscular atrophy and areflexia of upper and
lower limbs. Serum AFP was elevated (9.7 ng/ml).

Patient P2 noticed first gait problems when he was 15
years old. At the age of 28, he presented with marked
ataxia of gait and stance using a stroller for longer dis-
tances. He also had oculomotor apraxia, cerebellar dysar-
thria, neuropathy with muscular atrophy and areflexia of
upper and lower limbs. Serum AFP was elevated (12.6 ng/
ml).

In patient P3, ataxia started at the age of 12. Seventeen
years later, he was not able to walk without support. Clin-
ically, he showed neuropathy with amyotrophy including
small hand muscles, pes cavus, and dysarthria. Serum AFP
was clearly elevated (56 ng/ml).

Patient P4 experienced first gait disturbances at the age of
12. During the following years, she developed progressive
atrophy of distal muscles in the lower limbs. At the age of
33, there was evidence of cerebellar ataxia and sensorim-
otor neuropathy. Muscular atrophy was generalized with
involvement of hand and proximal hip muscles and a
positive Trendelenburg's sign. Oculomotor testing
revealed major fixation instability, downbeat and gaze
evoked nystagmus, saccadic pursuit and bilateral sixth cra-
nial nerve palsy. There was no oculomotor apraxia.

Sequencing analysis

We screened for SETX mutations by direct sequencing of
all 24 coding exons and flanking intronic sequences. PCR
products were amplified using standard protocols (primer
sequences available on request). After ExoSAP-IT treat-
ment (USB Inc, Staufen, Germany) of the PCR products,
sequencing reactions were performed using the BigDye
Terminator v1.1 Sequencing Standard Kit (Applied Bio-
systems Inc, Darmstadt, Germany) and analysed on the
automated capillary sequencer 3130 xI Genetic Analyser
(Applied Biosystems Inc, Darmstadt, Germany).
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Table I: Clinical data at last presentation. MRI showed global cerebellar atrophy.

patient age sex DD cerebellar oculomoto neuropathy dystonia  pyramidal dementia MRI AFP cholesterol CK
ataxia r apraxia signs

no. [years] [years] (MMSE) ( by) [<5ngiml] [<220 mg/dl] [< 171 Ull]
atrophy

Page 3 of 9
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| 25 m 13 yes yes yes no no No cerebellum 9.7 179 138
(27/30)

2 28 m 13 yes yes yes no no No cerebellum 12.6 normal 193
(30/30)

3 29 m 17 yes yes yes no no no cerebellum 56 155 220

4 33 f 21 yes no yes no no No cerebellum 32 n.a. 171
(30/30)

m/f = male/female

DD = disease duration

MMSE = Mini Mental State Examination (Folstein et al., ] Psychiatr Res 1975; 1225.4:189-198)
AFP = alpha-fetoprotein

CK = creatin kinase

n.a. = not available
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Haplotype analyses

In case of identical mutations in unrelated patients, hap-
lotype analyses for the AOA2 region with the markers
D9S159, D9S1831, D9S1863, D9S1847, D9S1830 and
D9S1793 (NCBI database, primer sequences are listed in
additional file 1) were performed. FAM-labelled PCR
products were separated on automated capillary
sequencer 3100-Avant Genetic Analyser (Applied Biosys-
tems Inc, Darmstadt, Germany).

Breakpoint localisation

Dosage analyses were performed on genomic DNA for the
24 coding exons of the SETX gene using the ABI 7300 Real
Time PCR System (Applied Biosystems Inc, Darmstadt,
Germany) in the presence of SYBR-Green (SYBR-Green I
core reagent kit including AmpliTag-GOLD polymerase,
Applied Biosystems Inc, Darmstadt, Germany). The opti-
misation of the PCR reaction was performed according to
the manufacturer's instructions (Applied Biosystems Inc,
Darmstadt, Germany, User Bulletin 2 applied to the SYBR-
Green I core reagent protocol) but scaled down to 25 pl
per reaction.

Long-range PCR was performed using the Expand High
Fidelity PCR System (Roche Diagnostics GmbH, Man-
nheim, Germany). Primers flanking the potential deletion
were used. Whenever the amplification at genomic DNA
level failed, the regions of possible deletion breakpoints
were narrowed down by primer walking. Subsequently,
PCR on genomic DNA across the deletion junctions were
done using standard protocols (Primer sequences for
breakpoint localisation are listed in additional file 2).
PCR products have been verified by sequencing analysis.

Table 2: Mutations in SETX

http://www.biomedcentral.com/1471-2350/10/87

RNA analysis

For RNA analyses, total RNA was isolated from peripheral
blood leukocytes using PAXgene kit according to the man-
ual (PreAnalytiX, Hombrechtikon, Switzerland). Reverse
transcriptase PCR was performed with the OneStep RT-
PCR Kit (Qiagen, Hilden, Germany) according to manu-
facturer's recommendations. For RT-PCR, gene specific
primers flanking the presumptive mutation were used
(primers sequences are listed in additional file 3). Ampli-
fied products were separated on 0.8% agarose gels. Sepa-
rated fragments were excised from the gel and eluted using
the Perfectprep Gel Cleanup kit (Eppendorf, Hamburg,
Germany). Extracted DNA was sequenced as mentioned
above.

Sequence Analysis

Sequence analyses were performed using the GenBank ref-
erence sequence (Accession number: NM 015046).
Repetitive elements were analysed using RepeatMasker

version open-3.2.7 http://www.repeatmasker.org.

Results

Detection of small mutations in the SETX gene by
sequencing analysis

Sequencing the coding region of the SETX gene revealed
heterozygous mutations in three patients (Table 2). In
patient P4, PCR amplification of exon 11 to 15 failed.

Patient P1 and P2 were heterozygous for a C>T transition
at position 4816 of the cDNA, that encodes a stop codon
(c.4816C>T, p.R1606X). In both cases, heterozygosity for
this nonsense mutation was also present in the maternal
DNA. Haplotype analyses excluded a common founder
for this nonsense mutation.

DNA Alteration in DNA (Exon) Alteration in Protein Mutation Status
Patient | c.4816C>T (10) p-R1606X compound
heterozygous
c.5401_5402ins1280bp p-V1792_L1813del, p.V1792_M1850delinsV
Patient 2 c.4816C>T (10) p-R1606X compound
heterozygous
¢.5374+9369_5950-254del6107bp p.VI792EfsX31, p.V1792_L2035del
Patient 3 c.4633_4636delAGTG p.S1545AfsX26 compound
heterozygous
c.5274+13396_6107-3547 p.VI759EfsX6
del20729bp
Patient 4 c.5274+13396_6107-3547 p.V1759EfsX6 homozygous
del20729bp
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Localisation of the Insertion and Deletion Breakpoints. (a) Long range PCR products for patient Pl, his mother Ml,
and his father FI separated on a 0.8% agarose gel. Marker: 100 bp DNA Ladder. Amplicon A2 represents the wildtype fragment
and Al the PCR product with the LIHS insertion. Schematic drawing shows the LIHS insertion in exon 12. Exons are indi-
cated as boxes, introns as interrupted lines. The LIHS insertion is flanked by a 15 bp target site duplication (black boxes). (b)
Sequence of the breakpoint junction in patient P2 compared to control sequence. Homologous regions are boxed. (c)
Sequence alignment of the breakpoint junction in patients P3 and P4 and the control 5' and 3' regions.

Patient P3 was heterozygous for a 4 bp deletion in exon 10
of the SETX gene (c.4633_4636delAGTG). This deletion
leads to a frame shift and generates a premature stop
codon (p.S1545AfsX26). Heterozygosity for this mutation
was also confirmed in the mother.

Searching for gross changes in the SETX gene by dosage
analysis

The presence of heterozygous SETX mutations in three
patients presenting with a clinical phenotype consistent
with AOA2 suggested the implementation of dosage anal-
yses to detect potential copy number variations. Repro-
ducible aberrant signals were found in patients P1, P2,
and P3 (data not shown). Patient P1 showed a 50%
decrease for exon 12 compared to different exons of the

gene. Patient P2 had reduced values for exon 12 to 14. In
patient P3, a shifting to decreased gene dosage was
detected for exon 11 to 15.

Identification of mutations by long-range PCR and
breakpoint analysis

In patient P1, long-range PCR on genomic DNA using
primers flanking exon 12 revealed the 354 bp wildtype
fragment and an additional ~1.6 kb PCR product (P1, Fig-
ure 1a). The same pattern could be observed in the pater-
nal DNA (F1), whereas the mother (M1) showed the
wildtype fragment. Sequencing of the 1.6 kb PCR product
indicated a 1.3 kb insertion within exon 12
(c.5401_5402ins1280bp). The insertion consists of a 5'
truncated L1HS element. The first part of the 5' truncated
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Figure 2

Aberrant Transcripts identified by RT-PCR. (a) RT-PCR products separated on a 0.8% agarose gel. Marker: 100 bp
DNA Ladder, AlI-A9: PCR products, M: mother, F: father, S: sister, C: control. (b) Schematic maps of the RT-PCR. Exons
(boxes) are represented to scale.
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L1HS element is orientated in antisense with respect to
the disrupted gene, whereas the second part is directed in
sense. The insert is flanked by a 15 bp duplicated region.
This insertion detected by long-range PCR escaped routine
sequencing due to its size.

For patients P2, P3, and P4, breakpoints were narrowed
down by primer walking. Patient P2 showed a decreased
dosage for intron 11 and 14. Primers flanking the pre-
dicted deletion resulted in a PCR product spanning the
deletion breakpoints. Sequence analysis revealed a 6.1 kb
deletion between intron 11 and 14 (¢.5374+9369_5950-
254del6107bp). This deletion event occured within Alu
elements. Figure 1b depicts a sequence alignment of the
identified breakpoint junction in patient P2 and the
wildtype 5' and 3' regions. The sequences are characterised
by high degree of homology and the junction contains 28
bp of microhomology (boxed, Figure 1b).

In patient P3, altered gene dosages were observed within
introns 10 and 15. Sequencing of PCR products spanning
the deletion breakpoints revealed a 20.7 kb deletion
(c.5274+13396_6107-3547del20729bp). The 5' break-
point is located within a LINE1 element in intron 10 and
the 3' breakpoint is placed between an AluY and a L1IME3
element in intron 15. Patient P4 was homozygous for this
deletion. Sequences surrounding the deletion breakpoints
in comparison to the junctions in patient P3 and patient
P4 are depicted in Figure 1c. There was no evidence for
sequence homology of the breakpoints.

Haplotype analyses of the complete 5.4 c¢M interval
between D9S159 and D9S1793 did not show a common
genotype for patient P3 and P4 (additional file 4). How-
ever, both patients shared a common allele for chromo-
some 9 markers D9S1847 and D9S1830 that are located
next to the SETX gene.

Expression of mutated SETX alleles

In leukocytes of all four patients, aberrant transcripts
could be identified by RT-PCR (Figure 2). Amplification
of cDNA from exon 11 to exon 13 revealed two additional
products (A2 and A3) in patient P1 and his father F1. The
mother M1 and the control C carried the expected
wildtype fragment (A1, Figure 2a). In addition to this
wildtype fragment (416 bp, Al), sequence analysis
yielded a transcript lacking the first 66 bp of exon 12 (350
bp, A2) and another transcript missing the complete exon
12 (242 bp, A3).

In patient P2, three fragments could be detected by RT-
PCR using exonic primers from exons 11 and 16. In addi-
tion to the wildtype fragment A4 (912 bp) that was
present in the cDNA of the healthy sister S2, the mother
M2, and in the control sample, two shortened products

http://www.biomedcentral.com/1471-2350/10/87

lacking exons 12 to 14 (337 bp, A5) or exons 12 to 15
(180 bp, A6) could be found.

For patient P3, two products resulting from RT-PCR with
primers amplifying exons 10 to 16 were subjected to fur-
ther investigations: The upper 1106 bp fragment A7 repre-
sented the wildtype sequence. In the lower 274 bp
fragment (A9), exon 10 was found to be spliced to exon
16.

Sequencing yielded an additional faint signal (A8) corre-
sponding to a heteroduplex composed of A7 and A9. In
the cDNA of patient P4, the 274 bp fragment (A9) was
observed in the absence of the wildtype transcript. The
mother M4 of patient P4 being heterozygous for the
mutation, displayed the same expression pattern as
patient P3, while the control sample exclusively showed
the wildtype fragment.

Discussion

In this study, we describe four patients with large muta-
tions within the SETX gene. We have identified one inser-
tion and two different deletions. Interestingly, all
insertion and deletion events occurred within or near
transposable elements (TE). Transposable elements are
frequently recurring sequences spread all over the human
genome. They comprise about 45% of the total genome
sequence and can be categorized into four classes: short
interspersed elements (SINE), long interspersed elements
(LINE), LTR retrotransposons and DNA transposons [16].

The complex insertion in patient P1 showed homology to
L1HS elements. L1HS elements are human specific LINE1
(L1) elements. Some full-length L1 elements are still capa-
ble of active retrotransposition. Retrotranspositionally
competent L1 elements have reverse transcriptase and
endonuclease activity [17]. L1-mediated insertions typi-
cally integrate at an endonuclease consensus cleavage site
(3'-A/TTTT-5") and show characteristic hallmarks like 5'
truncation, target site duplication and a long 3' poly A tail
[18]. The 1.3 kb insertion detected in patient P1 has typi-
cal characteristics of L1-mediated retrotransposition. The
retrotranspositional event occurred at the L1 endonucle-
ase cleavage site 3'-A/TTTT-5'. The insert harbours a 5'
truncation and a poly A tail. The entire element is flanked
by a 15 bp target site duplication. L1 elements are thought
to be inserted either in antisense or in sense orientation
with respect to disrupted target genes [18]. However, in
patient P1 the first part of the 5' truncated L1HS element
was found to be orientated in antisense whereas the sec-
ond part was directed in sense. This fact raises the ques-
tion, if the insertion resulted from a single
retrotranspositional event, or if the generation of this
complex insertion is due to several independent steps.
Irrespective of the generation of the insertion, this muta-
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tion seems to be stably inherited: The identical variation
was also present in the father. Expression analyses
revealed two aberrant splice variants for patient P1. Tran-
scripts missing the first 66 bp of exon 12 as well as tran-
scripts with loss of the complete exon 12 were detected.
Both deletions are in-frame, therefore maintaining the
open reading frame. The insertion seems to destroy the
acceptor splice site of intron 11. In the case of the 66 bp
deletion an alternative splice site within exon 12 is used.

The deletion breakpoints for the 6.1 kb deletion in patient
P2 and the 20.7 kb deletion in patients P3 and P4 are
located in or near transposable elements. The 6.1 kb dele-
tion occurred between two Alu elements, whereas the 20.7
kb deletion involved LINE1 and Alu elements. Interest-
ingly, the known ~10 kb duplication and the ~20.6 kb
deletion [4,7] also occurred within or near Alu elements.

Alu elements represent the major subgroup of SINE ele-
ments. RT-PCR with primers flanking the 6.1 kb deletion
showed two aberrant transcripts for patient P2. In one
transcript exons 12 to 14 were deleted while exons 12 to
15 were missing in another transcript. The 6.1 kb deletion
occurred between introns 11 and 14. The acceptor splice
site of intron 14 still exists at genomic level and seems to
be partly functional. RNA analyses of the 20.7 kb deletion
in patients P3 and P4 revealed an additional transcript
lacking exons 11 to 15. This result is consistent with the
deletion spanning intron 10 to intron 15 at genomic level.
Haplotype analyses may point to an ancient founder
effect for the deletion in patient P3 and P4 originating
from distinct parts of Germany due to the fact that the
alleles for D9S1847 and D9S1830 are identical in both
patients. Nevertheless, it should be underlined that these
alleles are common in the German population (data not
shown).

In all cases presented here, the gross mutations were
found to be associated with transposable elements (TE).
Interestingly, the ~10 kb duplication and the ~20.6 kb
deletion reported before [4,7] occurred within or near Alu
elements, too. Human genes bearing a TE content > 40%
seem to have an increased frequency of gross deletions
[16]. Furthermore, the deletion breakpoints are predomi-
nantly located in TE subclasses that are specifically over-
represented in the involved gene compared to the human
genome [16]. Repetitive elements - mainly LINE1 and Alu
elements - account for 47.5% of the entire SETX gene
explaining the high number of deletions and insertions.

Only four of 51 SETX mutations identified so far have
been reported to be gross mutations (7.8%) [4,7,14]. In
our own series, three of 15 distinct SETX mutations (20%)
were found to be large alterations. These discrepancies
may result from methodological problems since gross

http://www.biomedcentral.com/1471-2350/10/87

mutations potentially escape routine diagnostics due to
their size.

Conclusion

Gross mutations potentially may escape routine diagnos-
tic due to their size. Thus, large deletions, insertions, and
duplications are probably an underestimated cause for
AOA2.
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