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Heart failure is the leading cause of death in the western world and as such, there is a

great need for new therapies. Heart failure has a variable presentation in patients and

a complex etiology; however, it is fundamentally a condition that affects the mechanics

of cardiac contraction, preventing the heart from generating sufficient cardiac output

under normal operating pressures. One of the major issues hindering the development

of new therapies has been difficulties in developing appropriate in vitromodel systems of

human heart failure that recapitulate the essential changes in cardiac mechanics seen

in the disease. Recent advances in stem cell technologies, genetic engineering, and

tissue engineering have the potential to revolutionize our ability to model and study heart

failure in vitro. Here, we review how these technologies are being applied to develop

personalized models of heart failure and discover novel therapeutics.

Keywords: heart failure, tissue engineering, length-tension relationship, gene editing, human induced pluripotent
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Heart failure (HF) is the leading cause of death in the United States, accounting for 1 in 9 deaths
that occur each year and over $30 billion in annual health care costs (1). Chronic HF affects ∼2%
of the population <60 years old and >10% of adults >75 years old (2). HF is characterized by
the inability of the heart to generate sufficient cardiac output to effectively pump blood to the body
under normal physiological pressures. Clinically, HF patients are classified by their ejection fraction
(i.e., the fraction of blood that is pumped out of the ventricles with each beat). HF with reduced
ejection fraction (HFrEF) can be caused by several conditions, such as valvular disease, myocardial
infarction, and some genetic cardiomyopathies (described in more detail below). Several treatment
options are available for HFrEF, including ACE inhibitors, beta blockers, and implantable devices
(3); however, many of these therapeutic options have significant side effects, including tachycardia
and arrhythmia (4). HF with preserved ejection fraction (HFpEF) is characterized by diastolic
dysfunction, such as impaired filling due to fibrotic stiffening of the ventricular wall, but a normal
ejection fraction. HFpEF can be caused by several conditions including chronic hypertension,
aging, metabolic syndrome, and several genetic cardiomyopathies. Despite the number of efforts
in clinical trials to date, no efficacious therapies have been identified for HFpEF (5–8).
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Even with the best treatments available, there are high rates
of mortality and morbidity with both HFrEF and HFpEF (9).
This is partly due to our lack of mechanistic understanding of the
disease pathogenesis (10) and the lack of an appropriate in vitro
model system that can recapitulate relevant aspects of cardiac
mechanics with sufficient throughput for drug discovery. Here,
we review several recent advances in the fields of genetic and
tissue engineering that have made it possible to model aspects of
these diseases in vitro, and we discuss the potential applications of
these technologies to drug discovery and personalized medicine.

CURRENT CHALLENGES IN MODELING
HUMAN HEART DISEASES

Studying cardiovascular disease in vitro comes with several
challenges. First, cardiac physiology is tightly regulated in whole
organisms by complex neuronal and hormonal feedback systems
(11–14). Perturbations affecting cardiac function can lead to
both short-term adaptations of the heart (e.g., increased heart
rate, length-dependent changes in contractility, increases in the
phosphorylation of sarcomeric proteins such as troponin-I or
titin, and force-induced changes on actomyosin contractility),
as well as long-term adaptations (e.g., cellular reorganization,
cardiac tissue remodeling, activation of fibroblasts, and changes
in gene expression). Understanding the disease pathogenesis and
the development of novel therapeutics requires tools for studying
the disease phenotypes across multiple scales of organization,
ranging from the level of single molecules to whole organisms.

Another major challenge to modeling HF is the heterogeneity
in the prognosis and presentation of HF in patients (15). As
described earlier, HF patients are typically characterized by
ejection fraction (i.e., their symptoms), but there are multiple
underlying conditions that cause HF. For example, non-genetic
HF can be initiated by myocardial injury (e.g., myocardial
infarction) (16), valvular disease (17), or as a side effect of some
chemotherapies (18). There are also several forms of genetic
heart disease that can lead to heart failure (19–22). Familial
hypertrophic (HCM) and dilated (DCM) cardiomyopathies are
primarily caused by mutations in proteins that regulate cardiac
muscle power output. HCM is characterized by thickening of
the ventricular wall, fibrosis, and myocyte disarray. It has an
estimated prevalence of 1 in 500 people, and it is the leading
cause of sudden cardiac death in people under 30 years old (23).
Familial DCM is a closely related disease that is also strongly
associated with sudden death, and it is a significant cause of HF
(24). DCM is characterized by dilation of the myocardial wall,
and it is often accompanied by necrosis and fibrosis. Even though
these forms of genetic heart disease are relatively common, the
clinical presentations and the prognoses of HCM and DCM are
highly variable and depend on the exact pathogenic mutation.
To date, hundreds of mutations have been associated with these
diseases (19, 23). Point mutations within the same molecule can
lead to either HCM or DCM, with the phenotype depending
on the specific site of the mutation (25, 26). Therefore, when
modeling these genetic diseases, it is perhaps more useful to
think of these conditions as collections of rare diseases with

a common presentation. As such, the design of therapeutics
presents itself as an opportunity for personalized treatment (i.e.,
precision medicine) (27).

Several in vitromodel systems have been developed to address
the challenges associated with modeling HF, each with its own
set of advantages and drawbacks. The choice of model system
is dictated by the specific questions being asked. For example,
in many patients with HCM or DCM, point mutations in
sarcomeric proteins at the molecular level are the initial insults
that lead to tissue remodeling in the disease. Understanding these
diseases requires a molecular knowledge of the specific defects
caused by the mutations (25), and excellent experiments using
purified and/or expressed proteins have led to the development
of several drugs that are currently in clinical or preclinical trials
(28–31). While these experiments are needed to dissect the initial
molecular insults that lead to the disease phenotype, they have
several caveats. First, the majority of biochemical studies are
conducted in the absence of load, and it has been shown that
mechanical forces can change the kinetics (and thus functional
properties) of proteins, including cardiac myosin (32–39). This is
important since proteins in the heart experience both internally
and externally generated forces during contraction, and aberrant
forces are a primary driver of cardiomyopathies (40). In fact,
for some HCMmutations, the molecular disease phenotype only
becomes apparent under load (39), and thus one must consider
the mechanobiology of the heart when studying these diseases.
Second, changes in contractility at the molecular level in vitro are
not necessarily predictive of how the disease affects contractility
in cells or tissues. For example, the first mutation identified to
cause HCM, R403Q in MYH7 (20), shows conflicting results at
the molecular level (41–43) that do not necessarily correspond to
the phenotype in mice (44–46). Moreover, some forms of genetic
HF are due to haploinsufficiency rather than direct changes in
protein function (47).

Another approach that has greatly furthered the
understanding of both genetic and non-genetic HF is the use
of transgenic mouse models for physiological and biochemical
studies [e.g., (42, 44, 48–55)]. This system allows for control of
the genetic environment and physiological studies. However,
mouse hearts have very different physiology than human hearts.
For example, mouse hearts can beat ∼600 times per minute
while human hearts beat∼60 times per min. To beat this quickly,
mouse hearts have some different ion channels [e.g., different
subunits for the K-ATP channel (56) and different IKr channels
(57)] that define their action potentials, different machinery for
handling calcium, and different myosin isoforms with disparate
kinetics that drive contractility (58–60). Therefore, transgenic
mouse models do not always recapitulate the human disease
phenotype and pharmacological response (44, 46, 48, 61–64).
Also, mouse hearts lack the hERG channel. Many drugs, both
cardiac-specific and nonspecific, can bind to this protein, leading
to cardiotoxicity and arrhythmias in humans, despite having no
effects in mice. This missed cardiotoxicity is one of the reasons
that drugs designed based on mouse studies fail in clinical trials
(65, 66).

Tissue obtained from patients (67) gives unique insights into
the disease pathogenesis that cannot be recapitulated in other
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systems. However, it is difficult to obtain human tissue, and the
disease presentation is often complicated by the patient’s genetic
background and medical history. Moreover, human tissues are
usually obtained from patients whose hearts have undergone
major remodeling and changes in gene expression in response to
the disease. As such, it is not necessarily a good model system
for studying how the initial insult of the mutation affects cardiac
functions including contractility. Also, in the case of genetic
heart disease, it is difficult to obtain sufficient tissue with a
given genotype for well controlled drug testing. Moreover, it is
challenging to get appropriate control tissue, since differences
in the genetic background and patient history can affect the
observed phenotype (68).

HUMAN PLURIPOTENT STEM CELL
DERIVED CARDIOMYOCYTES AS MODELS
OF DISEASE

Recent advances in stem cell and genome editing technologies
have led to the development of human pluripotent stem cell
(hPSC)-based models of genetic human cardiac diseases. A
critical advance was the derivation of human embryonic stem
cell lines (69, 70) and their subsequent differentiation to a
cardiomyocyte lineage (71). These early studies, which relied
on embryoid body formation, had a very low differentiation
efficiency (<1%) (71). Several methods have been developed to
increase the efficiency of differentiation of stem cells to hPSC-
CMs in both embryoid bodies (72, 73) and adherent monolayers
of cells (74, 75). One widely used method, where WNT signaling
is initially stimulated to promote mesoderm formation and then
repressed to induce a cardiomyocyte lineage (74), can produce
>90% hPSC-CMs (75, 76).

One difficulty with hPSC-CMs is that the differentiation
methods produce a mixture of atrial, ventricular, pacemaker,
and non-myocyte cells; although techniques have been developed
recently to promote differentiation toward a specific cardiac
lineage (77–80) and to eliminate non-myocytes from the cell
culture (81). An additional challenge with hPSC-CMs is that they
are developmentally immature (82, 83). This immaturity can be
seen in several aspects of the cell physiology, including the ratio
of alpha (MYH6) to beta (MYH7) cardiac myosin, the shape of
the action potential, the absence of t-tubules, and the orientation
of sarcomeres within the cardiomyocyte (84, 85). Although
hPSC-CMs are developmentally immature (86, 87), they are
an ideal system for studying the early disease pathogenesis,
before the heart undergoes many of the adaptations seen in
older patients. Moreover, several approaches have been used
to engineer more mature phenotypes in hPSC-CMs, including
electrical pacing (88–91), addition of growth hormones or fatty
acids (82, 92), providing mechanical or geometric cues that
mimic the organization of the heart (93–96), and providing
stretch/mechanical resistance (97–100). hPSC-CMs can also be
matured through incorporation into 3D engineered tissues.

Several groups have derived stem cells from patient samples
[e.g., (47, 101–103)] and then differentiated these cells to hPSC-
CMs. These studies have shown that it is possible to recapitulate

aspects of cardiac disease using these cells. Recent advances in
genetic engineering, such as the application of the CRISPR/Cas9
system (104, 105), have opened the door to studying genetic
forms of heart failure and the role of genetic modifiers in
disease without the need for patient heart tissue. These tools
have been harnessed to introduce disease-causing mutations into
hPSCs and then study their phenotypes [e.g., (47, 103)]. The
genome editing approach has the advantage that the mutant
and WT lines are isogenic except for the pathogenic mutation.
This is important since cardiomyopathies often show incomplete
penetrance, and the disease presentation can vary depending
on the genetic background (68, 106). A disadvantage to using
genetic engineering of healthy cells instead of patient cells is
the inability to directly correlate changes in vitro with relevant
clinical data of cardiac function in vivo. Moreover, the disease
presentation depends on the genetic background, and therefore,
the presentation in a control cell line could differ from the
presentation in a patient. However, it is possible to take cells
from a patient with the disease and then fix the genetic mutation
to generate genetically matched control cells (107). This later
approach has the advantage that it enables the collection of
in vivo clinical data from the patient and then the correlation
of these parameters with properly controlled measurements in
vitro.

HUMAN ENGINEERED HEART TISSUES

The human heart has a complex three-dimensional structure
composed of many cell types including cardiomyocytes,
fibroblasts, macrophages, and endothelial cells. The
cardiomyocytes interact with the other cell types, and these
other cells can modulate the contractile and electrophysiological
properties of cardiomyocytes (108–113). These cells are
organized within the extracellular matrix to give rise to distinct
regions within the heart with specific functions (e.g., sinoatrial
node, ventricular wall, and papillary muscles). Moreover, these
cells can be mechanically and electrically coupled, and the
mechanical environment can affect the electrophysiological
properties of these cells (114). The cells in the heart are thus
subjected to an array of mechanical, chemical, and electrical
signals that can affect their function. Generating in vitro models
of heart disease that faithfully recapitulate cardiac dysfunction
will require consideration of these complexities.

To recapitulate many of these aspects of cardiac functions
in vitro, 3D engineered heart tissues (EHT) were first created
more than two decades ago using cardiomyocytes isolated from
chicken embryos (115). Since then, the successful fabrication of
EHTs with hPSC-CMs has significantly advanced our ability to
model human heart diseases in vitro, and these tissues faithfully
recapitulate many features of the clinical disease phenotypes
[e.g., (47, 116–118)]. In addition, miniaturization of the EHTs
has enabled mass-production of EHTs for higher throughput
assays (111–113, 119) The hPSC-CMs in EHTs exhibit more
mature phenotypes than those grown in 2D culture, showing
more normal sodium currents (120), organized sarcomeric
arrangement (121), and improved mitochondrial function (88).
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The 3D environment of EHTs allows researchers to control
and recapitulate mechanical homeostasis unique to the
heart (122, 123). Scaffold-free 3D spheroid tissue models
have advantages for simple high-throughput assays, but
they lack the mechanobiological cues necessary for tissue
maturation and organization (124, 125). EHTs formed
using parallel wires (89, 126–128), parallel posts (98, 129–
131), or sheets (132) can provide an improved mechanical
microenvironment for EHT development. Mechanically
stretching EHTs improves the maturation of myocytes
(98, 129, 133–135) and can increase cellular alignment (136–
138). Combined electrical and mechanical conditioning of
EHTs has shown promising results for cardiac tissue maturation
(88, 137, 139).

While EHTs are powerful tools for studying heart disease,
there are various limitations that must be considered. Since EHTs
are fabricated in 3D, many cells are needed to fabricate a single
sample. Therefore, the costs and times required to produce EHTs
are generally higher than those of 2D cell culture. Additionally,
the production of EHTs requires the quality control of many
more parameters due to their complexity. For example, the
differentiation efficiency of stem cells to hPSC-CMs, the number
of stromal cells added to the tissue, and the formation of defined
extracellular matrices are very important for reproducibility.
Moreover, care must be taken when selecting an appropriate
culture media, since supplements in the medium can affect
certain cell types in the EHT and modulate the activity of
enzymes that remodel the extracellular matrix (ECM). While
cardiac tissues can be formed without adding any exogenous
ECMs components using cell sheet technology (140), most
EHTs use exogenously added ECMs. While collagen and fibrin
are the most popular choices for the ECMs in EHTs, their
hydrogel properties can be different depending on their methods
of preparation (141, 142). Other ECM components such as
basement membrane proteins can be doped into the base ECM
to mimic the composition of ECMs in the heart. The field
will benefit from continued examination of how different ECM
compositions influence the physiological properties of EHTs,
especially with regard to changes in the ECM associated with
HF.

MEASUREMENT OF CARDIAC
MECHANICS USING HUMAN
ENGINEERED HEART TISSUES

To date, many different platforms for EHTs have been
developed. These platforms have been tailored for specific
applications, with systems that excel at modeling different
aspects of the heart, including vascularization, microcirculation,
cardiomyocyte maturity, structure, calcium handling, and
contractility (47, 88, 119, 143–146). The selection of the
appropriate EHT system will depend on the specific questions
being asked.

In both HFpEF and HFrEF, the mechanics of the heart are
altered; and therefore, when modeling HF in vitro, it is desirable
to be able to examine the effects of the disease on cardiac

contractility. In most EHT systems capable of modeling cardiac
contractility, an EHT in a hydrogel is formed between two posts
and the contractility of the tissue is measured using a transducer
(Figure 1). Human hPSC-CMs and human cardiac fibroblasts in
the EHT remodel the hydrogel to form cardiac tissue strips (or
sheets), where the cells are aligned perpendicular to the parallel
posts. The transducers used in most of these systems measure the
force of contraction by monitoring the deflection of the posts.
The deflection can be measured using electronic strain gauges or
using optical detection of the post position.

EHT systems for measuring contractility can be broadly
divided into passive and active force systems, depending on
whether the tissue can be actively stretched in real time
during an experiment or only passively monitored. Passive
force systems are easier and cheaper to implement, but
more limited in the parameters that they can measure. The
choice of system will depend on the specific questions being
asked. Passive force systems were first applied to examine
skeletal muscle contractility (147), but now there are several
passive force system for studying cardiac contractility (121,
148). In a passive force system, the tension in the EHT
in between beats gives information about non-sarcomeric
contractility and the peak tension in the EHT during contraction
gives information about the force of cardiac myosin-driven
contractility (Figures 1A,B).

In active force systems, the force on the tissue can be
manipulated in real time during an experiment (98, 111, 115,
149–153). This can come from moving one of the posts or from
using a probe to manipulate the tissue (Figures 1C,D). Using an
active force system, it is possible to examine several important
functional properties of the EHT that can be altered in HF (151).
In a healthy heart, increasing the stretch of cardiac muscle during
diastole causes an increase in cardiac output, an adaptation
known as the Frank-Starling relationship. In HF, this relationship
is altered, limiting the adaptive capability of the heart. To
analyze this relationship, an active force system can stretch
the EHT strips with preprogrammed wave forms (Figure 1D)
(151). The forces generated during cardiac contraction (i.e.,
systolic force) and relaxation (i.e., diastolic force) at various tissue
lengths are analyzed to generate a cardiac muscle-specific length-
tension relationship, LTR (i.e., the Frank-Starling relationship)
(Figures 1, 2).

The LTR obtained for EHTs in vitro can be related to
the work that the heart does in vivo during the cardiac
cycle. The work done by the whole heart is calculated by
measuring pressure-volume (PV) loops during the cardiac cycle
(Figure 2A). The work equals the area enclosed within the loop.
A family of PV loops can be collected with various preloads
to assess cardiac function. As described in Figures 2A–C,
one can analyze cardiac function by visualizing the end-
systolic pressure-volume relationship (ESPVR) and end-diastolic
pressure-volume relationship (EDPVR) at a given inotropic
state. For a given stretch/preload, the peak and resting LTR
values are related to the ESPVR and EDPVR respectively
(Figures 2A,D).

For different types of heart failure, one would expect PV
loops to exhibit different ESPVR and EDPVRs. In HFrEF, the
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FIGURE 1 | EHT strips formed in a 96-well format for phenotyping assays. (A,B) Example of a passive force system in which an EHT strip is formed between two

parallel posts. The force generated during contraction can be monitored by the deflection of the posts. (C,D) Example of an active force system in which an EHT strip

is formed between two parallel posts and then the tissue can be stretched using a probe that pushes on the side of the tissue. In this setup, the force is measured by

a strain gauge in the probe. (E) Measurement of cardiac forces at two different muscle lengths (1 and 2). The peak and bottom of the cardiac twitch force profiles

correspond to the contractile and resting forces, respectively. Note that stretching the EHT causes an increase in the contractile force, as would be expected from the

Frank-Starling relationship.

FIGURE 2 | Cardiac pressure-volume (PV)-loop analysis and length-tension relationship of EHTs. (A) PV-loops are visualization tools to systematically analyze the

contractile properties of heart chamber function. A series of PV-loops can be collected under various preloads (shown in gray). There is a linear relationship between

the end systolic pressures (ESP) and their corresponding volume points, known as the end-systolic pressure volume relationship (ESPVR). Similarly, the line

connecting the end diastolic volumes (EDVs) and their corresponding pressures is known as the end diastolic pressure volume relationship (EDPVR). (B) In systolic

heart failure (HFrEF), both the slope of ESPVR and the ejection fraction decrease. (C) In diastolic heart failure, the ejection fraction may not change much, but EDPVR

shifts upward, indicative of impaired myocardial relaxation during diastole. (D–F) Length-tension relationships (LTRs) of EHT strips are related to cardiac functions

represented by PV-loops. The contractile tension (solid line) and resting tension (dotted line) are shown. (D) LTRs for healthy tissue, showing the contractile and resting

stresses. (E) In systolic heart failure, there is a reduction in contractile tension that becomes more pronounced as the length is increased (red solid line). (F) In diastolic

heart failure, the increase in tissue stiffness leads to an increase in resting tension that is more pronounced as the length is increased (red dotted line).
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FIGURE 3 | Effects of omecamtiv mecarbil (OM) on excitation-contraction-energy coupling in EHTs. (A) EHT strips were exposed to increasing concentrations (0, 0.3,

1, and 10µM) of OM, and the average time courses of cardiac contraction were analyzed. For OM concentration up to 1µM, the peak stress increases in a

dose-dependent manner. (B) The area under each profile in (A) was calculated to compare the dose-dependent effects of OM on cardiac contraction profiles. An

increase in total contractility was seen with OM treatment. (C) Average calcium-transient profiles in the presence of increasing concentrations of OM were measured

using a fluorescent calcium dye (n = 4–6). OM has little effect on the calcium transient. (D) To analyze OM’s effects on mitochondrial activity, mitochondrial membrane

potential (MMP) activity was monitored for 1 h after compound addition. Treatment with 1µM OM does not change MMP activity. DNP (2,4-Dinitrophenol), an agent

for uncoupling oxidative phosphorylation, was added as a positive control to confirm that the tissue strip was energetically active.

loss of systolic function produces a reduced slope of the ESPVR
(Figure 2B). To compensate for reduced efficiency of pump
function in HFrEF, increasing preload on the heart forces the
heart to operate at a higher diastolic volume. In EHTs, the
reduction of systolic contractility should appear as a reduction
in the contractile force (Figure 2E). The reduction of contractile
force should be more pronounced at longer sarcomere lengths
(Figure 2E). In HFpEF, there is no change in the ejection fraction,
but impaired relaxation due to stiffening of the myocardium.
Molecular analysis of the myocardium from patients with HFpEF
shows that this elevated passive stiffness can be partly due to
stiffening of titin and/or increases in collagen cross-linking (154).
As a result of this stiffening, the EDPVR is elevated (Figure 2C).
In the EHT strips, HFpEF would be expected to show elevated
resting tensions due to this increase in stiffness, and this
effect should be more pronounced when the tissue strips are
stretched to higher levels of tension (Figure 2F). Taken together,
this demonstrates the utility of EHTs for studying cardiac
contractility and HF. While this assumption should be validated
rigorously, the technology holds promise to be used in HF drug
development.

APPLICATION OF ENGINEERED HEART
TISSUES TO DRUG SCREENING

One of the requirements for drug screening is the ability to
rapidly screen through large libraries of compounds. The earliest
studies of EHT contractility were performed on centimeter scale
non-human cardiac tissues in an organ bath (115). In these
experiments, over 1 million cells were used to generate a single
tissue. The required organ bath was relatively large, requiring 20–
50mL of solution to test a single compound, and it would not be
easy to analyze many samples simultaneously for drug screening
at this scale. Moreover, the high cost of hPSC culture necessary to
generate human tissues makes this system less amenable for drug
screens.

To increase assay throughput for drug discovery, various
excellent systems have been introduced over the last several years.
For example, the Chen lab developed a passive force system
where over 100 tissues are formed in microelectromechanical
devices in each well of a tissue culture dish (119). Other
approaches have focused on fabricating a single EHT in each
well of a multi-well plate (e.g., 96/384 well plates) (150, 155).
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FIGURE 4 | Effects of omecamtiv mecarbil (OM) on LTR in EHTs. (A) Cardiac contraction profiles were monitored before and after treating EHT strips with OM (1µM).

At ∼2µm sarcomere length, the OM increased both the peak and duration of cardiac contraction profiles. (B,C) As the EHT was stretched further, the effects of OM

on contractility compared to the untreated tissue become less pronounced. (D) At ∼2.25µm sarcomere length, there is no difference in contractile profile before and

after OM treatment.

Both of these approaches can be tailored to enable high-
throughput screens of libraries of compounds and to provide
several physiological readouts of EHT function from a single
sample.

As a proof of principle of how EHTs in an active force
system can be used for drug screening, we present an
example looking at the contractile effects of a drug that
is currently in phase III clinical trials as a treatment for
systolic heart failure, omecamtiv mecarbil (OM). OM was
discovered through a high-throughput screen for compounds
that increase cardiacmyosin’s actin-activated steady-state ATPase
activity (156), and OM shows a high affinity for the cardiac
myosin isoform (157). OM is a unique positive inotropic
compound that was designed to directly activate myosin-based
contractility without affecting calcium handling by the cell.
This is significant because drugs that target calcium handling
can be pro-arrhythmogenic (4). While the exact biophysical
mechanism of OM’s action on myosin is disputed (28, 158),
it has clear positive inotropic effects over a range of dosages
(159).

To demonstrate the effects of OM on EHT contractility,
we used an active force system in which stem cell derived
EHTs in hydrogels are formed between two parallel bars in
each well of a 96-well plate (Figures 1C,D) (150–153, 160).

A soft-tissue mechanical analyzer (Palpator, InvivoSciences)
measures the mechanical properties of the EHT strips using
micro-force transducers attached to its robotic head (150). We
first analyzed OM’s dose-dependent effects using human EHT
strips (Figure 3A). As described previously in rat muscle fibers,
active cardiac contractility was increased by concentrations
of OM up to 1µM and inhibited by high concentrations
(113). Based on the integrated tension transient (Figure 3B),
1µM was the most effective concentration tested to increase
total contractility. To test the effects of OM on calcium
transients, EHT strips were loaded with a biological calcium
indicator (Fluo4, Thermo Fisher). As shown in Figure 3C,
none of the OM doses tested changed the profiles of
calcium transients, consistent with previous reports using
non-human cardiomyocytes (28). To analyze OM’s effects on
metabolic activities, the mitochondrial membrane potential
(MMP) was monitored. The mitochondrial activity showed no
significant change upon the addition of OM, even with 1 h
of incubation. As expected, 2,4-Dinitrophenol (DNP, 500mM)
uncouples the MMP activity. To analyze OM’s effects on
the LTR, OM (1µM) was added to EHT tissue strips, and
the tissue was stretched to various length using the soft
tissue mechanical analyzer (Figure 4). As expected, in the
absence of OM, the EHT strips produced increasing levels of
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cardiac contraction with increasing stretch. After the addition
of OM, the tissues produced enhanced contractility with
stretch. In general, the tissues generate more stress during a
twitch after OM treatment compared to their stress before
treatment; however, this difference becomes less pronounced
with increasing stretch (Figure 4D). These results demonstrate
the ability to use hPSC-CM EHT systems for drug testing.
When combined with gene edited cells, this approach will
open the door for targeted therapeutic design and precision
medicine.

FUTURE PROSPECTS FOR DRUG
DEVELOPMENT AND PRECISION
MEDICINE

Even though deaths from cardiovascular disease accounted for
>20% of all deaths in the US, cardiovascular drugs account
for only 6.6% of compounds in Phase I clinical trials that were
eventually approved for patient use (161). One of the difficulties
with developing new cardiovascular treatments is the huge cost
of clinical trials, which require large study cohorts to evaluate
the efficacy of treatments for chronic diseases, such as age-
associated HF. A recent analysis of 9,985 clinical and regulatory
phase transition records between 2006 and 2015 indicates that
the likelihood of approval increases three-fold when working
with a targeted, well-defined patient population (161). The use of
reliable biomarkers to select patients andmonitor their responses
has been shown to improve the performance of treatment
candidates during trials. The use of genetically engineered cells
in EHTs should allow for the development of preclinical disease
models that mimic heart failure against a controlled genetic
background.

The combined use of genetic engineering and tissue
engineering can be used to model monogenic cardiac disease
in vitro as well as the role of genetic modifiers in disease.
Importantly, these tools can be harnessed for precision medicine.
For example, one critical bottleneck in the treatment of genetic
heart disease is identifying whether a given genetic variant
identified in a patient is pathogenic or not. We envision that
EHTs generated from genetically engineered cells will enable the
direct testing of the consequences of specific genetic variants.
Moreover, the use of reprogrammed cells taken from a patient
cheek scraping or urine sample will open the door to the
development of personalized medicine. EHTs generated from
these cells can be used to evaluate the efficacy and side effects of
precision therapies, enabling clinicians to optimize the treatment
course for each patient. These applications will be aided by high-
throughput EHT phenotyping. Taken together, these advances
have the potential to revolutionize the treatment of cardiac
disease.
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