
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:19312  | https://doi.org/10.1038/s41598-021-97995-w

www.nature.com/scientificreports

Fast data‑driven learning of parallel 
MRI sampling patterns for large 
scale problems
Marcelo V. W. Zibetti1*, Gabor T. Herman1,2 & Ravinder R. Regatte1

In this study, a fast data-driven optimization approach, named bias-accelerated subset selection 
(BASS), is proposed for learning efficacious sampling patterns (SPs) with the purpose of reducing 
scan time in large-dimensional parallel MRI. BASS is applicable when Cartesian fully-sampled k-space 
measurements of specific anatomy are available for training and the reconstruction method for 
undersampled measurements is specified; such information is used to define the efficacy of any 
SP for recovering the values at the non-sampled k-space points. BASS produces a sequence of SPs 
with the aim of finding one of a specified size with (near) optimal efficacy. BASS was tested with five 
reconstruction methods for parallel MRI based on low-rankness and sparsity that allow a free choice of 
the SP. Three datasets were used for testing, two of high-resolution brain images ( T

2
-weighted images 

and, respectively, T
1ρ-weighted images) and another of knee images for quantitative mapping of the 

cartilage. The proposed approach has low computational cost and fast convergence; in the tested 
cases it obtained SPs up to 50 times faster than the currently best greedy approach. Reconstruction 
quality increased by up to 45% over that provided by variable density and Poisson disk SPs, for the 
same scan time. Optionally, the scan time can be nearly halved without loss of reconstruction quality. 
Quantitative MRI and prospective accelerated MRI results show improvements. Compared with 
greedy approaches, BASS rapidly learns effective SPs for various reconstruction methods, using larger 
SPs and larger datasets; enabling better selection of sampling-reconstruction pairs for specific MRI 
problems.

Motivation.  Magnetic resonance imaging (MRI) is one of the most versatile imaging modalities, it can pro-
vide answers to medical questions through the measurements of various properties of the resonant spins in the 
human body. Unfortunately, the more information we seek from MRI, the longer is the acquisition time1,2. This 
makes the acquisition of high-resolution three-dimensional (3D) volume imaging of the human body time-con-
suming. Shortening the scan time in MRI is necessary for capturing dynamic processes, quantitative measure-
ments, and for reducing health-care costs and increasing patient comfort. One effective way to reduce scan time 
is through undersampling, in which only part of the total set of measurements, specified by a sampling pattern 
(SP), is acquired. This approach is also called accelerated MRI.

The specific content of this paper.  We propose and validate a new data-driven optimization (DDO) 
approach to learn the SP in parallel MRI applications. Our focus is on Cartesian 3D high-resolution and 3D 
quantitative MRI problems in which the data are collected along multiple k-space lines (in the frequency-encod-
ing direction) with the SP a 2D (phase/partition-encoding directions) entity, as illustrated in Fig. 1a. Recon-
struction may be be performed as a fully 3D process, but we assume that a Fourier transform is applied in the 
frequency-encoding direction and the volume is separated into multiple slices for 2D reconstructions. We also 
tested the method with smaller-size 1D (phase-encoding) SP used in Cartesian 2D acquisitions, as illustrated in 
Fig. 1b.

The proposed approach is applicable to any parallel MRI method that allows a free selection of the SP, such as 
compressed sensing (CS)3–6 and low-rank approaches. Methods that directly recover the k-space elements, such 
as simultaneous auto-calibrating and k-space estimation (SAKE)7, low-rank modeling of local k-space neigh-
borhoods (LORAKS)8, generic iterative re-weighted annihilation filter (GIRAF)9, and annihilating filter-based 
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low-rank Hankel matrix approach (ALOHA)10, among others, can be used. We tested the proposed optimization 
approach for P-LORAKS11 and three different multi-coil CS approaches with different priors12. The contribution 
of the proposed approach is a new learning algorithm, named bias-accelerated subset selection (BASS), that can 
optimize large sampling patterns, using large datasets, spending significantly less processing times as compared 
to previous approaches. Moreover, the SPs optimized by BASS can achieve good image quality with short acquisi-
tion times, improving clinical tasks. A very preliminary presentation of our approach is in13.

Background and purpose.  Fast magnetic resonance (MR) pulse sequences for measurements 
acquisition1,2,14, parallel imaging (PI) using multichannel receive radio frequency arrays15–17, and CS3–6 are exam-
ples of advancements towards rapid MRI. PI uses multiple receivers with different spatial coil sensitivities to 
capture samples in parallel18, increasing the amount of measurements in the same scan time. Further, undersam-
pling can be used to reduce the overall scan time15–17. CS relies on incoherent sampling and sparse reconstruc-
tion. With incoherence, the sparse signals spread almost uniformly in the sampling domain, and random-like 
patterns can be used to undersample the k-space3–5,19,20.

Successful reconstructions with undersampled measurements, such as PI and CS, use prior knowledge about 
the true signal to remove the artifacts of undersampling, preserving most of the desired signal. Essentially, the 
true signal is redundant and can be compactly represented in a certain domain, subspace, or manifold, of much 
smaller dimensionality21,22. Low-rank signal representation23 and sparse representation24, are two examples of 
this kind. Deep learning-based reconstructions have shown that undersampling artifacts can also be separated 
from true signals by learning the parameters of a neural network from sampled datasets23,25,26.

The quality of image reconstruction depends on the sampling process. CS is an example of how the SP can 
be modified27–29, compared to standard uniform sampling30, so as to be effective for a specific signal recovery 
strategy29,31. According to pioneering theoretical results27,32,33, restricted isometry properties (RIP) and inco-
herence are key for CS. In MRI, however, RIP and incoherence are more like guidelines for designing random 
sampling3,5,29 than target properties. New theoretical results34,35 revisited the effectiveness of CS in MRI; in par-
ticular, elucidating that incoherence is not a strict requirement. Also, studies36,37 show that SPs with optimally 
incoherent measurements3 do not achieve the best reconstruction quality, leaving room for effective empirical 
designs. SPs such as variable density38–40, Poisson disk41,42, or even a combination of both43,44 show good results 
in MRI reconstruction without relying on optimal incoherence properties.

In many CS-MRI methods, image quality improves when SP is learned utilizing a fully sampled k-space of 
similar images of particular anatomy as a reference45–49. Such adaptive sampling approaches adjust the prob-
ability of the k-space points of variable density SP according to the k-space energy of reference images45–50. 
Such SP design methods have been developed for CS reconstructions, but generally they do not consider the 
reconstruction method to be used.

Statistical methods for optimized design techniques can be used for finding best sampling patterns51,52. 
Experimental design methods, especially using optimization of Cramér-Rao bounds, are general and focus on 
obtaining improved signal-to-noise ratio (SNR). These approaches were used for fingerprinting53, PI54, and sparse 
reconstructions51. They do not consider specific capabilities of the reconstruction algorithm in the design of the 
SP, even though some general formulation is usually assumed.

In DDO approaches, the SP is optimized for reference images or datasets containing several images of par-
ticular anatomy, using a specific method for image reconstruction55–59. The main premise is that the optimized 

Figure 1.   Illustration of the (a) 3D + time data collection scheme considered in this work. The sampling pattern 
is in 2D + time, it comprises the time-varying phase and partition encoding positions, for each of which data 
are to be collected by the MRI scanner for all frequency encoding positions. Our method can also be applied to 
(b) 2D data collection with fully-sampled lines in the frequency-encoding direction and a 1D sampling pattern 
denoting phase encoding positions.
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SP should perform well with other images of the same anatomy when the same reconstruction method is used. 
These approaches can be extended to jointly learning the reconstruction and the sampling pattern, as shown 
in60–62. DDO is applicable to any reconstruction method that accepts various SPs. In56, DDO for PI and CS-MRI 
is proposed, the selection of the SP is formulated as a subset selection problem63,64, which is solved using greedy 
optimization of an image domain criterion (an extension of55 for single-coil MRI); see also57 .

Finding an optimal SP via subset selection problem is, in general, an NP-hard problem. Also, each candidate 
SP needs to be evaluated on a large set of images, which may involve reconstructions with high computational 
cost. Effective minimization algorithms are fundamental for the applicability of these DDO approaches with 
large sampling patterns.

Existent subset selection approaches for SP optimization.  Commonly used in prior works are the 
greedy approaches; classified as forward29,55,65 (increase the number of points sampled in the SP, starting from the 
empty set), backward51,65 (reduce the number of points in the SP, from fully sampled), or hybrid63. Considering 
the current SP, greedy approaches test candidates SPs, that are one k-space element different, to be added (or 
removed). After testing, they add (or remove) the k-space element that provides the best improvement in the 
cost function64.

Greedy approaches have a disadvantage regarding computational cost because of the large number of evalu-
ations or reconstructions. Assuming that fully-sampled k-space measurements are of size N, whereas the under-
sampled measurements are of size M < N , and there are Ni images, or data items, used for the learning process, 
the greedy approach will take N × Ni reconstructions just to find the best first sampling element of the SP (not 
considering the next M − 1 k-space elements that still have to be computed). This makes greedy approaches 
computationally unfeasible for large-scale MRI problems. As opposed to this, the approach proposed in this 
work can obtain a good SP using 50Ni to 500Ni image reconstructions (for all the M k-space elements of the SP).

The approach in55 is only feasible because it was applied to one-dimensional (1D) undersampling, such as in 
Fig. 1b, with a small number of images in the dataset and single-coil reconstructions. The approach was extended 
to 1D+time dynamic sequences57 and to parallel imaging56, but it requires too many evaluations, practically 
prohibitive for large datasets and large sampling patterns.

A different class of learning algorithms for subset selection64, not exploited yet by SP learning, use bit-wise 
mutation, such as Pareto optimization algorithm for subset selection (POSS)64,66,67. These learning approaches are 
less costly per iteration since they evaluate only one candidate SP and accept it if the cost function is improved. 
POSS is not designed for fast convergence, but for achieving good final results. However, these machine learning 
approaches can be accelerated if the changes are done smartly and effectively instead of randomly.

Other fast approaches for DDO of SP.  Besides the formulation of DDO of SP as a subset selection 
problem, other approaches have been investigated. The use of deep learning for image reconstruction23,25,26,68 
have been extended to learning the SP. In60, a probabilistic sampling mask is learned inside the neural network, 
following by a random generation of SPs. In62, twice continuously differential models are used to find the SP 
for variational problems. While these approaches are also faster than55 to learn the SP, they are less flexible. The 
parallel MRI methods cited in the Section “The specific content of this paper” cannot be used, and only quad-
ratic cost functions can be optimized. In61,69,70, parametric formulation of non-Cartesian k-space trajectories are 
optimized. While being interesting approaches, they cannot be applied to our Cartesian 3D problem described 
in “The specific content of this paper”. Another approach for improving image quality through better sampling is 
the use of active sampling71–74, in which the next k-space sampling positions are estimated during the acquisition 
using the data that have been captured. While promising, this approach requires significant changes within the 
MRI scanning sequence that are not widely available. As opposed to that, our current approach to find the best 
(optimized) fixed 3D Cartesian SP for a given anatomy, contrast, and pre-determined reconstruction method, 
can be included in an accelerated (compressed sensing and parallel) MRI scanning protocol, simply replacing an 
existent non-optimized SP. For this task, the subset selection formulation of DDO of the SP seems to be the most 
effective approach for our applications of interest.

Theory
Specification of our aim.  Referring to Fig. 1, we use Ŵ to denote the set of size N comprising in the Car-
tesian grid all possible (a) time-varying phase and partition encoding positions in the 3D + time data collection 
scheme or (b) all possible phase encoding positions in the 2D data collection scheme. Our instrument (a multi-
coil MRI scanner) can provide measurements related to these sampling positions. Each such “measurement” 
comprises a fixed number (we denote it by Ns ) of measurements values for k-space points, i.e. the points on a line 
in the frequency-encoding direction for all coils. The measurements for the N positions of Ŵ are represented as 
the NsN-dimensional complex-valued vector m , these are referred to as fully-sampled measurements.

Let � be any subset (of size M ≤ N ) of Ŵ ; it is referred to as a sampling pattern (SP). The undersampled meas-
urements of m , restricted to M positions in � , is represented as the NsM-dimensional complex-valued vector

where S� is a NsM × NsN matrix is referred to as the sampling function. Such m̄ is referred to as the undersampled 
measurements for the SP � . The acceleration factor (AF) is defined as N/M. Note that, in practice, the reduction 
of the scan time depends on the pulse sequence used2. We assume here that the acquisition of Ns measurements 
values for any element of Ŵ requires the same scan time.

It is assumed that we have a defined recovery algorithm R that, for any SP � and any undersampled measure-
ments m̄ for that SP, provides an estimate, denoted by R(�, m̄) , of the fully-sampled measurements. A method 

(1)m̄ = S�m,
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for finding an efficacious choice � in a particular application area is our subject matter. Efficacy may be measured 
in the following data-driven manner.

Let Ni be the number of images and also the number of fully sampled measurements items (denoted by 
m1, . . . ,mNi , called the training measurements) used in the learning process to obtain an efficacious � . Intuitively, 
we wish to find a SP � such that all the measurements mi , for 1 ≤ i ≤ Ni , are “near” to their respective recovered 
versions R(�, S�mi) from the undersampled measurements. Using f (m,n) to denote the “distance” between 
two fully-sampled measurements m and n , we define the efficacy of a SP � as:

Then the sought-after optimal sampling pattern of size M is:

Models used.  Parallel MRI methods that directly reconstruct the images, such as sensitivity encoding 
method (SENSE)16,75 and many CS approaches76, are based on an image-to-k-space forward model, such as

where x is a vector that represents a 2D+time image of size Ny × Nz × Nt ( Ny and Nz are horizontal and verti-
cal dimensions, Nt is the number of time frames), C denotes the coil sensitivities transform mapping x into 
multi-coil-weighted images of size Ny × Nz × Nt × Nc , with Nc coils. F represents the spatial Fourier trans-
forms (FT), comprising Nt × Nc repetitions of the 2D-FT, and m is the fully sampled measurements, of size 
Ny × Nz × Nt × Nc . The two transforms combine into the encoding matrix E . In 2D+time problems N = NyNzNt 
and Ns = Nc , while in 1D problems N = Ny , Ns = NzNc , and Nt = 1 . In this work, all vectors, such as m and 
x , are represented by bold lowercase letters, and all matrices or linear operators, such as C or F , are represented 
by bold uppercase letters.

When accelerated MRI by undersampling is used, the sampling pattern is included in the model as

where S� is the sampling function using SP � (same for all coils) and m̄ is the undersampled multi-coil k-space 
measurements (or k-t-space when Nt > 1 ), with NsM elements, recalling that the AF is N/M. For reconstruc-
tions based on this model, we assumed that a central area of the k-space is fully sampled (such an area is used to 
compute coil sensitivities with auto-calibration methods, as in77).

In parallel MRI methods that recover the multi-coil k-space directly, the undersampling formulation is 
given by (1) and the image-to-k-space forward model is not used, since one is interested in recovering missing 
k-space samples using e.g. structured low-rank models23. For this, the multi-coil k-space is lifted into a matrix 
H = H(m) , assumed to be a low-rank structured matrix. Lifting operators H(m) are slightly different across PI 
methods, exploiting different kinds of low-rank structure7–11,23.

Once all the samples of the k-space are recovered, the image can be computed by any coil combination78,79, 
such as:

where mc is the measurements from coil c, F−1
c  is the inverse 2D-FT for one coil and wn,c is the weight for spatial 

position n and coil c.

Reconstruction methods tested.  We tested our proposed approach on five different reconstruction 
methods: Three one-frame parallel MRI methods (SENSE75, P-LORAKS11, and PI-CS with anisotropic TV80,81) 
and two multi-frame low-rank and PI-CS methods for quantitative MRI12.

In P-LORAKS11,82 the recovery from m̄ produces:

where the operator Hs(m) produces a low-rank matrix and Hs,r(m) produces a hard threshold version of the 
same matrix. P-LORAKS exploits consistency between the sampled k-space measurements and reconstructed 
measurements; it does not require a regularization parameter. Further, it does not need pre-computed coil sen-
sitivities, nor fully sampled k-space areas for auto-calibration.

SENSE, CS, or low-rank (LR) reconstruction12 is given by:

where � is a regularization parameter. For SENSE, � = 0 and no regularization is used. For CS and LR, we looked 
at the regularizations: P(x) = �Tx�1 , with T the spatial finite differences (SFD); and low rank (LR), using nuclear-
norm of x reordered as a Casorati matrix P(x) = �M(x)�∗

83.

(2)F(�) =
1

Ni

Ni
∑

i=1

f (mi ,R(�, S�mi)).

(3)
�̂ = argmin

�⊂Ŵ
s.t. |�|=M

F(�).

(4)m = FCx = Ex,

(5)m̄ = S�FCx,

(6)[x̂]n =
∑Nc

c=1wn,c[F
−1
c mc]n,

(7)R(�, m̄) = argmin
m

s,t.S�m=m̄

∥

∥Hs(m)−Hs,r(m)
∥

∥

2

F
,

(8)x̂ = argmin
x

(

�m̄− S�Ex�
2
2 + �P(x)

)

≈ Rx(�, m̄),
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CS approaches using redundant dictionaries D in the synthesis models24,84, given by x = Du , can be written as:

A dictionary to model exponential relaxation processes, like T2 and T1ρ , in MR relaxometry problems is the 
multi-exponential dictionary12,85. It generates a multicomponent relaxation decomposition86. The approximately-
equal symbol ≈ is used in (8) and (9), since the iterative algorithm for producing Rx(�, m̄) , MFISTA-VA87 in 
this paper, may stop before reaching the minimum.

Criteria utilized in this paper.  We work primarily with a criterion defined in the multi-coil k-space; see 
(2) and (3). This criterion is used by parallel MRI methods that recover the k-space components directly in a 
k-space interpolation fashion (and not in the image-space), such as P-LORAKS11 and others7,23,25. Unless stated 
otherwise, the f (m,n) in (2) is

The term ‖m‖22 normalizes the error, so that the cost function will not be dominated by datasets with a strong 
signal.

For image-based reconstruction methods (e.g., SENSE and multi-coil CS) using the model in (4), the 
R(�, S�mi) in (2) is replaced by ERx(�, S�mi) , as defined, e.g., in (8) and (9). The approach used to obtain the 
coil sensitivity is part of the method.

Note that (3) can be modified for image-domain criteria as well, such as:

where g
(

x, y
)

 is a measurement of the distance between images x and y . In this case, the fully-sampled reference 
must be computed using a reconstruction algorithm, such as xi = Rx(Ŵ,mi) , and so it is dependent on to the 
parameters used in that algorithm.

Proposed data‑driven optimization.  Due to the high computational cost of greedy approaches for large 
SPs and the relatively low cost of predicting points that are good next candidates, we propose a new learning 
approach, similar to POSS64,66,67, but with new heuristics that significantly accelerates the subset selection. For a 
general description of POSS see64, Algorithm 14.2.

In our proposed method, similarly to POSS, there is a sequential random selection of the elements to be 
changed. Differently from POSS, two heuristic rules, named the measure of importance (MI) and the positional 
constraints (PCs), are used to bias the selection of the elements with the intent to accelerate convergence. This is 
why our algorithm is named bias-accelerated subset selection (BASS). The MI (defined explicitly in (16) below) is 
a weight assigned to each element, indicating how much it is likely to contribute to decreasing the cost function. 
The PCs are rules for avoiding selecting undesirable elements, which may be one of two types: fixed or relative. 
Fixed positional constraints rule out the selection of an element because there is some prior reason for fixing its 
value (for example, elements used for auto-calibration are often considered to be such, an area of such elements 
is illustrated in Fig. 2, top right). Relative positional constraints are inspired by those used in the general combi-
natorial optimization approach called tabu search (TS)88, that had been demonstrated to be effective optimization 
approaches, in which a selection of some elements results in the forbidding of some otherwise legitimate selec-
tions in the same iteration. The rules that we have found efficacious in our application are that if an element with 
high MI is selected, then an adjacent element and also elements that are in complex-conjugated positions should 
not be selected in the same iteration. However, this does not prevent them to be selected in future iterations.

BASS, aims at finding (an approximation of) the �̂ of (3), is described in Algorithm 1. It uses the following 
user-defined items:

•	 �init is the initial SP for the algorithm. It may be any SP (a Poisson disk, a variable density or even empty SP).
•	 L is the number of iterations in the training process.
•	 N is the number of positions in the fully-sampled set Ŵ.
•	 M is the desired size of the SP ( M < N).
•	 Kinit  is the maximum (initial) number of elements to be added/removed per iteration  

( Kinit < min(M,N −M)).
•	 ρr  is a function of three positive-integer variables K, M, where ( K < M  ), and l, such that 

K/M < ρr(K ,M, l) ≤ 1.
•	 ρa is a function of the positive-integer variables K, M, N, where ( K < N −M  ), and l, such that 

K/(N −M) < ρa(K ,M,N , l) ≤ 1.
•	 select-remove(�,K , ρr(K ,M, l)) is a subset of �, specified below.
•	 select-add(�,K , ρa(K ,M,N , l)) is a subset of Ŵ\�, specified below.
•	 F is an efficacy function; see (2) with the following.

–	 Ni is the number of items in the training set.

(9)x̂ = D · argmin
u

(

�m̄− S�EDu�22 + ��u�1
)

≈ Rx(�, m̄).

(10)f (m,n) =
�m− n�22

�m�22
.

(11)�̂ = argmin
�⊂Ŵ

s.t.|�|=M

(

1

Ni

Ni
∑

i=1

g(xi ,Rx(�, S�mi))

)

,
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–	 m1, . . . ,mNi are the measurements items in the training set.
–	 R is the recovery algorithm from undersampled measurements.

•	 α is a reduction factor for the number of elements to be added/removed per iteration ( 0 < α < 1).

Selection of elements to be added to or removed from the SP.  Elements of �a and �r are selected 
by the functions select-add and select-remove in similar ways, described in the following paragraphs. First, 
we point out properties of those selections that ensure the progress of the learning algorithm toward finding 
an SP of M elements. The properties in question are that if �r , �a , and �′ are obtained by Steps 5, 6 and 7 of 
Algorithm 1, then

(12)|�a| =min (max(M + K − |�|, 0),K),

(13)|�r | =min (max(|�| + K −M, 0),K),

Figure 2.   Illustration of the steps used in the functions select-add and select-remove. First, a random pre-
selection is done by Bernoulli trials, using probabilities ρa(K ,M,N , l) and ρr(K ,M, l) . Later selections are made 
based on the measurement of importance, using the ε-map and the r-map (in which brighter indicates higher 
values), and the positional constraints (which include identification of the fixed areas). The resulting �a is shown 
in white and �r in black in the process of composing �′ . The new candidate �′ is accepted if the cost function is 
reduced. These steps are repeated at each iteration.
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It follows that if |�| < M , then |�r | < |�a| = K  and if |�| > M, then |�a| < |�r | = K  . Consequently, if 
|�| �= M , then

On the other hand, if |�| = M , then 
∣

∣�′
∣

∣ = |�| . Thus, executing Algorithm 1 results in a sequence of |�| that 
converges to M.

We now define (and illustrate in Fig. 2) select-add(�,K , ρa(K ,M,N , l)) and select-remove(�,K , ρr(K ,M, l)) 
in Algorithm 1; they are used in steps 5, 6, and 7. Intuitively, the definitions should be such that the SP �′ after 
step 7 is an improved choice as compared to the SP � . The number K of elements to be added/removed varies 
with iteration.

For 1 ≤ i ≤ Ni , let ei = mi − R(�, S�mi) . Here, ei is NsN-dimensional vector comprised of N elements, 
indexed by 1 ≤ k ≤ N , each of which is an Ns-dimensional vector, with components indexed by 1 ≤ s ≤ Ns ; we 
use [ei]k,s to denote the sth component of the kth component of ei . The kth component of ei comprises the Ns 
measurements related to the kth component of the SP.

For select-add, we define a measure of importance (MI) used in this work, for 1 ≤ k ≤ N , as

referred to as the ε-map. The purpose of select-add is to select K elements from Ŵ\� in the following ran-
domly-biased manner. First, an approximately ρa × (N −M) number of elements are randomly pre-
selected by Bernoulli trials with ρa probability, whose value is the user-provided ρa(K ,M,N , l) (recall that 
K/(N −M) < ρa(K ,M,N , l) ≤ 1 ). To have more than K pre-selected points, we need ρa > K/(N −M) . The K 
best points of the random pre-selected points will be chosen. The selection starts sequentially with the element 
with largest MI (the largest εk ). Once this element is chosen, any other element identified as undesirable by the 
PC rules is excluded from the randomly pre-selected group, and the selection continues with the element with 
next largest MI. The chosen K elements are likely to be useful for the aim of (3). The probability ρa indirectly 
controls the bias applied to the selected set. Larger probability implies less randomness and more bias. The prob-
ability varies with iteration l.

For select-remove, a sequence with number of elements specified in (13), that are in � , is generated in the 
same way, but using rk as the MI, instead of εk:

for 1 ≤ k ≤ N with δ a small constant to avoid zero/infinity in the defining of rk , which is referred to as the r-map. 
The idea of this MI is that a large reconstruction error in a sampled k-space position k, defined as 
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2 , 
where the expected quadratic value of the element is relatively small, defined as 
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2 , renders that 
element as less important for the SP. The elements of this sequence comprise �r , to be removed from � in the 
process of composing �′.

The probability of pre-selecting elements should respect pre-defined ranges, K/M < ρr(K ,M, l) ≤ 1 and 
K/(N −M) < ρa(K ,M,N , l) ≤ 1 . In order to take advantage of the convergence properties of POSS64, we argue 
that the probabilities should be reduced along iterations. In later iterations, according to line 12 of Algorithm 1, 
we have K → 1 (when K = 1 , the relative PC are no longer used), then we should also have ρr(K ,M, l) → 1/M 
and ρa(K ,M,N , l) → 1/(N −M) for BASS to become like POSS, when the change of elements are purely ran-
dom. At this point, the same convergence properties of POSS, stated in64 applies to BASS, given that monotonicity 
and submodularity are valid. Our recommended choices for lines 6 and 5 of Algorithm 1 are

and

with l the iteration index. This results in more bias in the beginning of the iterative process and more ran-
domness in later iterations. Other rules can be used, even constant probabilities ( ρr(K ,M, l) > 1/M and 
ρa(K ,M,N , l) > 1/(N −M) ) for a specific number of iterations. The same PCs were used in select-add and 
select-remove.

The expensive part of select-add and select-remove is the computation of the recoveries given by R(�, S�mi) , 
but this is done only once per iteration, for all Ni images. These recoveries are also reused to calculate the cost F 
in line 10 of Algorithm 1. Figure 2 illustrates the steps of these functions using K = 50.

Methods
Datasets.  In our experiments we utilized three datasets. One dataset, denominated T2-brain, con-
tains 40 brain T2-weighted images and k-space measurements from the fast MRI dataset of89. Of these, 
Ni = 30 were used for training and Nv = 10 for validation. The k-space measurements are of size 
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(18)ρr(K ,M, l) = K/M + ((M − K)/(M × l)),

(19)ρa(K ,M,N , l) = K/(N −M)+ ((N −M − K)/((N −M)× l)),
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Ny × Nz × Nt × Nc = 320× 320× 1× 16 , and the reconstructed images are Ny × Nz × Nt = 320× 320× 1 . 
With this dataset, we tested 2D SPs, of size N = 320× 320 , and 1D SPs, of size N = 320 (see Fig. 1). We used 1D 
SPs with experiments with large numbers of iterations to compare BASS against POSS and greedy approaches. 
The fast MRI dataset is a public dataset composed of images and k-space data obtained with different acquisi-
tions, not all of them are 3D acquisitions. In this sense, the experiments with 2D SPs in the T2-brain dataset are 
merely illustrative.

The second dataset, T1ρ-brain, contains T1ρ-weighted k-space measurements of the brain, of size 
Ny × Nz × Nt × Nc = 128× 148× 1× 20 , and the reconstructed images are Ny × Nz × Nt = 128× 148× 1 . 
Unless otherwise stated, Ni = 65 were used for training and Nv = 16 for validation. This dataset and the next 
one were all acquired with the Cartesian 3D acquisitions as described in “The specific content of this paper”, 
training and validation sets are composed of data from different individuals.

The third dataset, denominated T1ρ-knee, contains T1ρ-weighted knee images and k-space measurements 
for quantitative T1ρ mapping, of size Ny × Nz × Nt × Nc = 128× 64× 10× 15 , and the reconstructed images 
Ny × Nz × Nt = 128× 64× 10 representing the cross-sections of the human knee, and 2D+time SPs of size 
N = 128× 64× 10 . Unless otherwise stated, Ni = 30 were used for training and Nv = 10 for validation. The 
k-space measurements for all images are normalized by the largest component. A reduced-size knee dataset uses 
only part of the T1ρ-knee dataset. Images are of size Ny × Nz × Nt = 128× 64× 1, and Ni = 5 and Nv = 5 . 
This dataset is used in experiments with a large number of iterations to compare BASS against POSS and greedy 
approaches for 2D SPs.

Reconstruction methods.  For the T2-brain and T1ρ-brain datasets, three reconstruction methods were 
used:

•	 SENSE75: Multi-coil reconstruction, following Eq. (8) with � = 0 , and minimized with conjugate gradient.
•	 P-LORAKS11: from Eq. (7), with codes available online (https://​mr.​usc.​edu/​downl​oad/​lorak​s2/).
•	 CS-SFD87: Multi-coil CS with sparsity in the spatial finite differences (SFD) domain, following Eq. (8), and 

minimized with MFISTA-VA.

SENSE was used only for 1D SP comparisons between BASS, POSS and greedy approaches.
For the T1ρ-weighted knee dataset, we used different methods:

•	 CS-LR12: Multi-coil CS using nuclear-norm of the vector x reordered as a Casorati matrix P(x) = �M(x)�∗ 
and minimized with MFISTA-VA.

•	 CS-DIC12: Multi-coil CS using synthesis approach following Eq. (9), using D as a multi-exponential 
dictionary85, and minimized with MFISTA-VA.

CS-SFD, CS-LR, and CS-DIC need a fully-sampled area for auto-calibration of coil sensitivities using ESPIRiT77. 
P-LORAKS does not use auto-calibration. All experiments were performed in Matlab, codes used in this manu-
script are available in https://​cai2r.​net/​resou​rces/​softw​are/​data-​driven-​learn​ing-​sampl​ing-​patte​rn.

The regularization parameter (the � in (8) and (9)) required in CS-SFD, CS-LR, and CS-DIC was optimized 
independently for each type of SP (Poisson disk, variable density, combined variable density and Poisson disk, 
adaptive SP, or optimized) and each AF, using the same training data. The parameters of the recovery method R 
are assumed to be fixed during the learning process of the SP.

Optimizing parameters of Poisson disk, variable density, and adaptive SPs.  Grid optimization 
with 50 realizations of each SP was performed, changing the parameters used to generate these SPs, to obtain 
the best realization of these SPs, which corresponds to the one that minimizes F(�) . This approach is the one 
used in56 for minimizing F(�) . Poisson disk and variable density codes used in the experiments are at https://​
github.​com/​mohak​patel/​Poiss​on-​Disc-​Sampl​ing and http://​mrsrl.​stanf​ord.​edu/​~jyche​ng/​softw​are.​html. Com-
bined Poisson disk and variable density SP from44 and adaptive SPs from45 were also used for comparison. The 
spectrum template obtained from the same training data was used with adaptive SPs. All these approaches can 
be considered data-driven approaches because optimization of the parameters to generate the SP was performed. 
They all have a fixed computational cost of 50Ni image reconstructions (nearly the same computational cost as 
BASS).

Evaluation of the error.  The quality of the results obtained with the SP was evaluated using the normalized 
root mean squared error (NRMSE):

 When not specified, the NRMSE shown was obtained from k-space on the validation set; results using image-
domain and the training set are also provided, as is structural similarity (SSIM)90 in some cases.
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Results
Illustration of the convergence and choice of parameters.  In Fig. 3a–c we compare BASS against 
POSS66 and the greedy approach “learning-based lazy” (LB-L)56, adapted to the cost function in (2). The result-
ing NRMSEs are re-normalized by the initial values and show the difference in computational cost and quality 
between the approaches. Plots are scaled logarithmically in epochs (in each “epoch” all the images are recon-
structed once). In Fig. 3a, it is shown the performance of the learning methods with 1D SP using T2-brain dataset 
and SENSE reconstruction, with AF = 4. In this example, BASS was faster than POSS and LB-L. Also, BASS and 
POSS obtained nearly same quality results, superior to LB-L. In Fig. 3b, the performance of the learning methods 
was tested in the same setup, but using CS-SFD reconstruction, with AF = 4. In this example, BASS was faster 
than POSS and LB-L, but all methods obtained nearly the same quality results. In Fig. 3c, the methods were 
compared with CS-SFD with the reduced-size knee dataset and 2D SPs, starting with the auto-calibration area 
and AF = 15. In this example BASS found a solution with same quality in the training set using only 433 epochs, 
around 50 times faster than LB-L (~ 21,000 epochs). Also, BASS and POSS can go on minimizing the cost func-
tion beyond the stopping point of LB-L finding even better SPs.

Figure 3.   Convergence curves for BASS. Comparison against POSS and the greedy approach LB-L in (a) 1D 
SP using SENSE, (b) 1D SP using CS-SFD, and (c) 2D SP using CS-SFD. (d) Comparing various initial SPs. (e) 
Comparing various Kinit s. (f) Comparing various training sizes.
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Figure 3d, demonstrates the performance of BASS for various initial SPs (same experimental setup as for 
Fig. 3c, with Kinit=50). The improvement observable in the validation set ends quickly, at iteration 50 in this 
example. There is an arrow in the figure pointing to an efficient solution. Such a solution is obtained after rela-
tively few iterations, during which most of the significant improvement observable with validation data has 
already happened. Iterating beyond this point essentially leads to marginal improvement, observable only with 
the training data.

In Fig. 3e we see the results of the learning process for the training data according to the parameters Kinit for 
CS-LR, AF = 20, using the knee dataset, with Ni = 30 and Nv = 10 . Note that large Kinit performs better than 
small Kinit in terms of speed of convergence in the beginning of the learning process. Over time, K reduces from 
Kinit towards K = 1.

The importance of large and diverse datasets to generate the learned sampling pattern for the specific class 
of images is illustrated in Fig. 3f, showing the convergence of the learning process with the validation set, in 
NRMSE. We used training sets of 1, 3, 10, 30, and 90 images. The validation sets were composed of the same 20 
images, not used in any of the training sets.

The robustness of an efficient solution in the presence of variable initial SP is illustrated in Fig. 4. Figure 4a–d 
show three initial SPs: variable density (VD), Poisson disk (PD), empty except for a small central area (CA), and 
adaptive SP. Using 200 iterations of BASS for P-LORAKS with these initial SPs, corresponding efficient SPs were 
obtained; shown in Fig. 4e–h. There are minor differences among them (around 1% difference in NRMSE), but 
the central parts of the SPs are very similar.

Performance with various reconstruction methods.  BASS improves NRMSE in image space for fixed 
AFs when compared with the other SPs for the four reconstruction methods tested with 2D+time SPs. Figure 5a 
shows the NRMSE obtained by P-LORAKS with T2-brain dataset, comparing variable density SPs, Poisson disk 
SPs, adaptive SPs, combined variable density with Poisson disk SPs, and the optimized SPs. Figure 5b shows 
the NRMSE obtained by CS-SFD with T2-brain dataset. Figure 5c,d show P-LORAKS and CS-SFD with T1ρ

-brain, dataset. Figure 5e shows the NRMSE obtained by CS-LR with T1ρ-knee dataset. Figure 5f shows the 
NRMSE obtained by CS-DIC with T1ρ-knee dataset. All SP had their parameters optimized for each reconstruc-
tion method, dataset, and AF.

Figure 6 illustrates on the T2-brain dataset how the optimized SPs improve the reconstructed images 
with P-LORAKS (for AF = 9) and CS-SFD (for AF = 16) against combined variable density and Poisson disk 
(VD + PD). The P-LORAKS methods had a visible improvement in SNR, the CS-SFD methods became less 
smooth with some structures more detailed. However, some structured error can still be seen in the error maps. 
Figure 6 also illustrates that optimized SPs are different for the two reconstruction methods, even when using the 
same images for training. Figure 7 illustrates on the images obtained with the T1ρ-brain dataset with P-LORAKS 
(for AF = 5) and CS-SFD (for AF = 6), comparing optimized SP with variable density and adaptive SP.

Figure 4.   Efficient solutions produced for P-LORAKS with AF = 16 and initial SPs (a) variable density (VD), 
(b) Poisson disk (PD), (c) an SP that is empty except for a small central area (CA), and (d) adaptive SP. The 
corresponding efficient solutions are the SPs in (e) for VD ( NRMSE = 0.196 ), in (f) for PD ( NRMSE = 0.195 ), 
in (g) for CA ( NRMSE = 0.194 ), and in (h) for adaptive SP ( NRMSE = 0.199).
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Figure 5.   NRMSE (lower is better): (a) for P-LORAKS and (b) CS-SFD for T2-brain dataset, (c) for P-LORAKS 
and (d) CS-SFD for T1ρ-brain, dataset, and (e) for CS-LR, and (f) CS-DIC for T1ρ-knee dataset. Variable density, 
Poisson disk, adaptive SP, and combined variable density with Poisson disk are compared with optimized SP 
(obtained by BASS) for various AFs.
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In Fig. 8, visual results with the T1ρ-knee dataset illustrate the improvement due to using an optimized SP 
as compared to using combined variable density and Poisson disk SP, for both CS-LR and CS-DIC. We also see 
that the optimized SPs are different for the two reconstruction methods. Note that both optimized k-t-space SPs 
have a different sampling density over time (first, middle, and last time frames are shown), being more densely 
sampled at the beginning of the relaxation process. The auto-calibration region is in the first frame.

BASS with a different criterion.  We illustrate that our proposed optimization approach is also efficacious 
with different criteria. In some applications, one may desire the best possible image quality, regardless of k-space 
measurements. Here we discuss the use of BASS to optimize the SSIM of90, an image-domain criterion. For that, 
the task in (3) of finding the minimizer of F(�) in (2), used in line 10 of the Algorithm 1, is replaced by finding 
the minimizer in (11), with g

(

x, y
)

 the negative of the SSIM. In Fig. 9 we compare the optimization of SSIM with 
that of NRMSE, using P-LORAKS on the T2-brain dataset, AF = 10, starting with the Poisson disk SP.

T
1ρ mapping.  We illustrate the performance of the optimized SPs for T1ρ mapping. We compare the opti-

mized SP against Poisson disk SP, previously used in12, for CS-LR. The SP and reconstructed images corre-
spond to the cross-section of the knee, of size Ny × Nz × Nt = 128× 64× 10 , the T1ρ mapping is performed 
in the cartilage region on the longitudinal plane (in-plane) of the recovered 3D volume. The 3D+time volume 
has Nx × Ny × Nz × Nt = 256× 128× 64× 10 voxels, where Nx = 256 corresponds to the samples in the 
frequency-encoding direction, field-of-view of 130mm× 130mm× 130mm , and in-plane (rounded) resolu-
tion of 0.5mm× 1mm , slice thickness of 2mm , and 10 frames. In Fig. 10 we illustrate the results with T1ρ 
mapping in the knee, particularly around the cartilage region. In Fig. 10a–c we show some illustrative T1ρ maps. 

(a) FS (b) P-LORAKS Optimized
(NRMSE=0.015)

(c) Error (x10) (d) P-LORAKS VD+PD
(NRMSE=0.034)

(e) Error (x10)

(f) FS (g) CS-SFD Optimized
(NRMSE=0.005)

(h) Error (x10) (i) CS-SFD VD+PD
(NRMSE=0.006)

(j) Error (x10)

(k) Optimized P-LORAKS (l) VD+PD AF=9 (m) Optimized CS-SFD (n) VD+PD AF=16

Figure 6.   Visual results of the T2-brain dataset are shown in this figure. For P-LORAKS, fully sampled (FS) 
reference is shown in (a), and images using optimized SP and combined variable density and Poisson disk 
(VD+PD) SP with AF = 9 are shown in (b) and (d). Error maps between FS and P-LORAKS are shown in (c) for 
Optimized SP and (e) for VD + PD SP. For CS-SFD, FS reference is shown in (f), and images using optimized 
SP and VD + PD SP with AF = 16 are shown in (g) and (i). Error maps between FS and CS-SFD are shown in 
(h) for Optimized SP and (j) for VD+PD SP. The optimized and VD+PD SPs with AF = 9 for P-LORAKS are 
shown in (k) and (l), while the ones with AF = 16 used for CS-SFD, with the highlighted central-square auto-
calibration region, are shown in (m) and (n).
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In Fig. 10d we show the NRMSE for different acceleration factors, considering 10 slices containing the knee 
cartilage. In Fig. 10e,f, we show the point-wise errors of the T1ρ maps.

Prospective accelerated scans.  We tested the optimized SP obtained with BASS in prospective CS scans, 
in Fig. 11. For an explanation of the usage of the word “prospective” in MRI, see6. We used the knee dataset for 
training the SP for CS-SFD at AF = 4. The images of size Ny × Nz × Nt = 128× 64× 1 used for training com-
pose the cross-session of the 3D volumes. Displayed images correspond to the longitudinal view of one slice of a 
3D volume (which has size Nx × Ny × Nz = 256× 128× 64 ), with in-plane resolution of 0.5mm× 1mm and 
slice thickness of 2mm . The 15-channel coil measurements was obtained with the T1ρ pulse sequence used in12, 
which is a T1ρ magnetization prepared fast gradient-echo sequence2.

Discussion
The proposed approach delivers efficacious sampling patterns for high-resolution or quantitative parallel MRI 
problems. Compared to previous greedy approaches for parallel MRI, as in56,57, BASS is able to optimize much 
larger SPs, using larger datasets, spending less computational time than greedy approaches (Fig. 3a–c. Greedy 
approaches test considerably more candidates SPs before updating the SP. They are computationally affordable 
only for 1D undersampling or small 2D SPs, but they were inferior to BASS in computational time and imag-
ing quality. Note that computational time for each epoch (or iteration for BASS) depends on the time of the 
implemented reconstruction algorithm. For CS-DIC, the reconstruction of each slice of the knee dataset takes 
16.1 s on an NVIDIA Tesla V100 GPU, while for CS-LR it takes 9.6 s. For the T2-brain dataset, P-LORAKS takes 
110.2 s on a CPU Intel Skylake 2.4 GHz, SENSE takes 0.5 s and CS-SFD takes 6.3 s on an NVIDIA Tesla V100 
GPU. We estimate approximate 1.5 computational years running LB-L (estimated 263 K epochs for learning) 
for 2D SP with N = 320× 320 using CS-SFD on the T2-brain dataset (considering only 30 training images) to 
obtain nearly the same SP that BASS finds in 33 hours (if 500 epochs or iterations are used) in an NVIDIA GPU.

(a) FS (b) P-LORAKS Optimized
(NRMSE=0.011)

(c) Error (x10) (d) P-LORAKS Variable
density (NRMSE=0.013)

(e) Error (x10)

(f) FS (g) CS-SFD Optimized
(NRMSE=0.0045)

(h) Error (x8) (i) CS-SFD Adaptive SP
(NRMSE=0.0053)

(j) Error (x8)

(k) Optimized P-LORAKS AF=5 (l) Variable density AF=5 (m) Optimized CS-SFD AF=6 (n) Adaptive SP AF=6

Figure 7.   Visual results of the T1ρ-brain dataset are shown in this figure. For P-LORAKS, fully sampled (FS) 
reference is shown in (a), and images using optimized SP and variable density SP with AF = 5 are shown in 
(b) and (d). Error maps between FS and P-LORAKS are shown in (c) for Optimized SP and (e) for variable 
density SP. For CS-SFD, FS reference is shown in (f), and images using optimized SP and adaptive SP with 
AF = 6 are shown in (g) and (i). Error maps between FS and CS-SFD are shown in (h) for Optimized SP and 
(j) for adaptive SP. The optimized and variable density SP with AF = 5 for P-LORAKS are shown in (k) and (l), 
while the optimized and adaptive SPs with AF = 6 used for CS-SFD, with the highlighted central-square auto-
calibration region, are shown in (m) and (n).
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The proposed approach for subset selection is effective because it uses a smart selection of new elements in 
the SP updating process. Candidates that are most likely to reduce the cost function are tried first. The obtained 
efficient solution may have minor differences depending on the initial SP (Fig. 4), but the optimized SPs tend to 
have the same final quality if more iterations are used (Fig. 3d). Adding and removing multiple elements at each 
iteration is beneficial for fast convergence at the initial iterations (Fig. 3e).

The cost function in (2) evaluates the error in k-space, not in the image domain. This may not be sufficiently 
flexible because it does not allow the specification of regions of interest in the image domain. Nevertheless, 
improvements measured by the image-domain criteria NRMSE were observed (Fig. 5). In different MRI appli-
cations other criteria than (2) may be desired. The proposed algorithm can be used for other criteria, such as 
the SSIM (Fig. 9).

The optimized SP varies with the reconstruction method (Figs. 6, 7 and 8) or with the optimization criterion 
(Fig. 9): thus sampling and reconstruction should be matched. This concept of matched sampling-reconstruction 
indicates that comparing different reconstruction methods with the same SP is not a fair approach, instead each 
MRI reconstruction method should be compared using its best possible SP. Note that the optimized SP improved 
the NRMSE by up to 45% in some cases (Fig. 5).

The experiments also show that optimizing the SP is more important at higher AFs. As seen in Fig. 5, the 
optimization of the SP flattened the curves of the error over AF, achieving a lower error with the same AF. For 
example, P-LORAKS with optimized SP at AF = 20 obtained the same level of NRMSE as with variable density SP 
at AF = 6, while CS-LR with optimized SP at AF = 30 obtained the same level as with Poisson disk SP at AF = 16, 
even after optimizing the parameters used to generate the Poisson disk SP. Thus it is possible to double the AF by 
optimizing the SP. Variable sampling rate over time is advantageous for T1ρ mapping as seen in91; it is interesting 
that the algorithm learned this, as shown in Figs. 8 and 10. It is also important to clarify that the results shown for 
variable density, Poisson disk, combined variable density and Poisson disk, and adaptive SP are the best obtained 
among a parameter optimization process spending 50 epochs. If a simple guess of the parameters for these SPs 

(a) Optimized SP CS-DIC (b) CS-DIC Optimized (NRMSE=0.029) (c) Error (x5)

(d) Variable dens.+ Poisson disk SP (e) CS-DIC VD+PD (NRMSE=0.039) (f) Error (x5)

(g) Optimized SP CS-LR (h) CS-LR Optimized (NRMSE=0.019) (i) Error (x5)

(j) FS (k) CS-LR VD+PD (NRMSE=0.030) (l) Error (x5)

Figure 8.   Three frames for different relaxation times of the knee dataset, when AF = 18 was used, 
reconstructed with CS-DIC (b) and (e) and with CS-LR (h) and (k): compare these with the corresponding fully 
sampled (FS) measurements in (j), where the corresponding magnitude of the errors are in (c,f,i,l). Combined 
variable density and Poisson disk SP (d) and BASS optimized SPs for CS-DIC (a) and CS-LR (g) are also shown. 
Central auto-calibration area is highlighted in yellow.
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is used, then the performance of these SPs can be poor. In contrast, BASS found efficient SPs spending the same 
computational cost or less than that (10∼ 50 epochs in Fig. 3a–d).

The lower computational cost and rapid convergence speed of BASS bring the advantage of learning the opti-
mal SP for various reconstruction methods considering the same anatomy. Thus one can have a better decision 
on which matched sampling and reconstruction is the most effective for specific anatomy and contrast at the 
desired AF. Many questions regarding the best way to sample in accelerated MRI can be answered with the help 
of machine learning algorithms such as BASS. Learned SPs are key elements in making higher AFs available in 
clinical scanners for translational research.

Conclusion
We proposed a data-driven approach for learning the sampling pattern in parallel MRI. It has a low computa-
tional cost and converges quickly, enabling the use of large datasets to optimize large sampling patterns, which is 
important for high-resolution Cartesian 3D-MRI and quantitative and dynamic MRI applications. The approach 

(a) (b)

(c) (d) (e) FS

(f) Optimized for SSIM
(NRMSE=0.029, SSIM=0.993)

(g) Error (x5) (h) Optimized for NRMSE
(NRMSE=0.018, SSIM=0.984)

(i) Error (x5)

Figure 9.   Comparing BASS in optimizing SSIM (higher is better) and NRMSE (lower is better). (a) SSIM and 
(b) NRMSE along the iterations, (c) SP obtained by optimizing SSIM, (d) SP obtained by optimizing NRMSE, 
and some visual results with fully sampled reconstruction in (e), example of images with SP obtained by 
optimizing SSIM in (f) and NRMSE in (h), and their error maps (g) and (i).
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considers measurements for specific anatomy and assumes a specific reconstruction method. Our experiments 
show that the optimized SPs are different for different reconstruction methods, suggesting that matching the 
sampling to the reconstruction method is important. The approach improves the acceleration factor and helps 
with finding the best SP for reconstruction methods in various applications of parallel MRI.

(a) FS (b) Optimized SP (c) Poisson disk SP

(d) (e) Error with optimized SP (f) Error with Poisson disk SP

Figure 10.   Comparison of T1ρ maps obtained with Poisson disk and optimized SP. Illustrative T1ρ maps 
obtained with fully sampled (FS) parallel MRI in (a), with optimized SP with AF = 4 in (b), and with Poisson 
disk SP with AF = 4 in (c). In (d), the NRMSE for different AF is shown. The point-wise error map between 
the T1ρ maps obtained between FS and optimized SP are shown in (e), and between FS and Poisson disk SP are 
shown in (f).

Figure 11.   Comparison of (a) fully sampled parallel MRI (2 min 46 s scan time) with prospective accelerated 
parallel MRI at AF = 4 (42 s scan time) using (b) optimized SP and (c) Poisson disk SP.
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Data availability
Matlab codes and some sample data used for training and validation are available at https://​cai2r.​net/​resou​
rces/​softw​are/​data-​driven-​learn​ing-​sampl​ing-​patte​rn. Brain dataset is available at https://​fastm​ri.​med.​nyu.​edu/. 
Complete T1ρ-brain and T1ρ-knee datasets are available on request.
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