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Introduction

Our understanding of the molecular systems that bacteria have developed over millennia of

evolutionary tinkering remains limited compared with the incredible diversity of the bacte-

rial kingdom. A detailed understanding of the tricks and tools developed by the bacterial

world provides insights into fundamental processes in biology (e.g., transcriptional net-

works), provides researchers with inspiration and molecular reagents for synthetic biology

(e.g., restriction enzymes and CRISPR/Cas systems), and arms us with an understanding of

essential bacterial processes that can be undermined by antibiotic therapy. In the case of bac-

teria that coexist intimately with mammalian hosts, in particular within the intracellular

niche, a detailed study of these organisms can yield insights into important processes in

eukaryotic biology (e.g., actin polymerisation and autophagy) [1]. However, whilst a number

of model organisms have been studied in enormous detail, there remain a wealth of patho-

genic and nonpathogenic bacteria whose molecular secrets remain largely unknown. This is

partly due to our focus on species that inflict a high burden of human and agricultural dam-

age and partly due to the difficulty of dissecting the molecular mechanisms of nonmodel

bacterial species, which often cannot be propagated easily under laboratory conditions or

manipulated genetically.

The Rickettsia-related bacterium Orientia tsutsugamushi is an example of an important

human pathogen whose fundamental cell biology is poorly understood compared with other

pathogens of equivalent prevalence and severity. Research is hampered by a lack of availability

of tools for genetic manipulation, technical limitations associated with working with an obli-

gate intracellular bacterium, and the cost and logistical challenges of working with a bacterium

classified as a biosafety level 3 pathogen. However, there are multiple aspects of the biology of

this organism that are unusual and intriguing and that can be used to address fundamental

questions in host–pathogen and bacterial cell biology, and this serves to illustrate the value of

taking up the challenge to study nonclassical model systems. In this review, I have highlighted

some particularly fascinating aspects of the biology of this neglected intracellular pathogen.

O. tsutsugamushi and scrub typhus

O. tsutsugamushi is a mite-borne bacterium that causes the life-threatening human disease

scrub typhus [2]. Small rodents serve as animal reservoirs for O. tsutsugamushi, but the bacte-

rium can also be maintained within mite colonies through transovarial transmission. Symp-

toms in patients typically begin 6 to 10 days after inoculation by larval stage mites (‘chiggers’)
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and include headache, fever, rash, stupor, myalgia, and regional lymphadenopathy. Without

appropriate treatment, the disease can progress to cause multiple organ failure and death.

O. tsutsugamushi infections can be treated rapidly and effectively with tetracyclines, but the

organism is intrinsically resistant to many common classes of antibiotics, including ß-lactams,

fluoroquinolones, and aminoglycosides. Because of the generic nature of the symptoms, scrub

typhus is difficult to diagnose unambiguously, and morbidity and mortality from scrub typhus

typically result from delayed or ineffective treatment because of incorrect diagnosis. Natural

immunity to scrub typhus is poor, and there is currently no vaccine available. High levels of

antigenic diversity in O. tsutsugamushi, resulting from frequent genetic recombination as well

as an antigenically variable major surface protein (TSA56), have posed a particular challenge

to vaccine development. The diagnostic challenges associated with scrub typhus mean that its

burden on public health has been previously underappreciated. However, numerous clinical

studies have found it to be a leading cause of acute undifferentiated fever in regions of South-

east Asia, China, and India (e.g., [3]). Traditionally endemic in the Asia-Pacific, reports of

locally acquired scrub typhus cases in Latin America and the Middle East [4,5] as well as the

detection of rodents infected with species closely related to O. tsutsugamushi in Africa and

Southern Europe [6,7] indicate that the disease may be more globally distributed.

The genome of O. tsutsugamushi

The 2.1-megabase (Mb) single-chromosome genome of O. tsutsugamushi is the most highly

repeated bacterial genome sequenced to date [8,9]. Around 42% of its genome is composed of

repeated DNA, which includes short repetitive sequences, transposable elements (including

insertion sequence elements, miniature inverted-repeat transposable elements, and a Group II

intron), and a massively amplified integrative and conjugative element (ICE) called the rickett-

sial-amplified genetic element (RAGE). The RAGE, which has also been found in some other

rickettsial genomes, is present in multiple partially degraded copies across the genome. This

ICE contains integrase and transposase genes, tra genes typical of Type IV secretion systems,

and some potential effector proteins, including ankyrin repeat–containing proteins, histidine

kinases, and tetratricopeptide repeat (TPR) domain–containing proteins. Ankyrin repeat–

containing proteins have been shown to be transcriptionally expressed in O. tsutsugamushi,
secreted via a Type I secretion system, and localised to various host cell compartments, includ-

ing the cytoplasm, nucleus, Golgi apparatus, and endoplasmic reticulum [10, 11]. Whilst some

of the 359 Type IV secretion system tra genes have been shown to be expressed [12, 13], it is

not known whether these form functional secretion systems nor what they might transport.

Despite the genetic isolation of O. tsutsugamushi from other bacterial species resulting from

its obligate intracellular lifestyle, the genome of O. tsutsugamushi exhibits a high degree of

homologous recombination [14], and this may be mediated between O. tsutsugamushi strains

through Type IV secretion systems. There is also evidence of some horizontal gene transfer

from other bacterial species, including Legionella and Parachlamydia spp. [15]. As a conse-

quence of the presence of multiple repeats and mobile DNA elements, the genome of O. tsutsu-
gamushi has undergone extensive reshuffling, and there is very little correspondence between

the positions of genes on the two complete published genomes of Orientia [8, 9] nor between

O. tsutsugamushi and other closely related rickettsial genomes [16].

Microtubule-mediated intracellular trafficking

O. tsutsugamushi enters host cells through a clathrin-mediated zipper-like mechanism and

escapes the endolysosomal pathway by exiting from late endosomes (Fig 1; reviewed in [17]).

Once free in the cytoplasm, O. tsutsugamushi induces and evades autophagy [18, 19], then
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traffics to the perinuclear region, where bacterial replication takes place within a polysaccha-

ride-enriched microcolony [20]. Whilst some bacterial species, including spotted fever–group

rickettsias, Shigella and Listeria, employ actin-mediated processes to move through the viscous

host cytoplasm [21], O. tsutsugamushi is unusual in employing microtubule-mediated pro-

cesses for intracellular trafficking [22]—although some viruses such as adenoviruses and her-

pes simplex viruses as well as the bacterium Aggregatibacter actinomycetemcomitans also

exploit this pathway [23]. The microtubule-mediated motility is dependent on the presence of

polymerised microtubules as well as the minus-end–directed motor protein dynein [22]. It

remains unknown which surface proteins on O. tsutsugamushi mediate the coupling to micro-

tubule-binding proteins, how this is regulated, and why the perinuclear region is used for bac-

terial replication.

Fig 1. The cellular infection cycle of O. tsutsugamushi. Large inset shows a detailed view of the attachment and internalisation process. Small inset

shows a schematic view of the cell envelope of O. tsutsugamushi. Red arrows indicate open questions and unknown pathways. LPS, lipopolysaccharide;

ScaC, surface cell antigen C; TSA56, type surface antigen 56.

https://doi.org/10.1371/journal.ppat.1006657.g001
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Budding out of host cells

Intracellular pathogens typically exit infected host cells by host cell lysis (e.g., Chlamydia spp.,

Plasmodium falciparum), extrusion or expulsion of a bacteria-containing vacuole (e.g., Chla-
mydia spp., Cryptococcus neoformans), or actin-mediated protrusion into adjacent cells (e.g.,

Listeria monocytogenes, S. flexneri, R. rickettsii). O. tsutsugamushi employs an unusual budding

mechanism to exit host cells, during which the exiting bacterium becomes encased in host

plasma membrane (Fig 1) [24]. This process, which was shown to be dependent on choles-

terol-rich lipid rafts as well as the bacterial surface protein HtrA [25], is highly reminiscent of

that used by enveloped viruses. The formation of membrane-enclosed extracellular bacteria

has implications for the mechanism of subsequent infection into naïve host cells, as well as

providing a possible strategy for remaining hidden from the host immune system. Many

important questions remain, such as the following: how does the bacterial cell bud without

compromising the integrity of the remaining host plasma membrane? How stable is the plasma

membrane around the budded bacterium? And is the encasing plasma membrane enriched for

any specific membrane proteins or phospholipids?

A minimal peptidoglycan-like structure in O. tsutsugamushi

O. tsutsugamushi was always reported to lack any peptidoglycan or lipopolysaccharide (LPS),

but recent work has shown that the bacterium expresses peptidoglycan biosynthesis genes, is

sensitive to cell wall–targeting drugs, and possesses a peptidoglycan-like structure [13, 26].

However, this structure is present at a low level and was difficult to detect. The shape of O. tsu-
tsugamushi is less uniform than other Rickettsiaceae cells and most other peptidoglycan-posi-

tive rod-shaped bacteria, and this is consistent with the absence of a rigid cell wall. It is likely

that O. tsutsugamushi has reduced the abundance of peptidoglycan in its cell wall because of its

constant close proximity to cytosolic immune receptors such as nucleotide oligomerisation

domain (NOD) proteins NOD1/NOD2 and that this was possible because of the osmotic pro-

tection of the cytosolic environment. The presence of a low-abundance, minimal peptidogly-

can in O. tsutsugamushi is reminiscent of the cell wall of an unrelated group of obligate

intracellular bacteria, the Chlamydiae. A comparison of the peptidoglycan-biosynthetic gene

sets across these organisms reveals marked similarities, suggesting a conserved gene set

required for building a minimal peptidoglycan structure. Both Orientia and Chlamydiae pos-

sess murA-G genes; ftsW and rodA from the shape, elongation, division, and sporulation

(SEDS) protein family; and class B penicillin-binding proteins (PBPs), which have peptidogly-

can transpeptidase activity. However, both notably lack any class A bifunctional PBPs that

have both transpeptidase and glycosyltransferase activity.

Concluding remarks

O. tsutsugamushi is an important pathogen that causes a high burden of severe disease in human

populations. Several aspects of the biology of this obligate intracellular bacterium are particularly

unusual, and these include a highly repeated genome abundant in mobile genetic elements, a

dependence on microtubule trafficking for intracellular motility, a virus-like budding from in-

fected host cells, and a Chlamydia-like minimal peptidoglycan cell wall. A more detailed under-

standing of these processes will yield a greater understanding of both general and unique aspects

of the host–pathogen interface and illustrate the value of studying nonclassical model organisms.
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