MHC Antigen Expression on Glial Cells

AKIO SUZUMURA AND DONALD H. SILBERBERG

Department of Neurology University of Pennsylvania Philadelphia, Pennsylvania

We have shown that lymphokines, especially gamma-interferon (γ -IFN), induce major histocompatibility complex (MHC) class I antigen expression on oligodendrocytes and astrocytes.^{1,2} More recently, we demonstrated that γ -IFN induces MHC class II antigen expression on isolated macrophage-microgia.³ MHC class II antigen expression on astrocytes is reportedly inducible by γ -IFN⁴ or viral infection.⁵ In the previous study, we found that infection of the central nervous system with MHV-A59, a neurotropic coronavirus, induces class I, but not class II, MHC antigen expression on oligodendrocytes and astrocytes.⁶ We sometimes found Ia antigen expression on γ -IFN-treated astrocytes by indirect immunofluorescence; however, this finding could not be confirmed by radioimmunoassay.

In this study, we examined more precisely the expression of MHC antigen on glial cells by indirect immunofluorescence (IF), radioimmunoassay (RIA), and ⁵¹Cr release assay. Oligodendrocyte-enriched (Oligo), astrocyte-enriched (Ast) cultures and isolated macrophage-microglia (Mi) were stimulated with γ -IFN (50 U/ml for 2 days). They were then examined for the expression of MHC antigens.

Unstimulated Oligo and Ast did not express either class I (H-2) or class II (Ia) antigen on their surface. γ -IFN induces H-2 antigen expression on both Oligo and Ast. Although Ia antigen was sometimes detected on γ -IFN-treated astrocytes (FIG. 1), most Ast usually remained Ia negative even after γ -IFN treatment.

Radioimmunoassay confirmed the induction of H-2 antigen, but not Ia antigen, on Oligo and Ast (TABLE 1). By ⁵¹Cr release assay using the same monoclonal anti-MHC antibodies plus complement, we detected H-2 antigen expression on unstimulated Mi, and both H-2 and Ia antigen on γ -IFN-treated Mi. However, we could not detect Ia antigen on γ -IFN-treated Ast under the same assay conditions (TABLE 2).

This study confirmed the induction of class I MHC antigen expression on Oligo and Ast by three different assays. We could detect Ia antigen on γ -IFN-treated Mi. However, we could not confirm Ia antigen expression on γ -IFN-treated astrocytes by

AKR	H-2D [*] K [*]	I-A ^k	I-E/C ^k	MEM	H-2D ^b K ^b	I-A ^b
Oligo Ast	$1,264 \pm 89^{b}$ $3,437 \pm 362^{b}$					

TABLE 1. MHC Antigen Expression: Radioimmunoassay^a

*Each culture was treated with 50 U/ml of γ -IFN for 2 days before assay. ^bp < 0.001.

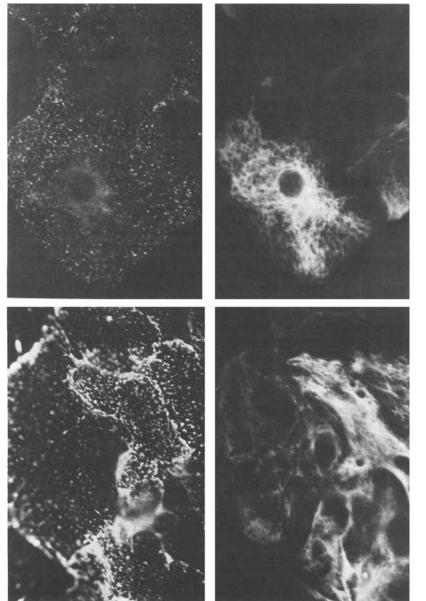


FIGURE 1. Induction of H-2 antigen expression (*left*) and Ia antigen (*right*) on GFAP-positive astrocytes by γ -IFN.

		H-2D ^k K ^k	I-A ^k	I-E/C ^k	MEM	H-2D⁵K⁵	I-A ^b
Mi	(-) γ-IFN	31.2 ± 10.9 ^b 47.3 ± 5.0 ^b	14.9 ± 1.0 39.5 ± 6.7^{b}	15.5 ± 6.1 28.7 ± 9.0 ^b	13.7 ± 2.5 15.5 ± 4.2	14.8 ± 2.2 14.5 ± 6.2	16.8 ± 4.2 16.4 ± 4.2
Ast	(−) γ-IFN	10.3 ± 1.9 34.4 ± 3.2 ^b	$\begin{array}{r} 12.2 \ \pm \ 2.8 \\ 12.8 \ \pm \ 2.2 \end{array}$	NT 13.2 ± 3.7	11.4 ± 2.0 12.4 ± 1.9	10.0 ± 1.0 11.2 ± 3.3	$\begin{array}{rrrr} 10.1 \ \pm \ 4.9 \\ 10.8 \ \pm \ 0.7 \end{array}$

TABLE 2. MHC Antigen Expression: ⁵¹Cr Release Assay^a

*Each value represents mean \pm standard deviation of individual % ⁵¹Cr release (n = 9). $^{b}p < 0.001.$

means of RIA and ⁵¹Cr release assay. These observations, along with the fact that Mi have very similar properties as peripheral blood macrophages,³ suggest a possible immunoregulatory function of Mi as is characteristic of the cells of monocyte lineage.

REFERENCES

- SUZUMURA, A. & D. H. SILBERBERG. 1985. Brain Res. 336: 171-175.
 SUZUMURA, A. et al. 1986. J. Neuroimmunol. 11: 179-190.
 SUZUMURA, A. et al. 1987. J. Neuroimmunol. 15: 263-278.
 WONG, G. H. W. et al. 1984. Nature 310: 688-691.
 MASSA, P. T. et al. 1986. Nature 320: 543-546.
 SUMURA, A. et al. 1986. Nature 320: 503-201.

- 6. SUZUMURA, A. et al. 1986. Science 232: 991-993.