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Abstract

This article explores how probabilistic programming can be used to simulate quantum corre-

lations in an EPR experimental setting. Probabilistic programs are based on standard proba-

bility which cannot produce quantum correlations. In order to address this limitation, a

hypergraph formalism was programmed which both expresses the measurement contexts

of the EPR experimental design as well as associated constraints. Four contemporary open

source probabilistic programming frameworks were used to simulate an EPR experiment in

order to shed light on their relative effectiveness from both qualitative and quantitative

dimensions. We found that all four probabilistic languages successfully simulated quantum

correlations. Detailed analysis revealed that no language was clearly superior across all

dimensions, however, the comparison does highlight aspects that can be considered when

using probabilistic programs to simulate experiments in quantum physics.

Introduction

Probabilistic models are used in a broad swathe of disciplines ranging from the social and

behavioural sciences, biology, the physical and computational sciences, to name but a few. At

their very core, probabilistic models are defined in terms of random variables, which range

over a set of outcomes that are subject to chance. For example, a measurement on a quantum

system is a random variable. By performing the measurement, we record the outcome as the

value of the random variable. Repeated measurements on the same preparation allow deter-

mining the probability of each outcome. Probabilistic programming offers a convenient way

to express probabilistic models by unifying techniques from conventional programming such

as modularity, imperative or functional specification, as well as the representation and use of

uncertain knowledge. A variety of probabilistic programming languages (PPLs) have been pro-

posed (see [1] for references), which have attracted interest from artificial intelligence, pro-

gramming languages, cognitive science, and the natural language processing communities [2].
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However, as far as the authors can tell, there has been little interest in PPLs from the physics

research community. The aim of this article is raise awareness of PPLs to this community by

showing how quantum correlations can be simulated by probabilistic programming. The core

purpose of a PPL is to specify a model in terms of random variables and probability distribu-

tions [1]. As a consequence, a PPL is restricted to computing statistical correlations between

variables which are a mathematical consequence of the underlying event space. Quantum the-

ory, on the the hand, has a different underlying event space. This in turn allows correlations

between variables to emerge that go beyond those governed by standard probability theory. In

particular, local hidden variables are straightforward to represent in a PPL, since they corre-

spond to what classical probabilities can express. Nonlocal correlations, however, cannot be

described by a local hidden variable model [3]. The question arises as to how to simulate such

correlations using probabilistic programming. This article addresses this question by using a

hypergraph formalism that has recently emerged in quantum information [4]. The advantage

of the hypergraph formalism is that it provides a flexible, abstract representation for rendering

into the syntax of a PPL. In addition, constraints inherent to the experimental design being

simulated can be structurally expressed within the hypergraphs. We will show that by embed-

ding this hypergraph formalism in a PPL, an EPR experiment can be simulated where quan-

tum correlations are produced (the acronym EPR describes Einstein, Rosen and Podolky’s

famous paper which subsequently led to experimental protocols being developed to investigate

quantum entanglement [5]). In addition, we provide qualitative and quantitative comparisons

between several implementations in contemporary PPLs under an open source license. This

opens the door to the possibility of reliably and meaningfully simulating experiments in quan-

tum contextuality by means of probabilistic programs.

Probabilistic Programming and the EPR experiment

The basis of the EPR experiment is two systems A and B which are represented as bivalent vari-

ables ranging of {0, 1}. Variables A and B are respectively conditioned by bivalent variables X
and Y, with both ranging over {0, 1}. Four experiments are performed by means of joint mea-

surements on A and B depending on the value of the respective conditioning variables. As a

consequence, the experiments produce four pairwise distributions over the four possible out-

comes from the joint measurements:

pðA;BjX ¼ 0;Y ¼ 0Þ

pðA;BjX ¼ 0;Y ¼ 1Þ

pðA;BjX ¼ 1;Y ¼ 0Þ

pðA;BjX ¼ 1;Y ¼ 1Þ

In order to simplify the notation, variable Ai is distributed as p(A|X = i), i 2 {0, 1}. In a similar

way, variables B0 and B1 are introduced. Therefore, the preceding four pairwise distributions

can be represented as the the grid of sixteen probabilities depicted in Fig 1. The EPR experi-

ment is subject to constraint know as the “no-signalling” condition. No-signalling entails that

the marginal probabilities observed in relation to one variable do not vary according to how

the other variable is conditioned:

p1 þ p2 ¼ p5 þ p6 ð1Þ

p9 þ p10 ¼ p13 þ p14 ð2Þ

PPLs for simulating quantum correlations
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p1 þ p3 ¼ p9 þ p11 ð3Þ

p5 þ p7 ¼ p13 þ p15 ð4Þ

The goal of an EPR experiment is to empirically determine whether quantum particles are

entangled. We will not go into the details of what entanglement is, but rather focus on showing

how statistical correlations between variables determine the presence of entanglement. Entan-

glement is determined if any of the following inequalities is violated.

jhA0B0i þ hA0B1i þ hA1B0i � hA1B1ij � 2 ð5Þ

jhA0B0i þ hA0B1i � hA1B0i þ hA1B1ij � 2 ð6Þ

jhA0B0i � hA0B1i þ hA1B0i þ hA1B1ij � 2 ð7Þ

j � hA0B0i þ hA0B1i þ hA1B0i þ hA0B0ij � 2 ð8Þ

where the correlations are defined as follows:

hA0B0i ¼ ðp1 þ p4Þ � ðp2 þ p3Þ ð9Þ

hA0B1i ¼ ðp5 þ p8Þ � ðp6 þ p7Þ ð10Þ

hA1B0i ¼ ðp9 þ p12Þ � ðp10 þ p11Þ ð11Þ

hA1B1i ¼ ðp13 þ p16Þ � ðp14 þ p15Þ ð12Þ

Fig 1. Four pairwise distributions in an EPR experiment.

https://doi.org/10.1371/journal.pone.0208555.g001
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For historical reasons, the set of four inequalities have become known as the Clauser-Horn-

Shimony-Holt (CHSH) inequalities [6]. The data is collected from the four experiments

defined above by subjecting a large number of pairs (A, B) of quantum particles to joint mea-

surements. More specifically, each such pair is measured in one of the four measurement con-

ditions represented by the grid of probabilities depicted in Fig 1.

The maximum possible violation of the CHSH inequalities is 4, i.e., three pairs of variables

are maximally correlated (= 1) and the fourth is maximally anti-correlated (= -1). However, if

the experiment is modelled by a joint probability distribution across the four variables A0, A1,

B0, B1, the maximum value that can be computed by any of the inequalities happens to be 2.

This is why the boundary of violation in the inequalities is 2 as it demarcates the boundary

which standard statistical correlations cannot transcend. This fact presents a challenge for a

PPL, which is based on standard probability theory. How can a PPL be developed to simulate

non-classical quantum correlations?

Design of an EPR Simulation Experiment using PPLs

Fig 2 depicts the framework for how a PPL can be used to simulate EPR experiments. A phe-

nomenon P, e.g., entangled quantum particles, is to be studied. An experimental design is

devised in which P is examined in the four experimental conditions called “measurement con-

texts”. A measurement context Mi, 1� i� 4 is designed to study P from a particular experi-

mental perspective. For example, one measurement context corresponds to X = 0 and Y = 1

Fig 2. Framework for the EPR experiment.

https://doi.org/10.1371/journal.pone.0208555.g002
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which yields probabilities over the four possible outcomes of joint measurements of A and B.

We will denote these outcomes as {00|01, 01|01, 10|01, 11|01}. For example, 00|01 denotes the

outcome A = 0, B = 0 in the measurement context M2 = {X = 0, Y = 1}.

Measurement contexts are formally defined as hyperedges in a hypergraph called a “contex-

tuality scenario”. Contextuality scenarios X i, 1� i� 2 are composed into a composite contex-

tuality scenario X , which is a hypergraph describing the phenomenon P. Composition offers

the distinct advantage of allowing experimental designs to be theoretically underpinned by

hypergraphs in a modular way [7]. More formally, a contextuality scenario is a hypergraph

X = (V, E) such that:

• v 2 V denotes an outcome which can occur in a measurement context

• e 2 E is the set of all possible outcomes given a particular measurement context

See Definition 2.2.1 in Ref. [4].

It is important to note that the PPL functions as both a means to simulate an EPR experi-

ment as well as determine whether quantum correlations are present. As we will see below,

each hyperedge of X is a probability distribution over outcomes in a given measurement con-

text. In EPR experiments these distributions are computed by a sampling process which

ensures that the no-signaling constraint is adhered to. In order to achieve this, the hypergraphs

X i are composed using the Foulis—Randall (FR) product [4] (see the next section). As a conse-

quence, the PPL must implement this product for a valid simulation of an EPR experiment.

Much of the technical detail to follow describes how this can be achieved. To our knowledge

the FR product has never been implemented before in a PPL. Several such implementations

will be specified below in various PPLs and then compared.

At the conclusion of the simulation, the CHSH equalities can be applied to correlations

computed from relevant hyperedges in the composite contextuality scenario X to determine

whether quantum correlations are present. If so, the PPL has successfully simulated phenome-

non P as exhibiting quantum, rather than, classical statistics.

Foulis—Randall product

The FR product is used to compose contextuality scenarios as its product ensures no signalling

between systems represented by the variables A and B [4].

The Foulis—Randall product is the scenario HA�HB with

VðHA �HBÞ ¼ VðHAÞ � VðHBÞ; EðHA �HBÞ ¼ EA!B [ EB!A

where

EA!B ≔

(

[
a2eA
fag � f ðaÞ : eA 2 EA; f : eA ! EB

�

EA B ≔
n

[
b2eB
fbg � f ðbÞ : eB 2 EB; f : eB ! EA

�

The preceding definition formalizes the simultaneous measurements of the two systems A
and B such that no-signalling occurs between these systems [4]. The no-signalling constraint is

imposed by means of a set of specific hyperedges which are a consequence of the FR product.

We now turn to the issue of modularity which was mentioned previously. There are two

systems A and B. System A has two measurement contexts: 1) A|X = 0 and 2) A|X = 1, where

both measurements yield an outcome A = 0 or A = 1. In the hypergraph formalism, a measure-

ment context is formalized by a hyperdge. The hypergraph HA therefore has two hyperedges,

PPLs for simulating quantum correlations
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one for each measurement contexts. These two hyperedges are visually represented on the

LHS of Fig 3. Similarly, hypergraph HB comprises two edges. HA and HB can be viewed as

modules which can be composed in various ways to suit the requirements of a particular

experimental design. In the EPR experiment, four measurement contexts are required in

which A are B are jointly measured subject to the no-signalling condition.

In order to achieve this, the hypergraphs HA and HB are composed using the FR product to

produce a composite hypergraph. The corresponding hypergraph contains 12 edges. Four of

these edges correspond to the four pairwise distributions depicted in Fig 1 and 8 additional

edges which ensure that no-signalling can occur.

The FR product produces the hypergraph depicted in Fig 4. This hypergraph corresponds

to composite contextuality scenario X depicted in Fig 2.

To assist with understanding this formalism, one single hyperedge’s calculation is

considered.

Let eA be equivalent to edge {0|0, 1|0} of hypergraph HA.

The relevant calculation associated with the instance may then be one of two combinations:

f ð0j0Þ [ f ð1j0Þ or f ð1j0Þ [ f ð0j0Þ

The first of the two combinations is selected, expanding to the following expression:

f00j00; 01j00g [ f10j01; 11j01g

The hyperedge is isolated in Fig 5.

In what follows, we implement this hypergraph formalism in several probabilistic program-

ming languages and evaluate the advantages of each.

Implementations

In this section, four commonly available PPLs illustrate a simulation of the same EPR experi-

ment. The goal of this comparison is to judge their relative effectiveness for this purpose.

Fig 3. Hypergraph Representation Of EPR Systems A & B.

https://doi.org/10.1371/journal.pone.0208555.g003
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Scope Of investigation

Four PPLs were chosen for both qualitative and quantitaive comparison and are listed in

Table 1. While other PPLs such as Stan [8], Church [9], or WebPPL [2] were considered for

the investigation, we decided to exclude such domain-specific languages on the basis of limited

applications in quantum physics. Probabilistic programming frameworks that only focus on

directed graphs, such as Edward [10], were also excluded, since this feature is not relevant to

the EPR experiment in the hypergraph formalism.

Qualitative comparison Of PPLs

The qualitative comparison highlights important pragmatic aspects of probabilistic programs,

and is defined by the following criteria.

Criteria Of Comparison. • Extensibility: The PPL accommodates for simulation of com-

plex experimental settings. This may be inherent in the PPL’s

means of extension i.e., is open-source, or whether its syntac-

tic constructs provide flexibility in specifying data structures

and the flow of control.

• Accessibility: The PPL is intuitive and coherent. Possibly by means of expressive constructs,

or comprehensive supporting documentation, accessibility may also be demonstrated by the

PPL’s community base, or degree of application.

Fig 4. Hyperedges Of Foulis—Randall Product.

https://doi.org/10.1371/journal.pone.0208555.g004
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• Acceleration: The PPL implements methods of optimization for its execution, reflected in

the speed and resource-utilization of its compilation. Acceleration may also be demonstrated

in the PPL’s scalability.

These criteria are derived from criteria commonly used to judge programming languages.

Extensibility Of PPLs. Regarding extensibility, all PPLs are supplemented with reposito-

ries containing source code that can be (with respect to licenses) modified and re-compiled.

While all PPLs offer containment systems for configuration of probabilistic models, only

PyMC3 and Figaro provide tools for the diagnosis and validation of models. In considering

Turing.jl’s dependence on the Distributions.jl [15] package, it can be said that all PPLs provide

a number of distribution configurations. In contrast, not all PPLs offer flexibility in step meth-

ods used for sampling. This can be overlooked considering that beyond common sampling

methods, excess of configurations are typically specialised. Figaro and Pyro are the only PPLs

Fig 5. Single Hyperedge Of Foulis—Randall Product.

https://doi.org/10.1371/journal.pone.0208555.g005

Table 1. Basic characteristics of probabilistic programming languages.

Name Programming language License Supported OS

PyMC3 [11] Python Apache-2.0 Windows, Mac, Linux

Figaro [12] Scala Custom Windows, Mac, Linux

Turing.jl [13] Julia MIT Windows, Mac, Linux

Pyro [14] Python Custom Windows, Mac, Linux

https://doi.org/10.1371/journal.pone.0208555.t001
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to offer control-flow independence in probabistic inference; both Figaro’s inference algorithms

and Pyro’s strong integration with Python allow for atomic inference processing. Both are also

the only PPLs to offer comprehensive open universe simulation [16]. All PPLs except Turing.jl

provide constructs for the manipulation of the underlying inference algorithms. Table 2 dem-

onstrates the articulated features in comparison.

Accessibility Of PPLs. While PyMC3 and Turing.jl have seen a wealth of research proj-

ects conducted since their conception, the later debut of Figaro and Pyro has perpetuated

fewer examples of application. In light of this, both PPLs provide tutorial literature, and have

more comprehensive API reference documentation than the former two. In contrast, Turing.jl

has limited tutorial content to support its usage, and does not provide a complete API refer-

ence. For ease of use, Pyro advertises its design for agile development, however its syntactic

conventions do not warrant any significant differences compared to PyMC3. Nevertheless,

both are more easily applied than Figaro or Turing.jl.

Acceleration Of PPLs. Concerning acceleration, PyMC3 bases its optimization on Thea-

no’s architecture, which is an open-sourced project originally produced at the Université de

Montréal [17]. Correctly applying the Theano architecture with respect to the GPU on which

the PPL is running is a multi-staged process. As Theano depends on the NVIDIA CUDA

Developer Toolkit, the GPU’s compatibility with the toolkit’s contained drivers must be veri-

fied before installation can occur. Thereafter, the software ‘self-validates’, and PyMC3 configu-

ration settings must be altered to recognize the GPU support. Only in the instance that the

toolkit is correctly installed can PyMC3 take full advantage of its GPU acceleration capabilities.

For contrast, no other PPLs evaluated require manual extension of acceleration. For current

experimentation, Theano may be suitable, however its discontinuation as of 2017 [18] poses a

threat to using it as a stable basis for future development. For comparison, Figaro was designed

specifically for usage within demanding experimental designs. The development team has

stressed the library’s capability with its various capabilities e.g. open universe models, spatio-

temporal models, recursive models, or infinite models [16].

Similarly, Uber AI Labs stresses that Pyro can be easily scaled to projects of demanding size

[19]; it should be noted that Pyro is based on Pytorch framework, and as a result takes advan-

tage of Pytorch’s strong GPU accelerated machine learning tools [20].

Illustration of the EPR experiment in the four PPLs

In specifying the EPR experiment in different PPLs varying syntactic constructs can be are

highlighted and contrasted, as well as the differing approaches to the simulation.

PyMC3. A PyMC3 model defines a context management system used to isolate operations

undertaken on stochastic random variables, and thus Python’s with keyword is applied to

Table 2. Comparison Of extensibility Of PPLs.

Criteria PyMC3 Figaro Turing.jl Pyro

Control-Flow Independence ✘ ✔ ✘ ✔
Open Universe Simulation ✘ ✔ ✘ ✔
Distribution Configurations *60 *36 ? *39

Step Methods *8 *41 *13 *4

Algorithm Manipulation ✔ ✔ ✘ ✔
Online Repository ✔ ✔ ✔ ✔
Model Configuration ✔ ✔ ✔ ✔
Model Validation ✔ ✔ ✘ ✘

https://doi.org/10.1371/journal.pone.0208555.t002
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automate the release of resources after implementation. Inside the model, the Bernoulli
method specifies that a distribution of Bernoulli values will be simulated for a given random

variable. A probability is also given to direct the sampler towards a bias when generating the

distribution. To assist with randomizing results, a Uniform distribution is also declared.

Then the sample method invokes a number of iterations over the specified model. PYMC3

designates tuning of results prior to sampling, as well as indication of a sampling method for

which a number of algorithms are offered. In the example, Metropolis implies the Metrop-

olis-Hastings algorithm will be used to obtain random results. Upon execution, the model gen-

erates a trace containing distributions reflecting the earlier declared random variables.

As this is the first example of code for the experimentation, annotations expressing the

meaning of the code are included throughout the implementation.

The first block of the implementation declares assistant methods used for value conver-

sions. The first, being the get_vertex method linearises the binary variables X, Y, A, and B
used to express probabilities of the global distribution into an index of an array.

get vertexðx; y; a; bÞ ≔ ððx� 8Þ þ ðy� 4ÞÞ þ ðbþ ða� 2ÞÞ

The second method, get_hyperedges leverages enumeration techniques to retrieve

hyperedges for contained vertices.

The foulis_randall_product method generates the binary coordinates for all

hyperedges in the FR product.

from numpy import zeros, array, fliplr, sum

from itertools import product

import pymc3 as pm

def get_vertex(a, b, x, y):

return ((x�8)+(y�4))+(b+(a�2))

def get_hyperedges(H, n):

l = []

for idx, e in enumerate (H):

if n in e:

l.append(idx)

return l

PPLs for simulating quantum correlations
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The first step involves declaring the hypergraphs for both EPR systems.

ðððð0; 0Þ; ð1; 0ÞÞ; ðð0; 1Þ; ð1; 1ÞÞÞ; ððð0; 0Þ; ð1; 0ÞÞ; ðð0; 1Þ; ð1; 1ÞÞÞÞ

The next step involves producing four hyperedges to represent the four explicit joint mea-

surement contexts on both systems. Two variables are given to assist with computing this

result.

g 2 EA; h 2 EB

Thereafter, each hyperedge is defined as the combined sets produced by the following

expression.

ð8i 2 g; 8j 2 h : 8w 2 i; 8x 2 j : ðw1; x1; w2; x2ÞÞ

The last step involves calculating the hyperedges of both systems as dependent on the other.

To achieve this programmatically, three variables are declared. The first (m) are all members

of set M, where M are the possible measurement choices for the scenario (in this case two), the

def foulis_randall_product():

fr_edges = []

H = [[[[0, 0], [1, 0]], [[0, 1], [1, 1]]],

[[[0, 0], [1, 0]], [[0, 1], [1, 1]]]]

for edge_a in H[0]:

for edge_b in H[1]:

fr_edge = []

for vertex_a in edge_a:

for vertex_b in edge_b:

fr_edge.append([

vertex_a[0], vertex_b[0],

vertex_a[1], vertex_b[1]])

fr_edges.append(fr_edge)

PPLs for simulating quantum correlations
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second (n) being the other possible measurement choice, and the last variable o being all edges

from the hypergraph associated with the measurement choice.

8m 2 M : n ¼ m0; 8o 2 EðHmÞ

For each o, in some selected hypergraph, a second variable j is declared as two possible val-

ues. For each possibility, a hyperedge is then defined as the variable k, being the combination

of all vertices in o given to a function that produces the hyperedge.

8j 2 ð1; 2Þ : k ¼ ð8l 2 EðHnÞ : f ðl; j; m; n; oÞÞ

The mentioned function computes the hyperedge by declaring single-use variables s, q, r, u,

t, and v.

EðHnÞs ¼ l0; q ¼ ojs� jjþ1; r ¼ l1; u ¼ l2; t ¼ ðq1; r1; q2; r2Þ; v ¼ ðq1; u1; q2; u2Þ

for mc in range (0,2):

mc_i = abs (1-mc)

for edge in H[mc]:

for j in range (0,2):

fr_edge = []

for i in range (0, len (edge)):

edge_b = H[mc_i][i]

vertex_a = edge[abs(i-j)]

vertex_b = edge_b[0]

vertex_c = edge_b[1]

vertices_a = [

vertex_a[0], vertex_b[0],

vertex_a[1], vertex_b[1]]

vertices_b = [

vertex_a[0], vertex_c[0],

vertex_a[1], vertex_c[1]]
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Thereafter, a set is constructed by use of its variables, and portions of the desired hyper-

edges are iteratively returned.

ððtm; tn; tmþ2; tnþ2Þ; ðvm; vn; vmþ2; vnþ2ÞÞ

Upon calculation of the last step of the process, the hyperedges corresponding to the mea-

surement choices of both EPR systems as dependent on the other are produced, totaling the

necessary constraints described in binary format.

To compute the four pairwise distributions at the basis of the EPR experiment (See Fig 1,

an iterative sampling process is undertaken for the four variables a, b, x, and y that were pre-

viously mentioned as specifying one of the 16 possible vertices. These values are restricted to

binary outcomes by means of specifying Bernoulli distributions for which the sampler runs

the process. The experiment is fixed such that each vertex has an equal possibility of being

sampled as any other vertex, and results may only be discounted if they do not comply with

specified input correlations. Upon selecting a vertex at a step in the iterative process, the

array index associated with the binary representation is incremented by one, via the use of

the vertex mapping function. Simultaneously, another array representing the hyperedges of

the FR product is also incremented by one at all indexes associated with the hyperedges con-

taining the said vertex. The iterative process only exits when the sum of the global distribu-

tion is equivalent to the desired number of iterations. Thereafter, each vertex is normalised

by the sum of the values in the corresponding array of hyperedges in which its associated ver-

tex is contained, and is multiplied by 3 (for reflection of the number of associated hyper-

edges). A visualisation of the hyperedges associated with the vertex at index 00|00 of the

global distribution can be seen in Fig 6.

If the said vertex sustains a weight of 10, and the combined weight of its associated hyper-

edges is 40, the normalised weight of the vertex will equate to 0.75.

fr_edge.append([

vertices_a[mc], vertices_a[mc_i],

vertices_a[mc+2], vertices_a[mc_i+2]]

)

fr_edge.append([

vertices_b[mc], vertices_b[mc_i],

vertices_b[mc+2], vertices_b[mc_i+2]])

fr_edges.append(fr_edge)

return fr_edges

def generate_global_distribution(constraints,N):

hyperedges = foulis_randall_product()
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hyperedges_tallies = zeros(12)

global_distribution = zeros(16)

while sum (global_distribution) < N:

with pm.Model():

pm.Uniform(’C’,0.0,1.0)

pm.Bernoulli(’A’,0.5)

pm.Bernoulli(’B’,0.5)

pm.Bernoulli(’X’,0.5)

pm.Bernoulli(’Y’,0.5)

S = pm.sample(N,tune = 0, step = pm.Metropolis())

c = S.get_values(’C’)

a = S.get_values(’A’)

b = S.get_values(’B’)

x = S.get_values(’X’)

y = S.get_values(’Y’)

for i in range(0, N):

if (c[i] < constraints[x[i]][y[i]][a[i],b[i]]):

for edge in get_hyperedges(hyperedges,

[a[i], b[i], x[i], y[i]]):

hyperedges_tallies[edge] += 1

global_distribution[

get_vertex(a[i], b[i], x[i], y[i])] += 1

z = [0, 1]

for a, b, x, y in product(z,z,z,z):

summed_tally = (sum(hyperedges_tallies[e]

for e in get_hyperedges(hyperedges, [a, b, x, y])))

global_distribution[get_vertex(a, b, x, y)] /=
summed_tally

global_distribution �= 3

return global_distribution
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Given below in Listing 1 is the complete undivided implementation of the EPR experimen-

tation in PyMC3.

Listing 1. PyMC3 Implementation Of EPR Simulation

from numpy import zeros, array, fliplr, sum

from itertools import product

import pymc3 as pm

def get_vertex(a, b, x, y):

return ((x�8)+(y�4))+(b+(a�2))

def get_hyperedges(H, n):

l = []

for idx, e in enumerate(H):

if n in e:

l.append(idx)

return l

def foulis_randall_product():

fr_edges = []

Fig 6. Visualisation Of hyperedges associated with vertex 00|00.

https://doi.org/10.1371/journal.pone.0208555.g006
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H = [[[[0, 0], [1, 0]], [[0, 1], [1, 1]]],

[[[0, 0], [1, 0]], [[0, 1], [1, 1]]]]

for edge_a in H[0]:

for edge_b in H[1]:

fr_edge = []

for vertex_a in edge_a:

for vertex_b in edge_b:

fr_edge.append([

vertex_a[0], vertex_b[0],

vertex_a[1], vertex_b[1]])

fr_edges.append(fr_edge)

for mc in range (0,2):

mc_i = abs(1-mc)

for edge in H[mc]:

for j in range (0,2):

fr_edge = []

for i in range (0, len (edge)):

edge_b = H[mc_i][i]

vertex_a = edge[abs (i-j)]

vertex_b = edge_b[0]

vertex_c = edge_b[1]

vertices_a = [

vertex_a[0], vertex_b[0],

vertex_a[1], vertex_b[1]]

vertices_b = [

vertex_a[0], vertex_c[0],

vertex_a[1], vertex_c[1]]

fr_edge.append([

vertices_a[mc], vertices_a[mc_i],

vertices_a[mc+2], vertices_a[mc_i+2]]

)

fr_edge.append([

vertices_b[mc], vertices_b[mc_i],

vertices_b[mc+2], vertices_b[mc_i+2]])
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fr_edges.append(fr_edge)

return fr_edges

def generate_global_distribution(constraints,N):

hyperedges = foulis_randall_product()

hyperedges_tallies = zeros(12)

global_distribution = zeros(16)

while sum (global_distribution) < N:

with pm.Model():

pm.Uniform(’C’,0.0,1.0)

pm.Bernoulli(’A’,0.5)

pm.Bernoulli(’B’,0.5)

pm.Bernoulli(’X’,0.5)

pm.Bernoulli(’Y’,0.5)

S = pm.sample(N,tune = 0, step = pm.Metropolis())

c = S.get_values(’C’)

a = S.get_values(’A’)

b = S.get_values(’B’)

x = S.get_values(’X’)

y = S.get_values(’Y’)

for i in range (0, N):

if (c[i] < constraints[x[i]][y[i]][a[i],b[i]]):

for edge in get_hyperedges(hyperedges,

[a[i], b[i], x[i], y[i]]):

hyperedges_tallies[edge] += 1

global_distribution[

get_vertex(a[i], b[i], x[i], y[i])] += 1

z = [0, 1]

for a, b, x, y in product(z,z,z,z):

summed_tally = (sum (hyperedges_tallies[e]

for e in get_hyperedges(hyperedges, [a, b, x, y])))

global_distribution[get_vertex(a, b, x, y)] /=
summed_tally

global_distribution �= 3

return global_distribution
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Turing.jl. Like PyMC3, Turing.jl isolates operations on random variables to a single

model with the use of the @model macro. To obtain randomly sampled non-negative values

for a Bernoulli distribution, the model requires the declaration of a uniform Beta prior,

invoked with the Beta method. Then Bernoulli distributions are declared with a Ber-
noulli method, once again accompanied by probabilities describing sampling biases for

later generated distributions, as well as a Uniform distribution.

In the generate_global_distribution method of Listing 2, the sample func-

tion invokes the model, a step-method, as well as the number of desired iterations. In this case,

the Sequential Monte Carlo sampling (abbreviated to SMC) has been applied.

To obtain the trace of a distribution in the model, the output must be indexed with the pre-

cession of a colon. In the example, the results are retrieved, tallied, and normalised by means

of the foulis_randall_product method, before returning the result.

Listing 2. Turing.jl Implementation Of EPR Simulation

using Turing

using Distributions

function foulis� randall� product()

fr_edges¼ Array{Array{Array{Float64}}}(0)

H¼ [[[[0.0, 0.0],[1.0, 0.0]],[[0.0, 1.0],[1.0, 1.0]]],

[[[0.0, 0.0],[1.0, 0.0]],[[0.0, 1.0],[1.0, 1.0]]]]

for i¼ 1:size(H[1])[1]

for j¼ 1:size(H[2])[1]

fr_edge¼ Array{Array{Float64}}(0)

for k¼ 1:size(H[1][i])[1]

for l¼ 1:size(H[1][j])[1]

append!(fr_edge,

[[H[1][i][k][1], H[2][j][l][1],

H[1][i][k][2], H[2][j][l][2]]])

end

end

append!(fr_edges,[fr_edge])

end

end

for mc¼ 1:2

mc_i¼ abs(3� mc)

for k¼ 1:size(H[mc])[1]

for j¼ 1:2
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fr_edge = Array{Array{Float64}}(0)

for i¼ 1:size(H[mc][k])[1]

edge_b¼ H[mc_i][i]

vertex_a¼ H[mc][k][abs(i� j)þ1]

vertex_b¼ edge_b[1]

vertex_c¼ edge_b[2]

vertices_a¼ [vertex_a[1], vertex_b[1],

vertex_a[2], vertex_b[2]]

vertices_b¼ [vertex_a[1], vertex_c[1],

vertex_a[2], vertex_c[2]]

this_edge_b¼ Array{Float64}(0)

append!(fr_edge,[[

vertices_a[mc], vertices_a[mc_i],

vertices_a[mcþ2], vertices_a[mc_iþ2]]])

append!(fr_edge,[[

vertices_b[mc], vertices_b[mc_i],

vertices_b[mcþ2], vertices_b[mc_iþ2]]])

end

append!(fr_edges,[fr_edge])

end

end

end

fr_edges

end

function get� vertex(a,b,x,y)

((x�8)þ(y�4))þ(bþ(a�2))þ1

end

function get� hyperedges(H, n)

l¼ []

for i¼ 1:size(H)[1]

if any(x!x ¼¼n, H[i])

append!(l,i)

end
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end

l

end

@modelmdl()¼ begin

z � Beta(1,1)

a � Bernoulli(0.5)

b � Bernoulli(0.5)

x � Bernoulli(0.5)

y � Bernoulli(0.5)

c � Uniform(0.0, 1.0)

end

function generate� global� distribution(constraints,N)

hyperedges¼ foulis� randall� productð Þ

hyperedges_tallies¼ zeros(12)

global_distribution¼ zeros(16)

while sum(global_distribution) < N

r¼ sample(mdl(), SMC(N))

a¼ r[:a]

b¼ r[:b]

x¼ r[:x]

y¼ r[:y]

c¼ r[:c]

for i¼ 1:N

if (c[i] < constraints[x[i]þ1][y[i]þ1][a[i]þ1][b[i]þ
1])

I¼ [convert(Float64,a[i]), convert(Float64,b[i]),

convert(Float64,x[i]), convert(Float64,y[i])]

associated_hyperedges¼ get� hyperedges(hyperedges, I)

for j¼ 1:size(associated_hyperedges)[1]

hyperedges_tallies[

associated_hyperedges[j]]þ¼ 1

end

global_distribution[
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Figaro. To achieve a joint-probability distribution on a measurement context of random

variables, Figaro’s syntactic elements reveal fundamental differences in its approach. A class is

the advised object for the purpose of declaring a model. For each random variable in the

model, a probability bias is applied to Figaro’s Flip method, generating a Bernoulli distribu-

tion on which the If method can then associate the results to desired values, or perpetuation

of other methods.

In Listing 3, states are bound to integers. Thereafter, possible joint outcomes of random

variables are permuted through articulation of expressions concerning the previously men-

tioned states. In the GenerateGlobalDistribution method, it can be seen that after

initialising the FR product (via the FoulisRandallProduct method), the sampling pro-

cess is called by means of start, stop, and kill chains applied on the algorithm object.

On the preceding line, the MetropolisHastings method implies the Metropolis-Has-

tings step-method will be used for the sampling process, and the outcomes of the model
class will be considered. For more complex experiments, the ProposalScheme may be

modified, however not in this case. The sampleFromPosterior sub-method chained to

calls on each variable compile the required distributions on execution. The take sub-method

chained to the sampling methods are used to declare the number of outcomes retrieved from

the sampler. This aspect is consequent of sampler delivering results via Stream primitives, a

resource-efficient consideration ensuring that only required data is evaluated. Thereafter, the

proceeding code tallies the indexes of the globalDistribution array, and normalises the

results.

get� vertex(a[i], b[i], x[i], y[i])]þ¼ 1

end

end

end

for a¼ 0:1, b¼ 0:1, x¼ 0:1, y¼ 0:1

summed_amount¼ 0

I¼ [convert(Float64,a), convert(Float64,b),

convert(Float64,x), convert(Float64,y)]

associated_hyperedges¼ get� hyperedges(hyperedges, I)

for edge_index¼ 1:size(associated_hyperedges)[1]

summed_amountþ¼ hyperedges_tallies[edge_index]

end

global_distribution[get� vertex(a, b, x, y)] =¼ summed_amount

end

global_distribution :� 3

end
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Listing 3. Figaro Implementation Of EPR Simulation

import com.cra.figaro.algorithm.sampling._

import com.cra.figaro.language._

import com.cra.figaro.library.compound.If

import com.cra.figaro.library.atomic.continuous.Uniform

object Main {

def FoulisRandallProduct(): Array[Array[Array[Double]]] = {

var foulisRandallEdges = Array[Array[Array[Double]]] ()

val hypergraphs = Array(

Array(Array(Array(0:0, 0:0), Array(1:0, 0:0)),

Array(Array(0:0, 1:0), Array(1:0, 1:0))),

Array(Array(Array(0:0, 0:0), Array(1:0, 0:0)),

Array(Array(0:0, 1:0), Array(1:0, 1:0))))

for (edgeA <- hypergraphs(0)) {

for (edgeB <- hypergraphs(1)) {

var foulisRandallEdge = Array[Array[Double]]()

for (vertexA <- edgeA) {

for (vertexB <- edgeB) {

foulisRandallEdge ++= Array(Array[Double](

vertexA(0), vertexB(0), vertexA(1), vertexB(1)))

}

}

foulisRandallEdges ++= Array(foulisRandallEdge)

}

}

for (measurementChoice <- 0 to 1){

val measurementChoiceInverse = 1 – measurementChoice

for (edge <- hypergraphs(measurementChoice)) {

for (j <- 0 to 1) {

var foulisRandallEdge = Array[Array[Double]]()

for (i <- edge.indices) {

val edgeB = hypergraphs(measurementChoiceIn-
verse)(i)

val vertexA = edge(Math.abs(i-j))
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val vertexB = edgeB(0)

val vertexC = edgeB(1)

val verticesA = Array(vertexA(0), vertexB(0),

vertexA(1), vertexB(1))

val verticesB = Array(vertexA(0), vertexC(0),

vertexA(1), vertexC(1))

foulisRandallEdge ++= Array(

Array[Double](

verticesA(measurementChoice),

verticesA(measurementChoiceInverse),

verticesA(measurementChoice+2),

verticesA(measurementChoiceInverse+2)))

foulisRandallEdge ++= Array(

Array[Double](

verticesB(measurementChoice),

verticesB(measurementChoiceInverse),

verticesB(measurementChoice+2),

verticesB(measurementChoiceInverse+2)))

}

foulisRandallEdges ++= Array(foulisRandallEdge)

}

}

}

foulisRandallEdges

}

class Model() {

var outcomes = Array[Element[Double]]()

for (i <- 0 to 3){

outcomes: += If(Flip(0:5), 0:0, 1:0)

}

outcomes: += Uniform(0:0, 1:0)

}

def GetVertex(a: Int, b: Int, x: Int, y: Int): Int = {
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((x�8)+(y�4))+(b+(a�2))

}

def GetHyperedges(H: Array[Array[Array[Double]]],

n: Array[Double]): Array[Int] = {

var l = Array[Int]()

for (i <- H.indices) {

if (H(i).deep.contains(n.deep)) {

l: += i

}

}

l

}

def GenerateGlobalDistribution(constraints:

Array[Array[Array[Array[Double]]]], N:Int):Unit = {

val hyperedges = FoulisRandallProduct()

var hyperedgesTallies = Array[Double].fill(12){0:0}

var globalDistribution = Array[Double].fill(16){0:0}

while (globalDistribution.sum < N) {

var model = new Model()

val algorithm = MetropolisHastings(N,

ProposalScheme.default,model:outcomes: _�)

algorithm.start()

algorithm.stop()

algorithm.kill()

val a = algorithm.sampleFromPosterior(

model:outcomesð0Þ).take(N).toArray

val b = algorithm.sampleFromPosterior(

model:outcomesð1Þ).take(N).toArray

val x = algorithm.sampleFromPosterior(

model:outcomesð2Þ).take(N).toArray

val y = algorithm.sampleFromPosterior(

model:outcomesð3Þ).take(N).toArray

val c = algorithm.sampleFromPosterior(
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Pyro. Pyro’s context management is integrated into Python’s def containers; or can be

flexibly given implicitly, encouraging the use of stochastic functions to specify probabilistic

models. Inside a container, probabilities of random variables are specified first. As Pyro is built

upon PyTorch, explicit values match PyTorch types, in this case resulting in Tensor type

values.

model:outcomesð4Þ).take(N).toArray

for (i <- 0 until N) {

val x_x = x(i).toInt

val y_y = y(i).toInt

val a_a = a(i).toInt

val b_b = b(i).toInt

if (c(i) < constraints(x_x)(y_y)(a_a)(b_b)) {

for (edge <- GetHyperedges(

hyperedges, Array(a_a, b_b, x_x, y_y))) {

hyperedgesTallies(edge) += 1:0

}

globalDistribution(GetVertex(a_a, b_b, x_x, y_y)) +=
1:0

}

}

}

for (a <- 0 to 1; b <- 0 to 1; x <- 0 to 1; y <- 0 to 1) {

var summedAmount = 0:0

val associatedHyperedges = GetHyperedges(hyperedges,

Array(a.toDouble,b.toDouble,x.toDouble,y.toDouble))

for (edgeIndex <- associatedHyperedges.indices) {

summedAmount += hyperedgesTallies(edgeIndex)

}

globalDistribution(GetVertex(a,b,x,y)) =

globalDistribution(GetVertex(a,b,x,y)) / summedAmount

}

globalDistribution

}

}
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As can be seen in Listing 4 in the generate_global_distribution method, Pyro’s

atomic sampling capabilities allow for the requirement of fewer syntactic constructs to com-

municate the sampling process. Each sample call accepts a distribution, in this case either

Bernoulli or Uniform. Upon sampling, the outcomes are tallied and normalised, before

presenting the result.

Listing 4. Pyro Implementation Of EPR Simulation

from pyro import sample

from torch import Tensor

from torch.autograd import Variable

from numpy import zeros, array, fliplr, sum

from itertools import product

from pyro.distributions import Bernoulli, Uniform

def get_vertex(a, b, x, y):

return ((x�8)+(y�4))+(b+(a�2))

def get_hyperedges(H, n):

l = []

for idx, e in enumerate(H):

if n in e:

l.append(idx)

return l

def foulis_randall_product():

fr_edges = []

H = [[[[0, 0], [1, 0]], [[0, 1], [1, 1]]],

[[[0, 0], [1, 0]], [[0, 1], [1, 1]]]]

for edge_a in H[0]:

for edge_b in H[1]:

fr_edge = []

for vertex_a in edge_a:

for vertex_b in edge_b:

fr_edge.append([

vertex_a[0], vertex_b[0],

vertex_a[1], vertex_b[1]])

fr_edges.append(fr_edge)

for mc in range(0,2):
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mc_i = abs(1-mc)

for edge in H[mc]:

for j in range(0,2):

fr_edge = []

for i in range(0, len(edge)):

edge_b = H[mc_i][i]

vertex_a = edge[abs(i-j)]

vertex_b = edge_b[0]

vertex_c = edge_b[1]

vertices_a = [

vertex_a[0], vertex_b[0],

vertex_a[1], vertex_b[1]]

vertices_b = [

vertex_a[0], vertex_c[0],

vertex_a[1], vertex_c[1]]

fr_edge.append([

vertices_a[mc], vertices_a[mc_i],

vertices_a[mc+2], vertices_a[mc_i+2]]

)

fr_edge.append([

vertices_b[mc], vertices_b[mc_i],

vertices_b[mc+2], vertices_b[mc_i+2]])

fr_edges.append(fr_edge)

return fr_edges

def generate_global_distribution(constraints,N):

hyperedges = foulis_randall_product()

hyperedges_tallies = zeros(12)

global_distribution = zeros(16)

while sum(global_distribution) < N:

a = int(sample(’A’, Bernoulli(Variable(Tensor([0.5])))))

b = int(sample(’B’, Bernoulli(Variable(Tensor([0.5])))))

x = int(sample(’X’, Bernoulli(Variable(Tensor([0.5])))))

y = int(sample(’Y’, Bernoulli(Variable(Tensor([0.5])))))
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Input correlations for sampling

In order to provide flexibility in investigating simulations of quantum and super-quantum

correlations, correlations between A and B in the four measurement contexts are specified.

For example, the following code fragments 5, 6 and 7 specify that super-quantum correlations

will be simulated by specifying A and B to be maximally correlated in three measurement

contexts and maximally anti-correlated in the fourth. With these input correlations,

maximum violation of the CHSH inequalities would be expected, essentially simulating a PR

box [21].

value = float(sample(’C’, Uniform(Variable(Tensor([0.0])),

Variable(Tensor([1.0])))))

if (value < constraints[x][y][a,b]):

for edge in get_hyperedges(hyperedges, [a, b, x, y]):

hyperedges_tallies[edge] += 1

global_distribution[get_vertex(a, b, x, y)] += 1

z = [0, 1]

for a, b, x, y in product(z,z,z,z):

summed_tally = (sum(hyperedges_tallies[e]

for e in get_hyperedges(hyperedges, [a, b, x, y])))

global_distribution[get_vertex(a, b, x, y)] /=
summed_tally

global_distribution �= 3

return global_distribution

Listing 5. Implementation of input correlations in PYMC3 And Pyro

constraints = [[array([[0.5, 0], [0., 0.5]]),

array([[0.5, 0], [0., 0.5]])],

[array([[0.5, 0], [0., 0.5]]),

array([[0, 0.5], [0.5, 0.]])]]

p = generate_global_distribution((constraints, 5000)
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Specifying the CHSH inequalities

For each of the four PPLs, code is specified 8, 9, and 10 that implements the system of four

CHSH inequalities. The outcome is a vector of four Boolean values expressing whether the

respective inequality was violated.

Listing 6. Implementation of input correlations in Turing.jl

constraints¼ [[[[0.5, 0.0], [0.0, 0.5]],

[[0.5, 0.0], [0.0, 0.5]]],

[[[0.5, 0.0], [0.0, 0.5]],

[[0.0, 0.5], [0.5, 0.0]]]]

p¼ generate� global� distribution(constraints, 5000)

Listing 7. Implementation of input correlations in Figaro

val constraints = Array(

Array(Array(Array(0:5, 0:0), Array(0:0, 0:5)),

Array(Array(0:5, 0:0), Array(0:0, 0:5))),

Array(Array(Array(0:5, 0:0), Array(0:0, 0:5)),

Array(Array(0:0, 0:5), Array(0:5, 0:0))))

val P = GenerateGlobalDistribution(constraints,5000)

Listing 8. Specification of the CHSH inequalities in PYMC3 And
Pyro

def equality(v1, v2, v3, v4):

def f1(v1, v2):

return abs((2 � (p[v1] + p[v2])) − 1)

def f2(v1, v2, v3, v4):

return (p[v1] + p[v2]) − (p[v3] + p[v4])

delta = 0.5 � (

(f1(0,1) − f1(4,5)) + (f1(8,9) − f1(12,13)) +

(f1(0,2) − f1(4,6)) + (f1(8,10) − f1(12,14)))

return 2 � (1 + delta) >= abs(
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(v1�f2(0,3,1,2)) + (v2�f2(4,7,5,6)) +

(v3�f2(8,11,9,10)) + (v4�f2(12,15,13,14)))

tests = [

equality(1,1,1,-1),

equality(1,1,-1,1),

equality(1,-1,1,1),

equality(-1,1,1,1)]

Listing 9. Specification of the CHSH inequalities in Turing.jl

function equality (v1,v2,v3,v4)

function f1(v1,v2)

abs((2 � (p[v1]þ p[v2]))� 1)

end

function f2(v1,v2,v3,v4)

(p[v1]þp[v2])� (p[v3]þp[v4])

end

delta¼ 0.5 � (

(f1 (1,2)� f1(5,6))þ(f1(9,10)� f1(13,14)) +

(f1(1,3)� f1(5,7))þ(f1(9,11)� f1(13,15)))

(2 � (1þ delta)) >= abs(

(v1 � f2(1,4,2,3))þ(v2 � f2(5,8,6,7)) +

(v3 � f2(9,12,10,11))þ(v4 � f2(13,16,14,15)))

end

tests = [

equality(1,1,1,-1),

equality(1,1,-1,1),

equality(1,-1,1,1),

equality(-1,1,1,1)]
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Upon conducting simulations using the input correlations given above, the predicted maxi-

mum violation of the CHSH inequalities were observed for all four PPLs specified above.

Numerical Evaluation

We conducted several experiments to compare the numerical accuracy and execution time of

the different implementations.

Accuracy Of tests

For all PPLs, statistical outputs confirming the success of the FR product (and consequently

the no-signalling condition) are given with an acceptable margin of error. While this is conse-

quent of more than a single factor, it is perceived that the largest contributor to accuracy is the

computation of random values for each PPL. What can be observed is that, with larger sample

sizes (bearing more perfectly random distributions), that the margin of error decreases, as can

be seen below. This is typical, as the experiment design’s normalisation process is dependent

Listing 10. Specification of the CHSH inequalities in Figaro

def Equality(v1: Int; v2: Int; v3: Int; v4: Int): Boolean = {

def f1(v1: Int; v2: Int):Double = {

Math.abs((2 � (p(v1) + p(v2))) − 1)

}

def f2(v1: Int; v2: Int; v3: Int; v4: Int):Double = {

(p(v1) + p(v2)) − (p(v3) + p(v4))

}

val delta = 0:5 � (

(f1(0;1) − f1(4;5)) + (f1(8;9) − f1(12;13)) +

(f1(0;2) − f1(4;6)) + (f1(8;10) − f1(12;14)))

(2 � (1 + delta)) >= Math.abs(

(v1�f2(0;3;1;2)) + (v2�f2(4;7;5;6)) +

(v3�f2(8;11;9;10)) + (v4�f2(12;15;13;14)))

}

val tests = Array[Boolean](

Equality(1;1;1;� 1);

Equality(1;1;� 1;1);

Equality(1;� 1;1;1);

Equality(� 1;1;1;1)

)
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on the even spread of tallies across the global distribution, and more specifically, the degree to

which the sampler is random. It should also be considered that the various PPLs apply data

types that round values for a loss of statistical precision where it may serve meaning. For exam-

ple, while a single value may lose a minute portion of its whole beyond the decimal point (due

to automatic rounding), when calculating a handful of these values per iteration of some few

thousand iterations, the difference becomes observable.

From observing the results in Fig 7, it can be seen immediately that before the first 20,000

iterations, all PPLs exhibit substantial noise that rules out the possibility of accounting for said

window of results. In Monte Carlo inference, noise of this kind is common, where accounting

for ‘burn-in’ iterations at the beginning of the sampling process may possibly minimize the

unpredictability of the results. It is also seen that Figaro and Turing.jl have consistently greater

margins of error than those of PyMC3 and Pyro. Overcoming this error would be achieved

through improved float precision where applicable in either PPL’s programming language. It

cannot be said which of either PyMC3 or Pyro display the most accurate results. Of interest, it

is perceived that where other PPLs may have required multiple instances of the entire sampling

process to tally the global distribution, Pyro could accurately equate the global distribution

atomically, thus improving its accuracy.

Elapsed time of execution

Another statistic that has been observed is the compilation time of each PPL, which typically

increases with number of iterations. For relativity of results, it should be noted that all non-

accelerated tests of this kind were executed within a Bash execution terminal, on a Macintosh

operating system, bearing a 45nm “Penryn” 2.4 GHz Intel “Core 2 Duo” processor, and 4 GB

of SDRAM, whereas all accelerated tests were executed within a bash execution terminal of

Amazon Web Services Linux (2nd distribution). The specification of the ‘Elastic-Compute

Cloud’ on which the Linux distribution executed was a 2018 “p2.xlarge” 2.7 GHz Intel

Fig 7. Accuracy Of EPR experimentation.

https://doi.org/10.1371/journal.pone.0208555.g007
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Broadwell processor, with 61 GB of SDRAM. The instance also provides an NVIDIA GK210

GPU multi-vCPU (count of 4) processor, and 12 GB of GPU RAM.

In Fig 8, it can be seen that among the accelerated results, the fastest PPL is Figaro by scale

of almost an entire logarithmic unit. Thereafter, Pyro and Turing.jl tie in second position,

however Pyro demonstrates inference of a stabler nature. Despite the Theano architecture’s

utilisation of the supplied GPU, PyMC3 is then the most affected by size of experimental

setup. When the Theano architecture is non-accelerated, it can be seen that PyMC3’s perfor-

mance drastically decreases. For comparison, Pyro has also been tested on a non-accelerated

architecture, where the difference in performance is reasonably smaller than that of PyMC3.

This forms the suggestion that PyMC3 should not be applied in non-accelerated environ-

ments. In all cases, it can be seen that all PPLs exhibit a linear order of growth in the given

scenario.

Discussion

Recall that the challenge posed was how to develop probabilistic program which can simulate

quantum correlations in an EPR experiment. The solution adopted was to program a hyper-

graph formalism to underpin the simulations. This formalism is modular where the FR prod-

uct of the modules is used to impose the no-signalling constraint. In execution, all four PPLs

successfully simulated an EPR experiment producing quantum correlations. Therefore, we

conclude that the hypergraph formalism has been shown to be a promising basis for such sim-

ulations. In addition, the hypergraph formalism is also rendered into program syntax in a fairly

straightforward way. However, the formalism does pose a challenge with respect to the accessi-

bility criterion of the PPLs. The challenge is due to an inherent ambiguity present in the com-

posite hypergraph produced by the FR product, which has 12 edges in the EPR experiment.

Four of those edges represent “actual” measurement contexts (depicted in Fig 1), whilst the

remaining eight edges impose the no-signalling condition. The hypergraph formalism is

Fig 8. Execution time of EPR experimentation.

https://doi.org/10.1371/journal.pone.0208555.g008
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agnostic to this distinction, which is important to distinguish when designing and program-

ming simulations.

On the other hand, the strength of the hypergraph formalism is its flexibility and modular-

ity. In particular, modularity offers the potential to cover a wide variety of experimental

designs whilst at the same time offering a conceptually simple route to program specification.

We have shown that the EPR experiment is based on two modules which represent measure-

ments on the individual systems A and B. More generally, joint measurements on multiple sys-

tems, and the constraints they must satisfy can then be expressed in terms of a composition

operator that combines the modules into a suitable global data structure in the program,

which underpins both the sampling and simulation.

With regard to sampling, an immediate suggestion is stronger control-flow integration in

the sampling process. Rather than repeatedly generating distributions that are indexed for ran-

dom results, all PPLs should offer atomic sampling similar to the likes of Pyro or Figaro, where

single values could be observed, or returned from a Stream primitive in a single procedure.

As a sampling process contains variables that are akin to those of iterative loops, it may also

serve PPLs to re-imagine the sampling process as a paradigm of the contained programming

language, rather than as a single procedure that operates in isolation of the entire program.

Providing control over each iteration of the distribution could also improve the legibility of

the program, while minimising convolution in the procedures that typically come afterwards.

In terms of the qualitative comparison between the four PPLs, Figaro demonstrated the

most benefits for general usage. This could be seen in its capacity to deliver specialised features

where other PPLs could not. For what features the alternatives provide, they may appropriately

match Figaro i.e., consider that PyMC3 offers more configurations for distributions described

in probabilistic models, or that Pyro achieves control-flow independence with fewer syntactic

constructs. Such arguments have been overlooked when taking into account the efforts that

the main developer, Charles River Analytics, has made to ensure that its PPL is competitively

implemented in wider applications. For the likes of accessibility, Figaro’s origins in Scala do

not present the same benefits as Pyro in agile development. However, the simulation of quan-

tum correlations is a rigorous process. Furthermore, acceleration of PPLs was observed to be

minimal in difference (exempt of PyMC3) for the case of the experimentation. Thus it

wouldn’t be perceived that this is a determinant factor.

In experimentation, we found that Pyro provided the syntactic constructs needed to neatly

describe its processes in fewer procedures than those of the others. While PyMC3’s origins in

Python also made it an expressive alternative, the excessive nomenclature surrounding the

declarations of methods and data-types for both Turing.jl and Figaro convoluted their descrip-

tions. While in comparison to the other PPLs, Figaro’s accuracy is inferior, it could be argued

that the sample iterations describe an experimental setting that does not consider improving

float precision. Coupled with the trend of Figaro’s improvement in its number of iterations,

and the measure of accuracy between PPLs may converge. The same cannot be said for the

time complexity of the EPR experimentation, where it was observed that PyMC3’s compilation

grew substantially with the number of sample iterations being executed. Still, in instances

where accuracy is a key factor and limitations are perceived in Pyro’s functionality, PyMC3

would be the suitable alternative.

Conclusion

Probabilistic programming offers new possibilities for quantum physicists to specify and simu-

late experiments, such as the EPR experiment illustrated in this article. This is particularly rele-

vant for experiments requiring advanced statistical inference on unknown parameters,

PPLs for simulating quantum correlations

PLOS ONE | https://doi.org/10.1371/journal.pone.0208555 January 4, 2019 34 / 37

https://doi.org/10.1371/journal.pone.0208555


especially in the case of techniques that involve large amounts of data and computational time.

Furthermore, probabilistic machine learning models that are conveniently expressed in proba-

bilistic programming languages can advance our understanding of the underlying physics of

the experiments.

It is important to note that the benefits of probabilistic programming are not restricted to

experiments involving the analysis of quantum correlations. Since any probabilistic program-

ming language is based on random variables, we can ask the question what exactly is a random

variable in quantum physics. Focusing on a single measurement context, due to the normaliza-

tion constraint, we can think of the measurement context as a (conditional) probability distri-

bution over random variables, which describes the measurement outcomes. The probability

distribution is a normalized measure over the sigma algebra defined by the outcomes. This

measure is defined via Born’s rule, that is, the quantum state is embedded in the measure. An

EPR experiment is essentially a state preparation protocol where deterministic operations are

embedded in the quantum state (the unitary operations leading to its preparation), followed

by the measurement, which results in stochastic outcomes. More generally, we can think of a

larger system where we only measure a subsystem. This leads to quantum channels, which are

described by completely positive trace preserving maps. A quantum channel, however, must

be deterministic in the sequence of events, and, for instance, a measurement choice at a later

time step cannot depend on the outcome of a previous measurement. We must factor in such

classical and quantum memory effects, as well as the potentially indeterminate causal order of

events. The quantum comb [22, 23] or process matrix [24–26] formalism addresses these more

generic requirements. Either formalism introduces a generalized Born’s rule, where determin-

istic and stochastic parts of the system clearly separate, and thus give a clear way of defining

random variables. Probabilistic programming offers potential in expressing models designed

in these frameworks.
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