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The gut microbiota, the ecosystem formed by a wide symbiotic community of nonpathogenic microorganisms that are present in
the distal part of the human gut, plays a prominent role in the normal physiology of the organism. The gut microbiota’s
imbalance, gut dysbiosis, is directly related to the origin of various processes of acute or chronic dysfunction in the host.
Therefore, the ability to intervene in the gut microbiota is now emerging as a possible tactic for therapeutic intervention in
various diseases. From this perspective, evidence is growing that a functional dietary intervention with probiotics, which
maintain or restore beneficial bacteria of the digestive tract, represents a promising therapeutic strategy for interventions in
cardiovascular diseases and also reduces the risk of their occurrence. In the present work, we review the importance of
maintaining the balance of the intestinal microbiota to prevent or combat such processes as arterial hypertension or
endothelial dysfunction, which underlie many cardiovascular disorders. We also review how the consumption of probiotics can
improve autonomic control of cardiovascular function and provide beneficial effects in patients with heart failure. Among the
known effects of probiotics is their ability to decrease the generation of reactive oxygen species and, therefore, reduce oxidative
stress. Therefore, in this review, we specifically focus on this antioxidant capacity and its relationship with the beneficial
cardiovascular effects described for probiotics.

1. Introduction

Literature searches on “gut microbiota” performed by the
guest editors via the PubMed platform revealed extensive
publications, consisting of approximately 880 reviews in
2018 (~2/day). Approximately 380 (~1/day) reviews on

“probiotics” were published in 2018. Restricting the search
with filters to published reviews using the combination of
terms “probiotics and cardiovascular diseases” reduced the
number to 15. Interestingly, when the term “oxidative stress”
was included in the combination “probiotics and cardiovas-
cular diseases (CVD) and oxidative stress,” no published
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reviews were identified. It is known that CVD remains the
leading cause of death and disability in developed countries.
These two scenarios associated with exciting original articles
on probiotics and CVD in the prior 3 years motivated us to
promote the publication of this special issue.

The gut microbiota is a broad symbiotic community of
nonpathogenic microorganisms composed primarily of
anaerobic bacteria (although some gut bacteria preferentially
grow under microaerophilic conditions) and fungi [1]. One
of its functions is the maintenance of a barrier via entero-
cytes covered with a brush border of mucus, which is pro-
duced by goblet cells and nonpenetrable tight junctions
between enterocytes [2, 3], a layer of luminal mucus and
tight adherens junctions between enterocytes that allows
the control of absorption and metabolism and the matura-
tion and stimulation of the immune system, which are
essential functions for an effective mechanism of defense
against pathogens in the host [4]. Signals generated in the
gut microbiota communicate with distant organs by cross-
ing the intestinal epithelium and triggering diverse signaling
processes located at the epithelial cell border, subsequently
reaching the systemic circulatory system. Different pathways
are responsible for the bidirectional interaction between the
gut microbiota and systemic organs in healthy individuals
(Figure 1).

Currently, there is a growing body of evidence that an
abnormal predominance of pathogenic over commensal
(nonpathogenic) microorganisms, a condition termed gut
dysbiosis, can initiate or worsen the dysfunction of diverse
target systemic organs [5–7]. Gut dysbiosis is also a con-
firmed cause of increased oxidative stress in the body. In
fact, frequent consumption of fats and refined sugars in
the Western-type diet produces an increase in reactive oxy-
gen species (ROS) production and inflammatory processes
[8, 9]. Additionally, the gut microbiota regulates the produc-
tion of mitochondrial ROS [10]. In recent years, various
studies have revealed that gut dysbiosis may contribute to
the development and progression of CVD and other related
diseases [11, 12].

On the other hand, several studies have demonstrated
that probiotics may be beneficial in reestablishing the
microbiota through different mechanisms such as appro-
priate intestinal homeostasis [13]. The name probiotic is
applied to those live microorganisms which, when admin-
istered in adequate amounts, confer a health benefit on
the host. This definition, established by the joint Food
and Agriculture Organization of the United Nations
(FAO) and World Health Organization (WHO) Working
Group, is the one used today and accepted by the Interna-
tional Scientific Association for Probiotics and Prebiotics
(ISAPP) [14].

Therefore, the purpose of this review is to update our
knowledge concerning the contribution of the exacerbated
production of oxidative stress to the development of car-
diac and vascular dysfunctions in the clinic and in experi-
mental models of arterial hypertension, as well as the
possible beneficial effects of dietary supplementation with
probiotics, in an attempt to prevent or reverse these cardio-
vascular disturbances.

2. Probiotics as Promising Coadjuvants for
Prevention/Treatment of
Arterial Hypertension

Arterial hypertension constitutes a main risk factor for
the development of severe pathologies, such as acute myo-
cardial infarction, heart failure, stroke, and renal failure
[15–17], as well as for premature death worldwide [18].
Primary (or essential) hypertension is a multifactorial pro-
cess that involves genetics, demographics, comorbid disor-
ders, and environmental influences [19]. Approximately
8% of cases exhibit secondary hypertension, which has a
known origin, including endocrine diseases, drugs, cancer,
or hyperactivation of the renin-angiotensin system, among
others [20].

Antihypertensive therapy used in clinical practice has
been shown to be effective in maintaining blood pressure
(BP) at safer levels, thereby reducing the morbidity and mor-
tality associated with this disease. Several international
reports, mainly those prepared by the Eighth Joint National
Committee (JNC 8), have established the guidelines for the
treatment of hypertensive patients and different reference
values for those over 60 years old [21].

In addition to pharmacological treatments, it is necessary
to establish a series of nonpharmacological measures for the
control of the disease. In this sense, the relevance of a good
diet is paramount [22], and the contribution of probiotics
can be fundamental. It has been demonstrated that the gut
microbiota participates in an important manner in the con-
trol of BP by several mechanisms, such as exerting control
at the level of the central and autonomic nervous system or
protecting endothelial function (see illustration in Figure 1).
Additionally, gut dysbiosis has been described in animal
models of hypertension and hypertensive patients [23].

In agreement with the above discussion and based on the
state-of-the-art role of the gut microbiota and its interaction
with different organs, a working group at the National Heart,
Lung, and Blood Institute recently discussed the current sta-
tus and future directions for the treatment and prevention of
high BP, considering the use of probiotics [24]. Therefore,
functional foods that contribute to the maintenance of the
intestinal flora can be very useful when avoiding excessively
high BP levels, as previously reviewed in detail by several
authors (see [11, 25–28]).

Among the foods that have been shown to provide vari-
ous cardiovascular benefits, kefir has been reported to effec-
tively lower BP [5, 28]. Chronic consumption of this
synbiotic attenuates the abnormal increase in BP in sponta-
neously hypertensive rats (SHR), which has been the most
commonly used genetically hypertensive animal for a better
understanding of several cardiovascular abnormalities. Kefir
has been tested in the protection of vascular endothelial dys-
function [29] and in the correction of impaired autonomic
cardiovascular function [30, 31], including its inhibitory
effects on angiotensin-converting enzyme (ACE) [32]
(Figure 2). Therefore, there is growing evidence that probio-
tics could be a promising natural coadjuvant in the preven-
tion/treatment of CVD, including the hypertensive process.
In another study using SHR, animals fed with Minas Frescal
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probiotic cheese showed a significantly lower BP compared
with the control group, in addition to an improvement in
other indicators of cardiovascular health, such as blood levels
of triglycerides and cholesterol [33].

Several clinical studies in humans have also demon-
strated the ability of probiotics to reduce abnormally high
BP levels. For example, an extract of Lactobacillus casei,
which has been shown to reduce BP in SHR [34], was able
to induce a reduction in systolic/diastolic BP and heart rate
in hypertensive patients [35]. In 2002, an interesting study
showed that food supplementation with Lactobacillus plan-
tarum produced a significant decrease in systolic BP in heavy
smokers [36]. A Norwegian study showed, in 2011, that the
incidence of preeclampsia, which is associated with hyper-
tension and inflammation, is decreased by chronic intake of
probiotics [37]. Additionally, in a randomized double-blind
clinical trial with type II diabetes mellitus, probiotic soy milk
containing Lactobacillus plantarum significantly decreased
systolic/diastolic BP [38], and in a study with prediabetic
patients, there was a significant tendency to reduce hyperten-
sion in those patients receiving a multispecies probiotic [39].
In 2014, a meta-analysis carried out based on the results of
nine clinical trials found that consumption of probiotics
slightly reduced BP and that this effect was more marked
if the basal BP was elevated. The authors also concluded
that several species of probiotics used together provided

enhanced effects. Finally, the duration of the intervention
must be ≥8 weeks, and the dose of daily consumption of
probiotics should be ≥1011 colony-forming units [40].

In contrast, several studies have questioned the role of
some probiotics in producing low BP. A treatment for 4
weeks by dietary supplementation of Lactobacillus plantarum
either together with fermented blueberry or with three
synthesized phenolic compounds did not lower BP in
NG-nitro-L-arginine methyl ester- (L-NAME-) induced
hypertensive rats [41]. In a clinical trial, probiotic strains of
Lactobacillus acidophilus and Bifidobacterium animalis,
provided in either yogurt or capsule form, did not improve
cardiovascular risk factors since they did not modify BP or
concentrations of total cholesterol LDL-C, HDL-C, or tri-
glycerides in overweight or obese individuals [42]. Addition-
ally, a study of postmenopausal women with metabolic
syndrome showed that administration of milk supplemented
with Lactobacillus plantarum produced several beneficial
effects, but it did not provide a significant decrease in BP
[43]. Furthermore, long-term treatment with Lactobacillus
helveticus-fermented milk containing bioactive peptides
reduced arterial stiffness in hypertensive subjects but did
not induce statistically significant differences between the
effects of the probiotic and placebo treatment on BP [44].

In view of these reports, it will still be necessary to carry
out more studies to verify the possible role of probiotic foods

Hypothalamus-pituitary-adrenal
axis

ACTH
Sympathetic

nerves

AdrenalineCortisol

Immune
cell

Smooth muscle
cell

Neuroendocrine
interactions

Symbiotic gut microbiota Goblet cell
(mucus production)

SCFA
Commensal
gut bacteria

IgATGF-�훽 → CD4+ T cells

TGF-�훽
IL-10

T reg cells B reg cells

Enteric nervous system

Dendritic
cellMacro-

phage

SCFA

Immunomodulation,
anti-inflammation, anti-oxidative stress

Examples of target organs and systems

Cardiovascular control

Integrative
brain

functions

Digestion and metabolism Volume control

Tight
junctions

Vagal
nerves

N
or

ad
re

na
lin

e

IgA
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as coadjuvants in the treatment of arterial hypertension. In
any case, the results of the different studies suggest that the
complicated mechanisms of the development of hyperten-
sion, the choice of different bacterial strains, the different
types of patients, and the previous state of their microbiome
can be decisive in terms of obtaining satisfactory results for
the reduction of BP.

3. Endothelial Dysfunction: The Role Played by
Oxidative Stress

The vascular endothelium is a single layer of smooth, thin
cells that constitutes the first barrier between the blood-
stream and the vascular muscle. Among its functions is to
act as a selective membrane through which fluid and solutes,
as well as trafficking of inflammatory cells, interchange
between the plasma and tissue spaces [45, 46].

The endothelium also contributes to the regulation of
vascular tone by synthesizing and releasing a huge number
of vasodilating substances, both vasodilators such as nitric
oxide (NO), prostacyclin, and endothelium-derived hyper-
polarizing factor (EDHF) and vasoconstrictors such as
endothelin (via ETA), angiotensin II (via AT1 receptors),
and ROS. In addition, its action is the key in the control of
platelet aggregation and blood hemostasis, regulating the
antithrombotic/prothrombotic balance, and it also partici-
pates in the inflammatory and immune response (for a
detailed review, see [47–49]).

Due to this multifunctional role of the endothelium, it is
easy to understand that its alterations may lie at the origin

and/or in the development of various diseases. Therefore,
endothelial dysfunction is recognized as a risk factor for the
onset of CVD and appears in the early stages and during
the development of hypertension, cardiac ischemia, athero-
sclerosis, stroke, or peripheral vascular disease [48, 50, 51].
Other diseases such as diabetes, kidney failure, infectious dis-
eases, and tumor progression also have a component of
endothelial dysfunction [49, 51, 52].

Endothelial dysfunction can be caused by inflammatory
processes, leading to a decrease in endothelial NO synthase
(eNOS) enzyme activity, thereby decreasing the NO bio-
availability and culminating in hypertension [53]. More-
over, oxidative stress also contributes to the development
of endothelial dysfunction, reducing the availability of NO
[54, 55]. In fact, the generation of ROS caused by hyperten-
sion, hypercholesterolemia, diabetes, or other cardiovascular
risk factors causes a decrease in the release of endothelial
NO [56].

As mentioned above, there is an important relationship
between dysbiosis and the development of hypertension
(see also [57]), which could involve the impaired endothe-
lial function due to alterations of the gut microbiota during
the chronic rise in BP. In fact, fecal microbiota transplan-
tation from SHR to normotensive WKY rats caused a
chronic impairment of endothelial function, accompanied
by greater vascular oxidative stress and increased systolic
BP. In contrast, transplantation of fecal microbiota from
WKY to SHR provoked the opposite effects with an
improvement of endothelial dysfunction in hypertensive
animals [27].

Main cardiovascular effects of kefir in the SHR
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Figure 2: Main cardiovascular disturbances observed by our research group in the SHR model and the effectiveness of kefir supplementation
to attenuate or revert them. Graphs were constructed based on published data [28–30, 32].
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Accordingly, several studies have suggested that probio-
tics could lead to an improvement in endothelial function.
Rashid et al. [58] reported that the endothelial dysfunction
of mesenteric artery rings in rats with common bile duct
ligation is mediated in part by oxidative stress, possibly
due to bacterial translocation inducing a proinflammatory
response, and that this effect is improved by the ingestion
of a probiotic formulation.

Endothelial dysfunction can be identified physiologically
by means of NO-dependent mechanisms (Figure 3). In this
situation, blood vessels show a reduced vasodilator response
to agents that contribute to the release of NO, such as
acetylcholine and, conversely, an exacerbated response to
vasoconstrictor agents, such as α1-adrenergic agonists or
thromboxane A2 analogues. Using this method, chronic pro-
biotic treatment with Lactobacillus coryniformis reversed the
endothelial dysfunction observed in obesemice and improved
the endothelial dysfunction and vascular oxidative stress
induced by lipopolysaccharides (LPS) in control mice [59].

In a similar way, our group evaluated the effects of the
probiotic kefir on endothelial dysfunction in SHR. Our
results suggested that kefir treatment for eight weeks (even
at a low dose) could attenuate endothelial dysfunction in
the large vessels in hypertensive rats, and the main mecha-
nism for this beneficial effect was exerted through a repair
of the vascular endothelial architecture (Figure 2) and a
reduction of the oxidative stress, together with an increase
in NO bioavailability as well as endothelial progenitor cell
recruitment [29]. These beneficial effects of kefir on vascular
endothelial function have recently been reviewed [5].

This effect of probiotics was also confirmed in a study in
which lactic acid bacteria partially reversed the relaxation
deficit of the aorta in SHR. In addition, it also increased the
NO level, which is abnormally decreased in SHR serum. Both
effects are indicative of a probiotic-induced improvement in
endothelial function due to a reduction of vascular oxidative
and inflammatory status [60].

In addition, using SHR and WKY rats for comparison, a
study by Gomez-Guzman et al. [61] demonstrated that
chronic oral administration of the probiotic Lactobacillus
fermentum or Lactobacillus coryniformis plus Lactobacillus
gasseri restored gut eubiosis and improved endothelial dys-
function as a result of a reduced vascular proinflammatory
and prooxidative status.

Some studies in humans or human cells have also shown
an improvement in endothelial function due to probiotic
treatment. In endothelial cells, soy milk fermented with Lac-
tobacillus plantarum or Streptococcus thermophilus stimu-
lated NO production and eNOS activity, suggesting their
effectiveness for the improvement of endothelial function
[62]. A 6-week supplementation with Lactobacillus plan-
tarum in men with stable coronary artery disease improved
endothelial function for both conduit and resistance vessels
through increasing NO bioavailability while concomitantly
reducing systemic inflammation, as measured by brachial
artery flow-mediated dilation. These results suggest that
the intestinal microbiota is mechanistically linked to systemic
inflammation and vascular endothelial function [45].
Another clinical trial showed that a multispecies probiotic

supplement improved both functional and biochemical
parameters of endothelial dysfunction, including systolic
BP, vascular endothelial growth factor, pulse wave velocity
(PWV) and its augmentation index, interleukin-6, tumor
necrosis factor alpha (TNFα), and thrombomodulin in obese
postmenopausal women [63]. In contrast, in a study of sub-
jects with metabolic syndrome receiving supplementation
with the probiotic strain Lactobacillus casei Shirota, no sig-
nificant changes in parameters used to assess low-grade
inflammation or endothelial dysfunction were observed [64].

In general, studies both in vivo and in vitro, as well as
clinical studies in humans, suggest that supplementation
with several types of probiotics contributes to an improve-
ment in endothelial function through various mechanisms.
Although further research is needed, the role of probiotic
supplementation in the prevention of CVD by correcting
endothelial dysfunction is promising. In addition, the
multifunctional role of the endothelium extends this
potential use of probiotics to all diseases, not only cardio-
vascular, in which its pathophysiology may be related to
endothelial dysfunction.

4. Evidence of the Beneficial Effects of
Probiotics on the Autonomic Control of
Cardiovascular Function

Prebiotics, probiotics, and synbiotics are some of the best
evidenced ways of manipulating the microbiota, and their
potential role in the prevention and treatment of multiple
diseases has recently garnered a significant interest. Recent
data from experimental time-course studies have shown
that long-term treatment with kefir (at least 30 to 60
days), in addition to the antihypertensive effect, attenuated
cardiac hypertrophy in SHR [29, 30, 32]. Considering the
relationship between the gut microbiota and the target
systemic organs, it is important to highlight studies that
relate the influence of these microorganisms to cardiovas-
cular function.

Those findings led the authors to investigate whether the
benefits of kefir supplementation could also include the auto-
nomic neural control of BP (baroreflex function) and the car-
diac pacemakers controlling the chronotropic rhythm under
the neural efferent pathways from the brainstem integrative
areas. They observed that administration of kefir (for at least
60 days) attenuated and partially reversed the abnormal car-
diac sympathetic predominance over the parasympathetic
tone in SHR, raising the following question: “by which mech-
anisms can probiotics and synbiotics affect brain areas?” As
illustrated in Figures 1 and 4, there is a consistent and well-
recognized neuroendocrine gut-brain axis connection, which
includes the hypothalamus-pituitary-suprarenal gland axis
and the autonomic sympathetic/parasympathetic afferent/
efferent pathways. Others have attempted to address the
question by proposing relevant interactions between gut
endocrine cells and vagal afferents through gut chemosen-
sing mechanisms [65, 66].

Other exciting findings in recent years has been the
demonstration of a marked association between the effects
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of probiotics and decreased production of intravascular ROS
and augmented NO bioavailability. It seems that the mecha-
nisms underlying the beneficial actions of probiotics on

cardiac autonomic control could occur through its capability
to decrease the production of cytokines and ROS in the hypo-
thalamic paraventricular nucleus. In turn, it could attenuate
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hypertension and end-organ damage by upregulating anti-
inflammatory and antioxidant molecules, therefore restoring
the normal balance between parasympathetic and sympa-
thetic activity to the heart, as recently observed by our group
[30]. In a similar way and as expected, the investigators
observed that SHR treated with probiotics presented a partial
recovery of the baroreceptor sensitivity, which is character-
ized in this experimental model by a high variability of the
resting BP. The SHR exhibited diminished reflex tachycardia
or bradycardia to induce hypotensive or hypertensive
changes in the resting BP. Probiotic supplementation was
able to partially repair this BP variability and baroreflex sen-
sitivity, and this could occur because kefir repairs the normal
gut microbiota and, consequently, restores the production of
neuroactive compounds in the intestinal lumen. Therefore,
the above findings corroborate the knowledge that probiotics
have a modulatory action on the integrative central or
peripheral components of the gut-brain axis [65, 67].

Recently, Brasil et al. [32] assessed whether the soluble
nonbacterial fraction of kefir (bioactive compounds) and
not the probiotic effects would improve cardiovascular
hemodynamics, enhancing the baroreflex sensitivity, which
could include the ACE inhibitory properties. Therefore, an
important mechanism by which probiotics decrease high
BP and repair endothelial dysfunction and cardiac auto-
nomic tones could be achieved through probiotic bioactive
compounds. In addition, it has been observed that probiotic
supplementation caused a decrease in ACE activity measured
in the serum of SHR treated with the soluble nonbacterial
fraction of kefir, supporting ACE inhibition as a likely mech-
anism for kefir’s beneficial cardiovascular effects during
hypertension. These effects indicate that the improvement
in baroreflex gain cannot be attributed to the probiotic effect
of kefir but rather to other bioactive compounds produced by
microbial action. Clearly, how these different fractions (e.g.,
probiotic bacteria or bioactive compounds) influence the
baroreflex and other cardiovascular risk factors are still
poorly understood. To our knowledge, very few publications
have evaluated the effects of probiotics on baroreflex function
and autonomic control of heart rate. These previous studies
used the fermented food kefir [30] and its bioactive com-
pounds [32].

In conclusion, the benefits of probiotics in the cardiovas-
cular system in models of hypertension include the reversion
of cardiac dysautonomia, which is characterized in hyper-
tensive subjects by an inverted predominance of sympathetic
over vagal tone, including a significant attenuation of the
high variability of BP and heart rate and their effectiveness
to partially revert the decreased [68] baroreflex sensitivity.
Nonetheless, probiotics attenuate disturbances in the neural
control of cardiovascular function in a similar manner to
that achieved with physical exercise [68], therapy with flavo-
noids [69], and pharmacological medication [30]. Therefore,
there is clearly a need for more mechanistic studies that
would help to identify the missing links to explain the pro-
tective effects of fermented foods, such as pre-, pro-, and
synbiotics, as well as their bioactive compounds on the neu-
ral control of BP. Figure 5 summarizes the possible sites of
action of probiotics.

5. Heart Failure: A Target for the Benefits of
Functional Diets

Heart failure (HF) patients experience some changes in the
gut microbiome during disease. Some reports have described
increased levels of pathogenic microbes that could have
potential deleterious effects on cardiac function [70]. This
phenomenon might be explained by the so-called “gut
hypothesis,” in which the reduced cardiac pumping function
and congestion observed in HF patients would be responsi-
ble for an intestinal ischemia [71], favoring bacterial translo-
cation and increases in circulating endotoxins that elicit
inflammation [72]. In fact, the intestinal blood flow is
reduced in HF patients, contributing to juxtamucosal bac-
terial growth [73]. Kummen et al. [74] reported that the
gut microbiota in HF patients is related to persistent T-
cell activation. In fact, the removal of Gram-negative intes-
tinal bacteria by antibiotics reduces the monocyte CD14
expression, along with reduced levels of endotoxins and
cytokines, with improved flow-mediated dilation in patients
with severe HF [75].

The association between gut dysbiosis and CVD was
highlighted when 60 stable HF patients were selected to test
whether the characteristics of the gut microbiota would cor-
relate with their cardiovascular functional status. The authors
evidenced that HF patients had more colonies of pathogenic
bacteria than control participants, along with an increased
intestinal permeability that favored bacterial translocation.
In addition, severe HF was associated with more pathogenic
types of bacteria than mild HF [76]. The contribution of
the gut microbiota to the pathogenesis of CVD has been sup-
ported by the discovery that some dietary products that are
metabolized by gut microbes produce toxic metabolites that
could have negative impact on the cardiovascular system.
Changes in the gut microbiota can lead to increases in tri-
methylamine N-oxide (TMAO), which is a major contribu-
tor to cardiovascular and renal diseases [77]. TMAO is an
endotoxin that is produced via the metabolism of trimethyla-
mine from the carnitine molecule, which is absorbed into the
blood and converted into TMAO in the liver by flavin-
containing monooxygenases [78]. In fact, intestinal microbes
participate in the phosphatidylcholine metabolism and in the
increased TMAO levels, which was independently associated
with major cardiovascular events [70] and the incidence
of chronic kidney diseases [79]. The findings also showed
that TMAO could contribute to the risk prediction scores
of deaths in acute HF patients, revealing a poor 1-year
prognosis [80].

Experimental studies have demonstrated potential thera-
peutic actions of probiotics in different animal models of HF.
Using a rat model of acute myocardial infarction by perma-
nent coronary occlusion, Gan et al. [81] showed improved
ventricular function and structure after treatment with the
probiotic Lactobacillus rhamnosus. The possible mechanism
by which probiotics act in the infarcted heart has been
described by Lam et al. [82], in which the probiotic Lactoba-
cillus plantarum decreased the leptin levels and, thus,
reduced the infarct size in rats. Additionally, the antiapopto-
tic effect of probiotic-fermented purple sweet potato yogurt
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was evidenced in a rat model of hypertensive HF [83].
Despite the increasing number of experimental studies on
probiotics in HF models, only one study has addressed the
prognostic effects of probiotics in HF patients. In this pilot
trial, patients with HF class II or III and LVEF <50% were
randomized to Saccharomyces boulardii or placebo for 3
months in a double-blinded fashion. Patients treated with
the probiotic showed a significant reduction in the left atrial
diameter, uric acid, CRP, and creatinine levels. An important
find of this study was that the treatment was safe and well tol-
erated, without reports of side effects or adverse events [84].

6. Conclusions

Throughout this review, we have presented evidence in the
literature indicating that a habitual consumption of probio-
tics, which restore the balance of the intestinal microbiota,
could present cardiovascular benefits based, at least in part,
on its ability to reduce oxidative stress. Although many
points remain to be clarified and many of the published
results are contradictory, it is evident that consumption of
probiotics constitutes a promising complement to more con-
ventional cardiovascular therapies, as well as to nonpharma-
cological measures that are commonly used to counteract the
onset and progression of CVD. Further studies are needed to
clarify the interaction between the gut microbiota and the
neuroimmune system, as well as the endocrine system, to cre-
ate nutrigenetic profiles that may aid in achieving individual
homeostasis. It will also be necessary to improve knowledge
concerning the different bacterial strains present in probio-
tics and how they should be consumed to take full advantage
of their potential beneficial effects for each specific situation.
Finally, studies of the great variety of enzymes, peptides, and
biochemical pathways generated by the intestinal microbiota,
which differ from the resources of the host, could constitute
an innovative strategy for the design of new drugs for the
treatment of CVD.
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