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A prospective analysis of mucosal 
microbiome-metabonome 
interactions in colorectal cancer 
using a combined MAS 1HNMR and 
metataxonomic strategy
James Kinross1, Reza Mirnezami1, James Alexander4, Richard Brown5, Alasdair Scott1, Dieter 
Galea2, Kirill Veselkov2, Rob Goldin3, Ara Darzi1, Jeremy Nicholson2 & Julian R. Marchesi4,5

Colon cancer induces a state of mucosal dysbiosis with associated niche specific changes in the gut 
microbiota. However, the key metabolic functions of these bacteria remain unclear. We performed 
a prospective observational study in patients undergoing elective surgery for colon cancer without 
mechanical bowel preparation (n = 18). Using 16 S rRNA gene sequencing we demonstrated that 
microbiota ecology appears to be cancer stage-specific and strongly associated with histological 
features of poor prognosis. Fusobacteria (p < 0.007) and ε- Proteobacteria (p < 0.01) were enriched 
on tumour when compared to adjacent normal mucosal tissue, and fusobacteria and β-Proteobacteria 
levels increased with advancing cancer stage (p = 0.014 and 0.002 respecitvely). Metabonomic analysis 
using 1H Magic Angle Spinning Nuclear Magnetic Resonsance  (MAS-NMR) spectroscopy, demonstrated 
increased abundance of taurine, isoglutamine, choline, lactate, phenylalanine and tyrosine and 
decreased levels of lipids and triglycerides in tumour relative to adjacent healthy tissue. Network 
analysis revealed that bacteria associated with poor prognostic features were not responsible for the 
modification of the cancer mucosal metabonome. Thus the colon cancer mucosal microbiome evolves 
with cancer stage to meet the demands of cancer metabolism. Passenger microbiota may play a role in 
the maintenance of cancer mucosal metabolic homeostasis but these metabolic functions may not be 
stage specific.

Sporadic colorectal cancer (CRC) is the third commonest cause of cancer-related death worldwide and its global 
incidence is increasing1. There is strong epidemiological evidence to suggest that diet (high in red meat and fat; 
low in fiber) is a risk factor that may explain this trend2, but the interaction between the colon and its environ-
ment is complex and subject to personalized variation and dynamic xeno-metabolite interactions. Nevertheless, 
data now exist to support the hypothesis that an important environmental driver of CRC risk is the colonic micro-
biota and its associated metabonome3, 4. For example, it has been demonstrated that the metabolic function of the 
colonic microbiota directly influences cancer risk through its modulation of dietary fiber, an increase of which 
leads to profound changes in colonic ecological co-occurrence networks with resulting upregulation of butyrate 
metabolism and a reduction in the metabolism of secondary bile acids3.

Several competing theories regarding the microbial regulation of CRC have now emerged to explain the func-
tion and importance of the CRC-associated metagenome (the catalogue of microbial genes that reside within 
the gut). The keystone-pathogen hypothesis5 and the Alpha-Bug hypothesis state that certain low abundance 
microbiome members may possess unique virulence or amensalistic traits, or produce carcinogens, which are 
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not only pro-oncogenic, but also promote a mucosal immune response and colonic epithelial cell changes that 
initiate colorectal carcinogenesis6. Tjalsma and colleagues proposed the alternative ‘driver passenger’ model 
for CRC, whereby a ‘first hit’ by indigenous intestinal ‘driver’ bacteria causes epithelial DNA damage, which in 
turn contributes to the initiation of CRC7. The consequent developing tumor induces intestinal niche alterations 
that favour the proliferation of opportunistic bacteria (termed bacterial ‘passengers’). Pathobionts are commen-
sal organisms that can cause disease when specific genetic or environmental conditions are altered in the host. 
Colonic pathobionts may be able to influence host pathogenesis through a large number of chemical and molec-
ular signaling pathways. Whether these pathobionts create a specific mucosal metabolic microenvironment that 
potentiates tumour growth remains unclear.

Important weaknesses of many existing studies examining the colonic microbiota in cancer aetiology are the 
employment of heterogeneous sampling approaches, the limited oncological phenotyping data presented and 
the variable use of mechanical bowel preparation8–16. This heterogeneity is critical as such variation is likely to 
influence the ecological characteristics of the microbiota: for example recent data from patients undergoing lower 
gastrointestinal tract endoscopy have identified short-term changes in the colonic microbiome caused by use of 
mechanical bowel preparation17, 18.

The metabolism of colon cancer is complex, and although fundamental changes in faecal amino acid and 
microbial co-metabolites (such as choline) have been demonstrated, mucosal microbiome-host metabolic inter-
actions have yet to be fully defined19–21. The primary aim of this study, therefore, was to describe the variation 
in local colonic dysbiosis between tumor and normal mucosa in a homogeneous group of CRC patients, in the 
absence of mechanical bowel preparation. Further, we aimed to determine the local ecology of the cancer micro-
biome in the context of cancer phenotype and stage, as defined by the ‘passenger-driver hypothesis’. The second-
ary aim was to describe mucosal microbiome-metabonome interactions that modulate metabolism at the level of 
the CRC mucosa20, 21.

Results
Patient Demographics.  Demographic and clinicopathological data for the 18 patients included in the study 
are summarized in Table 1. There were no intraoperative complications and all patients made a routine recovery. 
The majority of cases were stage T3 and T4 tumours. Three patients had large tubulovillous adenomas with low 
grade dysplasia, which were resected due to concerning features suggestive of cancer on pre-operative imaging. 
A single T1 lesion (pT1N1, Dukes C1) and a T2 lesion were also analysed (pT2N0, Dukes B). Seven of 18 patients 
had nodal micrometastases (N1/N2). No patients had evidence of distant metastatic disease at the time of surgery. 
The majority of lesions were adenocarcinomas (15 out of 18) of which five were of mucinous type. Five patients 

Age (Median) 76 (55–85)

Sex (M:F) 10:8

BMI (Mean) 26.6 (21–39)

Anatomical location

 Ascending colon 16

 Descending colon 2

T stage

 T0 (TVAs) 3

 T1 1

 T2 1

 T3 5

 T4 8

N stage

 N0 11

 N1 4

 N2 3

Histological subtype

 Adenocarcinoma 15

 Dysplasia 3

Differentiation

 Well 1

 Moderate 11

 Poor 6

Perineural invasion 1

Lymphovascular invasion (LVI) 6

Extramural vascular invasion (EMVI) 5

KRAS mutants 2

Table 1.  Patient demographic and pathological data. BMI: Body Mass Index; TVA: Tubulovillous adenoma; 
KRAS: Kirsten rat sarcoma viral oncogene homolog.
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had extramural vascular invasion (EMVI), which is a histological feature of poor prognosis, and two of these were 
found to express the KRAS mutation.

Metataxonomy data.  There were no significant differences in Tau or Shannon indices of diversity when 
comparing samples on tumour, 5 cm off tumour and 10 cm off tumour (Fig. 1a), although there was a trend 
observed towards increased diversity off tumour, which was greatest at 10 cm. This finding was confirmed by 
non-metric multidimensional scaling of Operational Taxanomic Unit (OTU) data (Fig. 1c) which showed no 
significant class separation according to tumour, 5 cm and 10 cm sites. However, as previously described in other 
studies, the 16 s rRNA data demonstrated that Fusobacterium was over-represented in cancer biopsies. 8/18 (44%) 
patients had Fusobacterium both on and off tumour. 6/18 (33%) patients did not have Fusobacterium on the 
tumour, and of these only one patient had Fusobacterium at an off cancer site (at 5 cm). 4/18 patients (22%) only 
had Fusobacterium on tumour. In keeping with these finidngs, Fusobacterium nucleatum-specific qPCR analysis 
confirmed over-representation of this species on tumour compared to 10 cm off tumour (p < 0.05) (Fig. 1b).

Dendrogram analysis (Fig. 2A) demonstrated three dominant bacterial clusters: 1) Bacteroides, Lachnospiracea 
intertie sedis, Blautia, Fusobacterium and Streptococcus; 2) Bacteroides, Lachnospiracea intertie sedis, Clostridium 
sensu strictu, Sutterella, Salmonella, and Escherichia/Shigella; 3) Lachnospiracea intertie sedis Streptococcus, 
Prevotella and Paraprevotella. Using multivariate statistical modelling, these clusters could be categorized by T 
stage (p = 0.04), histological subtype (p = 0.05) and tumour differentiation (p = 0.011) (Supplementary data, 
Table 1). Univariate statistical analysis demonstrated Cluster 1 and 2 contained patients with dysplastic lesions 
and less advanced cancers, and class 2 only contained patients with moderately differentiated tumours. Cluster 
3 (8 patients) was made up of patients with T4 adenocarcinomas with poor tumour differentiation, and a trend 
towards nodal metastases.

On and off tumour samples from individual patients also clustered together (Fig. 2B). 8 out of 18 patients 
had on tumour, 5 cm and 10 cm samples that clustered together. These patients tended to have histological fea-
tures associated with a better oncological prognosis. The absence of nodal metastases (p = 0.017) and moderate 

Figure 1.  (a) Boxplots of the ecological Indices for the tumour (CT, n = 18), 5 cm off the tumour (five, n = 18) 
and 10 cm off the tumour (ten, n = 18). Each boxplot was calculated from the individual Tau index (A), Shannon 
index (B), Normalized Tau (values normalized to the on tumour (CT) value for each individual) (C) and 
Normalized Shannon (values normalized to the on tumour (CT) value for each individual) (D). No statistical 
differences were observed between the values. (b). Box plot of Fusobacterium nucleatum 16 S qPCR data, 
demonstrating over-representation of Fusobacterium nucleatum on cancer, when compared to mucosa biopsied 
at 10cms (p < 0.05). (c). PCA plot of non-metric multi-dimensional scaling of OTU data from 18 patients in this 
study, confirming that there was no multivariate statistically significant ecological variance between on tumour, 
5 cm off tumour and 10 cm off tumour sampling points.
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tumour differentiation (p = 0.038) were statistically significant for factors for differentiating between these two 
cohorts, with non-significant trends also noted for T stage, histological subtype and Lymphovascular invasion 
(LVI) (Supplementary data Table 2). Collectively, these data suggest that individual patient variation has a greater 
influence on CRC microbiome dysbiosis than colonic geographical sampling site relative to the tumour. Perhaps 
more critically, the mucosal tumour phenotype is associated with three distinct microbial structures, and eco-
logical heterogeneity between on and off tumour biopsy sites from the same patient is associated with poorer 
prognostic features on histological examination.

These findings were further investigated using a univariate analysis of the entire 16 S rRNA data set from 
tumour, 5 cm and 10 cm sites. (Table 2). Histologically poorly differentiated tumors had higher relative abundance 
of Fusobacterium (P < 0.03). Three classes of bacteria belonging to the Firmicutes (F. streptococcus spp. ( < 0.03), F. 
Solobacterium spp. (P < 0.01). and Clostridium XI spp. (P < 0.04)) were also over represented in poorly differen-
tiated tumours while F. subdoligranulum spp. was under represented (P < 0.01). When a univariate analysis was 
applied to other histological biomarkers of poor prognosis, such as extra-mural vascular invasion (EMVI), LVI 
and KRAS mutation status, there were no statistically significant associations with abundance of Fusobacterium 
(data not shown). However, increased Bacteroidetes, Bacteroides spp. abundance was associated with EMVI 
(p < 0.03) and Firmicutes, Roseburia spp. was associated with the presence of LVI (p < 0.02). Proteobacteria, 
Aggregatibacter spp. (P < 0.01) was associated with KRAS mutation (P < 0.01), although this finding requires 
caution as the patient numbers expressing KRAS mutation were small.

A multivariate analysis of the entire data set was then performed to determine if the data had clinical util-
ity. Principle component analysis (PCA) identified three outliers (two from a patient with tubular villous ade-
noma and one from a patient with a T4 tumour) and these samples were removed, leaving 51 for further analysis 
(Supplementary data, Fig. 1). Supervised analysis was performed using Partial Least Squares discriminant anal-
ysis (PLS-DA) of mucosal ecology and models were built for all histological features of prognostic significance 

Figure 2.  (A) Heatmap and (B) Clustering dendrogram (Bray-Curtis and Ward linkage) for genus-level OTU 
data. Figure A. demonstrates that three clusters of mucosal bacteria predmoninate and that on and off cancer 
samples appear to cluster together. In (B) the grey boxes highlight samples taken from tumour, 5 cm off tumour 
and 10 cm off tumour from the same individuals which cluster together. This shows that 8 out of 18 patients 
demonstrated significant homogeneity in mucosal bacteria on cancer and at 5 and 10 cms. This clustering effect 
is greater than any clustering associated with sampling location, suggesting that individual variation is a greater 
influence on CRC microbiome dysbiosis than colonic geographical sampling site relative to the tumour.

EMVI P KRAS p LVI p Differentiation p

Bacteroidetes 
Bacteroides ↑ 0.03 Proteobacteria 

Aggregatibacter ↑ 0.01 Firmicutes 
Roseburia ↓ 0.02 Firmicutes 

Streptococcus ↑ 0.029

Firmicutes 
Solobacterium ↑ 0.01

Firmicutes 
Clostridium XI ↑ 0.039

Firmicutes 
Subdoligranulum ↓ 0.01

Fusobacteria 
Fusobacterium ↑ 0.033

Table 2.  Summary data of bacteria statistically over- or under-expressed in tumour samples and their statistical 
association with established histological biomarkers of poor prognosis. (EMVI = Extra mural vascular invasion, 
LVI = Lymphovascular invasion).
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(Fig. 3). This analysis demonstrated that discrete clustering of samples was possible for all features analysed 
(Fig. 3a to h). Leave one sample out cross-validation revealed that the diagnostic accuracy was high for each 
feature (Supplementary data, Table 3). Reciever operating curves were then created (Supplementary data, Fig. 2) 
for EMVI (Area under curve (AUC) = 0.95), LVI (AUC 0.97), tumour differentiation (AUC 0.95) and KRAS 
mutation status (AUC 1.0). These data suggest that tumours of a poor prognostic phenotype maintain conserved 
components of the microbiome that correlate with the degree of tumour invasiveness and histological biomarkers 
of relevance to clinical outcomes.

1NMR and metabolic network analysis.  MAS-NMR analysis of tumour and healthy mucosa was per-
formed as an untargeted analysis of mucosal metabolism during cancer progression. The summary data are 
reported in Fig. 4 and in Table 3.

As demonstrated in a previous study21, colonic mucosal metabolites are highly diagnostic of cancer (Fig. 4a 
and b). In contrast to the microbiome data presented here, clear metabolic separation was demonstrated between 
tumour and off tumour mucosal samples. Lipids and triglycerides were statistically important metabolic descrip-
tors (Fig. 4c) for defining this variation and specifically they were positively correlated with on tumour metab-
olism. Molecules that showed significant statistical correlation with tumour or normal mucosal tissue status 

Figure 3.  (a–h) Partial Least Squares-discriminant analysis scores plots of OTU data for important 
prognostic features identified by histopathological and molecular analysis. LVI = Lymphovascular invasion. 
EMVI = Extramural vascular invasion. PNVI = Perineural vascular invasion.

http://3
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Figure 4.  High Resolution – Magic Angle Spinning (HR-MAS) Nuclear Magnetic Resonance (NMR) analysis 
of mucosal metabolism using orthogonal partial least squares discriminant analysis. (a) Cross validated scores 
plot using Maximum Margin Criteria, and a leave one patient out validation. (b) The corresponding ROC curve 
demonstrating the diagnostic accuracy of the model (AUC 0.96). (c) Pseudo-loadings ANOVA plot of the MMC 
cross validated model, demonstrating co-variance of metabolites between on and off cancer sampling points. 
The colour code provides a visual description of FDR p values for each signal. Peaks point in the direction of 
the tissue state with which they are positively associated (up or down) and signals red in colour have greater 
statistical significance.

Chemical structure ppm
Expression 
in cancer p

1 Acetate -CH3 1.92(s) ↓ 0.4

2 Alanine -CH3 1.47 (d) ↑ 0.0002

3 Creatine -CH3, -CH2 3.02 (s), 3.93(s) → 0.89

4 Formate -CH2 8.45 (s) ↑ 0.002

5 Glycerophosphorylcholine N(CH3)3 3.22 ↑ 0.016

6 Glycine CH2 3.56 ↑ 0.00005

7 Iso-butyrate -CH3 1.0 (d) ↓ 0.41

8 Isoglutamine β-CH2 2.34 ↑ 0.001

9 Lactate -CH3, -CH- 1.33 (d), 4.15 (q) ↑ 7.69 × 10–
9

10 Leucine β-CH2 γ -CH 1.72 → 0.19

11 Lipid/Triglyceride C = C-CH2 2.02 ↓ 0.02

12 Lipid/Triglyceride 1(CH2)n 1.29 ↓ 0.002

13 Lipid/Triglyceride -CH3 0.9 ↓ 0.001

14 Phosphocholine N(CH3)3, O-CH2 3.22(s), 4.19(t) ↑ 0.007

15 Scylloinositol -O-H 3.34 ↑ 0.67

16 Taurine -CH2-NH, CH2SO3 3.26, 3.42 ↑ 2.01 × 10–
9

17 Valine -CH3 1.02 → 0.49

Table 3.  Summary of significant metabolites, their observed trends in terms of abundance (↑, ↓, ↔) with 
corresponding p-values, their chemical formulae and chemical shift assignments.
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are shown in Table 3. These molecules were then regressed against the OTU data set to determine mucosal 
microbiome-metabonome functional associations that may be important in the maintenance of the cancer 
mucosal metabolic environment (Fig. 5). This analysis demonstrated that the network differs between on tumour 
and off tumour (normal healthy mucosa) sites. Only Shewanella spp. demonstrated commonality between these 
two tissue classes. OTUs associated with poor histological prognostic biomarkers did not demonstrate any statis-
tical correlation, with the exception of Proteobacteria. Spp., which appeared to be linked to lipid, choline, taurine, 
acetate, and creatine metabolite expression. The tumour network did demonstrate greater network connectivity 
than the off tumour network, suggesting that the bacteria residing ‘on tumour’ have a greater catalogue of meta-
bolic functions.

A secondary analysis was then performed to determine if these associations were consistent according to 
tumour stage. This analysis was limited by the small sample size for each stage, so no statistically significant 
interpretation was achieved (Supplementary data, Fig. 3). Correlations for Stage 0/1, 3 and 4 based on a p-value 
threshold of 0.05 demonstrated that only Comamonadaceae acidovrax spp. was consistently correlated with lipid 
metabolism across all stages of cancers. This Gram negative, aerobic genus is enriched in the mucosal biopsies of 
patients with inflammatory bowel disease, but its role in colon cancer is not established22.

Discussion
Several species of pathobionts have now been implicated in the aetiology of colon cancer23, 24. In particular, the 
oral Gram negative bacterium Fusobacterium nucleatum has been strongly associated with adenomas of the 
colon and rectum12, 15, 16, 25. Moreover, there is evidence that the presence of Fusobacterium may be of prognostic 
importance as it is associated with CIMP positivity, TP53 wild-type, hMLH1 methylation positivity, Microsatellite 
Instability (MSI), and CHD7/8 mutation positivity26. However, many of the conclusions of such studies have 
been limited by methodological issues such as heterogeneity in sampling protocols and relatively small numbers 
of patients. Perhaps most importantly, there is often a lack of adequate clinical phenotyping data, and a false 
assumption that all colon cancers are homogeneous. The current study has therefore attempted to address some 
of the major confounders in translational microbiome research, including our uniform sampling of tumours 
without the use of bowel preparation. In preference to the faecal microbiota, we have targeted the CRC mucosal 
microbiome to provide a focussed analysis of histological prognostic factors that inform current clinical practice 
as part of a prospective clinical study.

Under these conditions, we have replicated key findings from other studies, including that the bacterium F. 
nucelatum is over represented on colorectal tumours. However, a major conclusion of our work is that mucosal 
populations are dynamic with advancing cancer stage, and that the CRC microbiome story is therefore more 
complex than the over representation of a small number of organisms. There was no significant variation in 
the microbiome ecology of normal associated mucosa over relatively short distances from the primary tumour 
site. This finding is in keeping with recent data from a larger cohort of patients27 and suggests that dysbiosis in 
colorectal cancer may pervade the whole colon. Inter-individual variation is marked and based on this analysis, 
true ‘healthy’ mucosa should be biopsied from consistent geographically discrete regions from non CRC-bearing 
individuals to provide a more representative ‘control’ sample of normal colonic ecology.

The data pesented here have also demonstrated more evidence in concordance with the colorectal cancer 
driver passenger theory7. Cancers of a poor prognostic phenotype were more likely to have over-representation 
of Lachnospiracea intertie sedis, Streptococcus, Prevotella and paraprevotella, (Table 2, Fig. 2). Individuals who 
demonstrated ecological similiarity between on and off cancer sites were more likely to have earlier cancers or 
tumours with better prognostic features.

Figure 5.  Metabolic network map of mucosal metabolites statistically over and under-represented in colon 
cancer and normal associated mucosa (NAM) as detected by 1H NMR-MAS regressed against the 16s rDNA 
OTU data. The spp. in green are microbiota over-represented in the NAM and those in red are over-represented 
in cancer. Shewanella spp. was the only bacteria class represented in both models.
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Despite the dominance of inter-individual variation of microbiomes, using multivariate statistical models it 
was possible to define clear associations between the 16 s rRNA gene OTU data and tumour stage (T and N stage) 
(Fig. 3). Moreover, it was possible to define associations with established histopathological biomarkers of poor 
prognosis. Univariate interpretation of the data sets only demonstrated a small number of statistically meaningful 
associations with bacterial classes, with over-representation of Bacteroides spp., Aggregatibacter spp., Streptoccocus 
spp., Clostridium XI, Solobacterium spp. and F. nucleatum spp. associated with poor prognostic features. These 
associations do not imply a causative link, but in the context of the cancer stage data, they suggest that the advanc-
ing CRC microbiome contains over-represented ‘passenger’ elements (described previously) which may have 
clinical relevance and utility.

The structure of the CRC microbiome is increasingly well-defined, but its function in this context is less well 
understood. It is highly likely that the combined metabolic function of the mucosal network of bacteria plays a 
critical role in defining its impact on cancer initiation and progression3. Indeed a recent study of human fecal 
samples demonstrated strong microbe-metabolite correlations in CRC patients28. However, this metabolic func-
tion requires greater elucidation. We have previously demonstrated that the mucosal metabonome has a high 
diagnostic sensitivity and specificity between ‘on’ and ‘off ’ cancer samples20, 21, which is defined by disruption 
to lipid metabolism. The diagnostic accuracy of MAS-NMR spectroscopy for CRC was replicated in the current 
analysis (Fig. 4), and subtle metabolic changes driven by microbial co-metabolism are integral to the model’s 
strength. We were able to correlate this metabolic data with 16 s rRNA gene sequencing to assess if the microbiota 
influences metabolic pathways on and off cancer. We have shown that the metabonome-microbiome metabolic 
network varies considerably between on and off tumour sites. This is only a statistical association, but it suggests 
that the mucosal microbiome has an important part to play in the maintenance of the cancer metabolic environ-
ment. Interestingly, the microbiota associated with histological features of poor prognosis were not associated 
with the metabolites which featured in the network analysis. This finding may imply that such classes of bacteria 
exert pathological influence via other molecular pathways, or that these are ‘passenger’ microbiota that reside on 
the mucosa of colorectal cancers and have a metabolic function that does not relate to tumour progression. The 
proteobacteria OTUs represented a statistically significant node on the network map, correlating with lipid, phos-
phocholine and taurine metabolism, which are strong metabolic biomarkers for cancer. Only the Shewanella spp 
demonstrated commonality between on and off tumour positions. These are marine bacteria, which have been 
shown to possess enzyme functions reminiscent of eukaryotic pepsin homologues29.

Abnormal choline metabolism is emerging as a metabolic hallmark associated with oncogenesis and tumour 
progression. We have previously identified choline as a biomarker of colon cancer risk in susceptible individuals 
associated with altered microbiome metabolism3. Microbiome modulated metabolism of choline is also closely 
associated with cardiovascular disease30. Phosphocholine is both a precursor and a breakdown product of phos-
phatidylcholine, which, together with other phospholipids such as phosphatidylethanolamine and neutral lipids, 
forms the characteristic bilayer structure of cellular membranes and regulates membrane integrity. It is not clear 
whether altered choline metabolism, and secondary choline metabolites, influence microbiome abundance in 
CRC, or vice versa. The small number of patients with early cancer in this study means that subgroup analysis 
was not possible. Nevertheless, this work provides further evidence that microbiome modulation of the choline 
metabolic pathway is an important influence on the cancer metabolic niche.

There are some obvious limitations with this work. Firstly, the sample size is small, particularly for patients 
with specific molecular features such as KRAS mutation. 16 S rRNA gene analysis does not permit strain level 
assignment of bacteria and as a result, it is not possible to investigate the specific metabolic functions of target 
strains. In this study we applied a non-targeted 1H HR-MAS NMR approach to the metabolic analysis, so we 
have not been able to report on certain established metabolites known to have important pro or anti-neoplastic 
effects (e.g. bile acids and short chain fatty acids). We also acknowledge that linking metabolic data such as these 
to taxanomic data is statistically challenging using clinical sample sets. But despite these limitations, the present 
work has identified novel bacterial classes associated with adverse histopathological features in CRC and it has 
provided more data to support the ‘driver - passenger model’ as an important mechanism in the aetiology and 
progression of colon cancer. Moreover, ours is the first study to use 1 H MAS-NMR data linked to a robustly 
sampled 16 S rRNA data set from well phenotyped patients and it provides a basis for the metabolic function of 
commensal bacteria at the level of the mucosa in cancer.

In conclusion, the cancer mucosal microbiome is individualized, and evolves with cancer stage to meet the 
demands of cancer metabolism. In addition to normal associated mucosa from CRC patients, which may not be 
representative of a healthy gut microbiome, future studies should also use control samples from non CRC-bearing 
individuals. It remains to be proven that ‘driver’ species of the mucosal microbiota modulate cancer initiation, but 
this study suggests that ‘passenger’ bacteria in the evolving CRC microbiota may play a role in the maintenance of 
tumoral metabolic homeostasis and could serve as useful clinical biomarkers.

Methods
Patient recruitment and sampling.  Between November 2011 and September 2012 tissue specimens 
and related clinico-pathological data were collected with informed written consent from 18 patients undergoing 
planned surgical resection for right sided colorectal cancer, at a single cancer referral center (St Mary’s Hospital 
(London, UK)). Inclusion criteria were: patients with histologically confirmed invasive malignancy or high-grade 
dysplasia of the colon, having either open or laparoscopic surgery without the use of bowel preparation. Exclusion 
criteria were: patients undergoing emergency surgery, patients treated with neoadjuvant chemotherapy and/or 
radiotherapy, patients who had been on antibiotics or probiotic therapies within the previous six weeks and 
patients with rectal cancers (defined here as tumours lying within 15 cm of the anal verge). Patients with a history 
of Familial Adenomatous Polyposis (FAP) were also excluded as were patients with inflammatory bowel dis-
ease or those who had undergone previous colorectal surgery. At induction, patients had an intravenous dose of 
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cefuroxime and metronidazole as per standard local hospital protocol. At surgery, fresh tissue samples were har-
vested from the tumour centre and at 5 cm and 10 cm away from the tumour. Tissue harvesting was performed in 
the pathology department by a single gastrointestinal histopathologist (RDG) and acquired samples were imme-
diately transferred to a freezer at −80 °C.

DNA Extraction and profiling of 16 S rRNA genes.  Total DNA was extracted from biopsies using 
MO BIO’s powersoil DNA isolation kit. The V1-V3 regions of the 16 S rRNA genes were amplified (28 F 
5’-GAGTTTGATCNTGGCTCAG and 519 R 5’-GTNTTACNGCGGCKGCTG) and sequenced on a Roche 454 
platform by Research and Testing Laboratory (Austin, Texas, USA). The sequences were processed using Mothur 
to remove low quality sequences and chimeras31, 32. All samples were normalized to the lowest number of reads 
using the subsample command in Mothur and alpha and beta diversity indices were calculated. All other statisti-
cal analysis and multi-variate analysis of the 16 S rRNA profiles was performed in R.

qPCR to enumerate Fusobacterium nucleatum in extracted DNA.  Biopsy colonisation by 
Fusobacterium nucleatum was assessed by qPCR of the 16 S rRNA genes in the DNA extracts normalised to 
sample total generic pan bacterial 16 S rRNA copies, expressed as the difference in respective qPCR threshold 
emergence cycle time (Ct) of generic and specific Fusobacterium nucleatum. Ct is inversely proportional to copy 
number so the smaller the difference the greater the relative quantity of specific Fusobacterium nucleatum DNA 
and hence the degree of biopsy colonisation.

Fu s ob a c te r ium  nu c l e atum  pr i m e r s  w e re  5 2 7  F  G G AT T TAT T G G G C G TA A AG C  a n d 
689 R GGCATTCCTACAAATATCTACGAA16.  Pan bacterial  16 S qPCR primers were 343 F 
TCCTACGGGAGGCAGCAGT and 809 R GGACTACCAGGGTATCTAATCCTGTT. The qPCR used Maxima 
Mastermix SYBR green (Thermo-Fisher) with lots pre-screened for minimal endogenous bacterial 16 S DNA 
background sufficient to permit 30 PCR cycles. Cycling details: 95 °C 10 minutes, then 30 cycles of 95 °C 15 sec-
onds and 60 °C 60 seconds. Melt curve analysis was used to determine amplicon fidelity.

MAS NMR sample preparation.  Tissue samples were kept on ice at all times during the preparation pro-
cess to minimize metabolite degradation. Where tissue volume permitted, 2 replicates were prepared for High 
Resolution – Magic Angle Spinning (HR-MAS) Nuclear Magnetic Resonance (NMR) analysis from each orig-
inal tissue sample, to compensate for anticipated tissue heterogeneity. Sampling was performed using a dispos-
able punch biopsy device, after which 12–15 mg of tissue was packed into disposable 30 µL Teflon NMR inserts. 
Deuterated water (D2O) was next added to the insert to complete required volume and homogenize insert con-
tents. Inserts were introduced into zirconium oxide rotors for analysis. The spectroscopic profiling approach 
employed in the present study has been previously described by our group21. In summary, 1-dimensional 1H 
Carr-Purcell-Meiboom-Gill (CPMG) spectra were acquired using a Bruker Avance III 400-MHz spectrometer 
equipped with magic angle spinning probe (Bruker BioSpin GmbH, Rheinstetten, Germany). A water suppres-
sion pulse was applied during experimentation to minimize the water signal. Acquired spectra were processed 
using Bruker software packages (TopSpin v.2.2 and Amix v.3.9.9), and the methyl signal of alanine was used for 
spectral calibration (1.47 ppm). Spectral metabolite identification and chemical assignment were performed on 
the basis of the literature21, 33, 34 and using statistical total correlation spectroscopy approaches for data-driven 
structural assignment35, 36.

Statistical analysis.  Phased and baseline corrected CPMG spectra were converted into statistical matrices 
using in-house tools developed in MATLAB (v.7.12.0.635; The MathWorks, Inc., Natick, MA, USA). The matrix 
contained information from the region −1 to 10 ppm, and the resolution used was 0.00055 ppm21. Spectral peaks 
corresponding to water (4.50–5.19 ppm), ethanol (1.10–1.20, 3.60–3.90 ppm), and polyethylene glycol (3.70–3.75 
ppm) signals were excluded from the analysis because these chemical regions do not provide biologically relevant 
information. Spectral pre-processing involved probabilistic quotient normalization and unit variance scaling. 
Processed data were subjected to both univariate and multivariate analyses. For univariate analysis, we used anal-
ysis of variance to identify the statistical significance (reported as P values) of the discriminatory capacity of indi-
vidual metabolic features. Ecological analysis was performed using the Tau (for similarity) and Shannon indices 
(for community diversity). Data were normalized to the on tumour value for each individual. Community cluster-
ing was assessed using the Bray-Curtis distances of the genus-level OTU reads, using the Ward linkage algorithm.

For multivariate analysis, we used unsupervised principal component analysis (PCA) and supervised orthog-
onal partial least squares–discriminant analysis (OPLS-DA) using in-house developed scripts operating in a 
MATLAB environment. For each generated OPLS model cross-validated Q2 values were obtained before model 
robustness was further assessed by calculating the area under the curve (AUC) from corresponding receiver oper-
ating characteristic (ROC) curves37. Where OPLS score scatter plots revealed separation between classes, loadings 
plots were generated and assessed to identify the metabolites most responsible for discrimination. Additionally, 
correlation-driven network analysis was used to construct dependencies between metabolites in tumor and 
healthy mucosal tissues. The correlation coefficients between metabolites were calculated via non-parametric 
Spearman metrics. The spring embedding algorithm was used to calculate the optimum layouts of metabolite 
correlation networks38.

Ethics approval and consent to participate:.  This study was granted full ethical approval by the insti-
tutionalreview board at Imperial College Healthcare NHS Trust (REC reference number 07/H0712/112). All 
experiments were carried out in accordance with relevant guidelines and regulations.

Availability of data and material:.  The 16 S rRNA gene sequences supporting the results of this article is 
available at the EBI’s ENA short read archive under number PRJEB13249.



www.nature.com/scientificreports/

1 0SCIentIFIC ReportS | 7: 8979  | DOI:10.1038/s41598-017-08150-3

References
	 1.	 Cunningham, D. et al. Colorectal cancer. Lancet 375, 1030–1047, doi:10.1016/S0140-6736(10)60353-4 (2010).
	 2.	 Norat, T., Aune, D., Chan, D. & Romaguera, D. Fruits and vegetables: updating the epidemiologic evidence for the WCRF/AICR 

lifestyle recommendations for cancer prevention. Cancer treatment and research 159, 35–50, doi:10.1007/978-3-642-38007-5_3 
(2014).

	 3.	 O’Keefe, S. J., Li, J. V. & Lahti, L. Fat, fibre and cancer risk in African Americans and rural Africans. 6, 6342, doi:10.1038/
ncomms7342 (2015).

	 4.	 Ou, J. et al. Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans. The American 
journal of clinical nutrition. doi:10.3945/ajcn.112.056689 (2013).

	 5.	 Hajishengallis, G., Darveau, R. P. & Curtis, M. A. The keystone-pathogen hypothesis. Nature reviews. Microbiology 10, 717–725, 
doi:10.1038/nrmicro2873 (2012).

	 6.	 Sears, C. L. & Pardoll, D. M. Perspective: alpha-bugs, their microbial partners, and the link to colon cancer. The Journal of infectious 
diseases 203, 306–311, doi:10.1093/jinfdis/jiq061 (2011).

	 7.	 Tjalsma, H., Boleij, A., Marchesi, J. R. & Dutilh, B. E. A bacterial driver-passenger model for colorectal cancer: beyond the usual 
suspects. Nature reviews. Microbiology 10, 575–582, doi:10.1038/nrmicro2819 (2012).

	 8.	 Castellarin, M. et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome research 22, 299–306, 
doi:10.1101/gr.126516.111 (2012).

	 9.	 Marchesi, J. R. et al. Towards the human colorectal cancer microbiome. PloS one 6, e20447, doi:10.1371/journal.pone.0020447 
(2011).

	10.	 Wu, N. et al. Dysbiosis signature of fecal microbiota in colorectal cancer patients. Microbial ecology 66, 462–470, doi:10.1007/
s00248-013-0245-9 (2013).

	11.	 Geng, J., Fan, H., Tang, X., Zhai, H. & Zhang, Z. Diversified pattern of the human colorectal cancer microbiome. Gut pathogens 5, 2, 
doi:10.1186/1757-4749-5-2 (2013).

	12.	 McCoy, A. N. et al. Fusobacterium is associated with colorectal adenomas. PloS one 8, e53653, doi:10.1371/journal.pone.0053653 
(2013).

	13.	 Sanapareddy, N. et al. Increased rectal microbial richness is associated with the presence of colorectal adenomas in humans. Isme J 
6, 1858–1868, doi:10.1038/ismej.2012.43 (2012).

	14.	 Shen, X. J. et al. Molecular characterization of mucosal adherent bacteria and associations with colorectal adenomas. Gut microbes 
1, 138–147, doi:10.4161/gmic.1.3.12360 (2010).

	15.	 Kostic, A. D. et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome research 22, 
292–298, doi:10.1101/gr.126573.111 (2012).

	16.	 Kostic, A. D. et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune 
microenvironment. Cell host & microbe 14, 207–215, doi:10.1016/j.chom.2013.07.007 (2013).

	17.	 Christl, S. U., Gibson, G. R. & Cummings, J. H. Role of dietary sulphate in the regulation of methanogenesis in the human large 
intestine. Gut 33, 1234–1238 (1992).

	18.	 O’Brien, C. L., Allison, G. E., Grimpen, F. & Pavli, P. Impact of colonoscopy bowel preparation on intestinal microbiota. PloS one 8, 
e62815, doi:10.1371/journal.pone.0062815 (2013).

	19.	 Veselkov, K. A. et al. Chemo-informatic strategy for imaging mass spectrometry-based hyperspectral profiling of lipid signatures in 
colorectal cancer. Proceedings of the National Academy of Sciences of the United States of America 111, 1216–1221, doi:10.1073/
pnas.1310524111 (2014).

	20.	 Mirnezami, R. et al. Chemical mapping of the colorectal cancer microenvironment via MALDI imaging mass spectrometry 
(MALDI-MSI) reveals novel cancer-associated field effects. Molecular oncology 8, 39–49, doi:10.1016/j.molonc.2013.08.010 (2014).

	21.	 Jimenez, B. et al. 1H HR-MAS NMR spectroscopy of tumor-induced local metabolic “field-effects” enables colorectal cancer staging 
and prognostication. Journal of proteome research 12, 959–968, doi:10.1021/pr3010106 (2013).

	22.	 Chen, L. et al. Characteristics of fecal and mucosa-associated microbiota in Chinese patients with inflammatory bowel disease. 
Medicine (Baltimore) 93, e51, doi:10.1097/MD.0000000000000051 (2014).

	23.	 Prorok-Hamon, M. et al. Colonic mucosa-associated diffusely adherent afaC + Escherichia coli expressing lpfA and pks are 
increased in inflammatory bowel disease and colon cancer. Gut. doi:10.1136/gutjnl-2013-304739 (2013).

	24.	 Tyrer, P. C., Frizelle, F. A. & Keenan, J. I. Escherichia coli-derived outer membrane vesicles are genotoxic to human enterocyte-like 
cells. Infectious agents and cancer 9, 2, doi:10.1186/1750-9378-9-2 (2014).

	25.	 Castellarin, M. et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res 22, 299–306, 
doi:10.1101/gr.126516.111 (2012).

	26.	 Tahara, T. et al. Fusobacterium in colonic flora and molecular features of colorectal carcinoma. Cancer research 74, 1311–1318, 
doi:10.1158/0008-5472.can-13-1865 (2014).

	27.	 Flemer, B. et al. Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut, doi:10.1136/
gutjnl-2015-309595 (2016).

	28.	 Sinha, R. et al. Fecal Microbiota, Fecal Metabolome, and Colorectal Cancer Interrelations. PloS one 11, e0152126, doi:10.1371/
journal.pone.0152126 (2016).

	29.	 Leal, A. R. et al. Enzymatic properties, evidence for in vivo expression, and intracellular localization of shewasin D, the pepsin 
homolog from Shewanella denitrificans. Sci Rep 6, 23869, doi:10.1038/srep23869 (2016).

	30.	 Koeth, R. A. et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nature medicine 
19, 576–585, doi:10.1038/nm.3145 (2013).

	31.	 Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and 
comparing microbial communities. Applied and environmental microbiology 75, 7537–7541, doi:10.1128/aem.01541-09 (2009).

	32.	 Schloss, P. D., Gevers, D. & Westcott, S. L. Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based 
studies. PloS one 6, e27310, doi:10.1371/journal.pone.0027310 (2011).

	33.	 Chan, E. C. et al. Metabolic profiling of human colorectal cancer using high-resolution magic angle spinning nuclear magnetic 
resonance (HR-MAS NMR) spectroscopy and gas chromatography mass spectrometry (GC/MS). Journal of proteome research 8, 
352–361, doi:10.1021/pr8006232 (2009).

	34.	 Wang, Y. et al. Topographical variation in metabolic signatures of human gastrointestinal biopsies revealed by high-resolution 
magic-angle spinning 1H NMR spectroscopy. Journal of proteome research 6, 3944–3951, doi:10.1021/pr0702565 (2007).

	35.	 Cloarec, O. et al. Statistical total correlation spectroscopy: an exploratory approach for latent biomarker identification from 
metabolic 1H NMR data sets. Analytical chemistry 77, 1282–1289, doi:10.1021/ac048630x (2005).

	36.	 Cloarec, O. et al. Evaluation of the orthogonal projection on latent structure model limitations caused by chemical shift variability 
and improved visualization of biomarker changes in 1H NMR spectroscopic metabonomic studies. Analytical chemistry 77, 
517–526, doi:10.1021/ac048803i (2005).

	37.	 Westerhuis, J. A., van Velzen, E. J., Hoefsloot, H. C. & Smilde, A. K. Multivariate paired data analysis: multilevel PLSDA versus 
OPLSDA. Metabolomics: Official journal of the Metabolomic Society 6, 119–128, doi:10.1007/s11306-009-0185-z (2010).

	38.	 Fruchterman, T. & Reingold, E. Graph drawing by force-directed placement. Softw. Exp. Pract. 21, 1129–1164 (1991).

http://dx.doi.org/10.1016/S0140-6736(10)60353-4
http://dx.doi.org/10.1007/978-3-642-38007-5_3
http://dx.doi.org/10.1038/ncomms7342
http://dx.doi.org/10.1038/ncomms7342
http://dx.doi.org/10.3945/ajcn.112.056689
http://dx.doi.org/10.1038/nrmicro2873
http://dx.doi.org/10.1093/jinfdis/jiq061
http://dx.doi.org/10.1038/nrmicro2819
http://dx.doi.org/10.1101/gr.126516.111
http://dx.doi.org/10.1371/journal.pone.0020447
http://dx.doi.org/10.1007/s00248-013-0245-9
http://dx.doi.org/10.1007/s00248-013-0245-9
http://dx.doi.org/10.1186/1757-4749-5-2
http://dx.doi.org/10.1371/journal.pone.0053653
http://dx.doi.org/10.1038/ismej.2012.43
http://dx.doi.org/10.4161/gmic.1.3.12360
http://dx.doi.org/10.1101/gr.126573.111
http://dx.doi.org/10.1016/j.chom.2013.07.007
http://dx.doi.org/10.1371/journal.pone.0062815
http://dx.doi.org/10.1073/pnas.1310524111
http://dx.doi.org/10.1073/pnas.1310524111
http://dx.doi.org/10.1016/j.molonc.2013.08.010
http://dx.doi.org/10.1021/pr3010106
http://dx.doi.org/10.1097/MD.0000000000000051
http://dx.doi.org/10.1136/gutjnl-2013-304739
http://dx.doi.org/10.1186/1750-9378-9-2
http://dx.doi.org/10.1101/gr.126516.111
http://dx.doi.org/10.1158/0008-5472.can-13-1865
http://dx.doi.org/10.1136/gutjnl-2015-309595
http://dx.doi.org/10.1136/gutjnl-2015-309595
http://dx.doi.org/10.1371/journal.pone.0152126
http://dx.doi.org/10.1371/journal.pone.0152126
http://dx.doi.org/10.1038/srep23869
http://dx.doi.org/10.1038/nm.3145
http://dx.doi.org/10.1128/aem.01541-09
http://dx.doi.org/10.1371/journal.pone.0027310
http://dx.doi.org/10.1021/pr8006232
http://dx.doi.org/10.1021/pr0702565
http://dx.doi.org/10.1021/ac048630x
http://dx.doi.org/10.1021/ac048803i
http://dx.doi.org/10.1007/s11306-009-0185-z


www.nature.com/scientificreports/

1 1SCIentIFIC ReportS | 7: 8979  | DOI:10.1038/s41598-017-08150-3

Acknowledgements
This work was funded by Bowel Cancer Research and the Imperial College Biomedical Research Council. The 
authors would like to acknowledge the Imperial Clinical Phenome Centre for the support provided in this 
analysis.

Author Contributions
J.K. conceived the study and was responsible for writing the manuscript. A.D. was responsible for patient 
recruitment and R.M. performed the MAS NMR analysis. J.A. performed the 16S rRNA sampling and helped 
write the manuscript. R.B. performed the qPCR experiments. K.V. was responsible for the bioinformatics. A.S. 
and D.G. performed the network analysis R.G. was responsible for the histopathological analysis. J.M. performed 
the analysis of the 16S rRNA data set. J.N. provided strategic oversight and peformed the data analysis.

Additional Information
Supplementary information accompanies this paper at doi:10.1038/s41598-017-08150-3
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://dx.doi.org/10.1038/s41598-017-08150-3
http://creativecommons.org/licenses/by/4.0/

	A prospective analysis of mucosal microbiome-metabonome interactions in colorectal cancer using a combined MAS 1HNMR and me ...
	Results

	Patient Demographics. 
	Metataxonomy data. 
	1NMR and metabolic network analysis. 

	Discussion

	Methods

	Patient recruitment and sampling. 
	DNA Extraction and profiling of 16 S rRNA genes. 
	qPCR to enumerate Fusobacterium nucleatum in extracted DNA. 
	MAS NMR sample preparation. 
	Statistical analysis. 
	Ethics approval and consent to participate:. 
	Availability of data and material:. 

	Acknowledgements

	Figure 1 (a) Boxplots of the ecological Indices for the tumour (CT, n = 18), 5 cm off the tumour (five, n = 18) and 10 cm off the tumour (ten, n = 18).
	Figure 2 (A) Heatmap and (B) Clustering dendrogram (Bray-Curtis and Ward linkage) for genus-level OTU data.
	Figure 3 (a–h) Partial Least Squares-discriminant analysis scores plots of OTU data for important prognostic features identified by histopathological and molecular analysis.
	Figure 4 High Resolution – Magic Angle Spinning (HR-MAS) Nuclear Magnetic Resonance (NMR) analysis of mucosal metabolism using orthogonal partial least squares discriminant analysis.
	Figure 5 Metabolic network map of mucosal metabolites statistically over and under-represented in colon cancer and normal associated mucosa (NAM) as detected by 1H NMR-MAS regressed against the 16s rDNA OTU data.
	Table 1 Patient demographic and pathological data.
	Table 2 Summary data of bacteria statistically over- or under-expressed in tumour samples and their statistical association with established histological biomarkers of poor prognosis.
	Table 3 Summary of significant metabolites, their observed trends in terms of abundance (↑, ↓, ↔) with corresponding p-values, their chemical formulae and chemical shift assignments.




