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Schizophrenia (SZ) is a functional mental disorder that seriously affects the social

life of patients. Therefore, accurate diagnosis of SZ has raised extensive attention

of researchers. At present, study of brain network based on resting-state functional

magnetic resonance imaging (rs-fMRI) has provided promising results for SZ identification

by studying functional network alteration. However, previous studies based on brain

network analysis are not very effective for SZ identification. Therefore, we propose an

improved SZ identification method using multi-view graph measures of functional brain

networks. Firstly, we construct an individual functional connectivity network based on

Brainnetome atlas for each subject. Then, multi-view graph measures are calculated by

the brain network analysis method as feature representations. Next, in order to consider

the relationships between measures within the same brain region in feature selection,

multi-view measures are grouped according to the corresponding regions and Sparse

Group Lasso is applied to identify discriminative features based on this feature grouping

structure. Finally, a support vector machine (SVM) classifier is employed to perform SZ

identification task. To evaluate our proposed method, computational experiments are

conducted on 145 subjects (71 schizophrenic patients and 74 healthy controls) using

a leave-one-out cross-validation (LOOCV) scheme. The results show that our proposed

method can obtain an accuracy of 93.10% for SZ identification. By comparison, our

method is more effective for SZ identification than some existing methods.

Keywords: Schizophrenia identification, fMRI, functional brain networks, multi-view graph measures, SVM

1. INTRODUCTION

Schizophrenia (SZ) is a functional mental disorder which caused by genetic factors and
environmental effects. Patients with SZ (SZs) share some common symptoms which include
depression, hallucinations, cognitive dysfunction and disorganized thinking (Marín, 2012).
Impairments of this disorder cover multiple cognitive areas, including memory (He et al., 2012),
attention and executive function (Heinrichs and Zakzanis, 1998). One percent of the population is
affected by the serious psychiatric disease worldwide (Ripke et al., 2013). The clinical diagnosis of SZ
relies mainly on mental state examination rather than any biomarker (Arbabshirani et al., 2013; Liu
et al., 2017d) since the cause and mechanism of the disease are not clearly revealed. However, this
diagnosis method is usually subjective and not completely effective. Therefore, it is urgent to find an
objective method to realize the automatic diagnosis of SZ and improve the accuracy of recognition.
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Nowadays, Magnetic resonance imaging technology has been
widely used in various studies related to brain disease diagnosis
(Nieuwenhuis et al., 2012; Liu et al., 2016, 2017b,c, 2018a; Yang
and Wang, 2018). Since SZ is reported to be a functional disease,
functional magnetic resonance imaging (fMRI) is increasingly
used to study brain dysfunction in patients with mental illness
(Castro et al., 2011; Huang et al., 2018; Liu et al., 2018b; Moghimi
et al., 2018; Chen et al., 2019). In addition, fMRI provides a
database for functional analysis of these brain diseases owing to
it’s massive spatial and temporal information.

In recent years, the number of neurobiological literatures
using fMRI to study SZ disease has increased significantly. fMRI
is usually applied to discover anomalous patterns present in
activationmaps [i.e., Regional Homogeneity (REHO), Amplitude
of Low Frequency Fluctuations (ALFF), fractional Amplitude of
Low Frequency Fluctuations (FALFF)] (Guo et al., 2014; Chyzhyk
et al., 2015; Huang et al., 2018) of SZ. These activation maps
are widely used as potential clinical biomarkers for the diagnosis
of SZ. For example, Huang et al. (2018) used tree-guided group
sparse learning method to perform feature selection on fALFF
data in multi-frequency bands, and then used multi-kernel
learning (MKL) method to achieve an accuracy of 91.10% on
34 subjects. Chyzhyk et al. (2015) combined these activation
maps by using extreme learning machines and successfully
distinguished SZs from healthy controls (HCs). However, these
methods focus on the voxel-wise information in these maps
rather than the connectivity between regions of interest (ROIs).

Functional connectivity has been reported to analyze the
differences in the functional organization of brain networks
between patients and HCs (Lynall et al., 2010; Pettersson-Yeo
et al., 2011). Functional connectivity networks are usually derived
from fMRI data (Van Den Heuvel and Pol, 2010; Craddock
et al., 2013). Nodes of a functional brain network could be the
voxels of fMRI data, ROIs defined by brain atlas or the discrete
regions with similar size by randomly parcellating the brain
(Fornito et al., 2013). Links of a functional brain network could
be determined by the correlations estimated from time courses
between pairs of nodes (Liu et al., 2017a). For example, Yu et al.
(2015) created functional brain network using group ICA and
Pearson correlation coefficient, and they found the new evidence
about altered dynamic brain graphs in SZ. Abraham et al. (2017)
investigated the most predictive biomarkers for Autism spectrum
disorders (ASD) by building participant-specific connectomes
from functionally-defined brain areas. For these methods, the
connections between all pairs of nodes in a brain network
are employed as features, but the topological measures of
connectivity networks are not considered.

To quantitatively analyze functional brain networks, graph
theoretical analysis is employed for investigating the topological
organization of functional connectivity (Anderson and Cohen,
2013; Brier et al., 2014). The most commonly used graph
measures include betweenness centrality, degree, local efficiency,
participation coefficient, average clustering coefficient, average
path length, global efficiency, and small-worldness (Liu et al.,
2017a). These topological measures have been applied in the
brain disease classifications (Cheng et al., 2015; Khazaee et al.,
2015, 2017; Moghimi et al., 2018). For example, Moghimi et al.

(2018) calculated a set of 25 graph measures including global
and local measures for each subject and obtained a classification
accuracy of 80% with a double-cross validation scheme. Cheng
et al. (2015) achieved an accuracy of 79% by using betweenness
centrality measure in SZ identification, and they found that
changes in functional hubs were associated with SZ. Overall,
these methods using graph measures for SZ identification have
not achieved a good classification performance.

In this paper, we propose an improved method based on
multi-view graph measures to identify SZs from HCs. Functional
brain networks are constructed based on fMRI scans. Nodes of
functional brain network are brain regions parcellated with the
Brainnetome atlas (Fan et al., 2016), and edges of functional brain
networks are determined by Pearson’s correlation coefficients.
Five local graph measures are calculated from functional brain
networks by graph theoretical approach as features. The five local
graph measures include betweenness centrality, nodal clustering
coefficient, local efficiency, degree and participation coefficient.
In order to consider the relationship of features within the
same region, firstly we need to group graph measures according
to brain regions defined by Brainnetome atlas. Then Sparse
Group Lasso feature selection method is employed to select the
most important regions as well as discriminative features within
the selected regions. Finally, support vector machine (SVM) is
trained for SZ identification. Our experiments are conducted
on 145 samples with fMRI data, including 74 HCs and 71 SZs.
Our proposed method achieves a mean classification accuracy
of 93.10% using a leave-one-out cross-validation (LOOCV)
scheme. The overall framework of our proposed method is
shown in Figure 1, which consists of four main components
include image preprocessing, feature representation, feature
selection, and classification with SVM classifier. The code for
this classification framework is available for download at https://
github.com/xyzxzj/SZClassification.

2. MATERIALS AND METHODS

2.1. Subject Description and Image
Preprocessing
The data involved in this study is collected by the Center
for Biomedical Research Excellence (COBRE). COBRE1 dataset
consists of 148 subjects with functional and anatomicalMRI data.
74HCs and 71 SZs of the dataset are employed for our subsequent
experiments owing to the class labels of the other three subjects
are not given. During the scan, all participants are asked to
remain relaxed and keep their eyes open. A brief summary of
demographic information of subjects is listed in Table 1.

All of the fMRI images are preprocessed by using Data
Processing & Analysis for Brain Imaging (DPABI) (Yan et al.,
2016). The preprocessing procedure is as follows: the first 10
volumes of functional runs are removed owing to the fMRI
signal instability. Then, the rest volumes are performed slice time
correction, head-motion correction, and co-registration of T1-
weighted MRI images and fMRI images. After that, the fMRI
images are normalized to Montreal Neurological Institute (MNI)

1http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html
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FIGURE 1 | The overall framework of our proposed method using multi-view

graph measures of functional brain network for SZ/HC classification.

space and resampled to 3 × 3 × 3mm3 voxels. Smooth (4-mm
FWHM) and band-pass filter (0.01–0.1Hz) are applied to the
images which are transformed to MNI space.

In order to construct time series matrices for all subjects, first
all brain images are parcellated into 246 regions by registering
images to the Brainnetome atlas after fMRI data preprocessing.
Then we extract the averaged time series for each of 246 brain
regions for each subject. The time series of each brain region
is derived from averaging fMRI signals of all voxels within the
region. Finally, a time series matrix consists of 246 regional
time series.

2.2. Feature Representation
2.2.1. Brain Network Construction
A network is composed of a collection of nodes and links. It
can be described as a graph G = (V, E), where V denotes

TABLE 1 | Demographic information of 145 subjects from COBRE dataset.

Type Number Age Gender (M/F)

SZ 71 38.1 ± 13.9 57/14

HC 74 35.8 ± 11.5 51/23

the set of nodes and E is the set of links. There are four types
of network topology, including weighted undirected, weighted
directed, binary undirected and binary directed. In this study, the
functional connectivity network is represented by an weighted
undirected graph. The nodes in functional connectivity network
usually are defined by brain regions, and links can represent
temporal correlation in activity between pairs of nodes. Given
a time series matrix, we can construct a functional connectivity
network by calculating Pearson correlation coefficients (Pedersen
et al., 2018) between signals of all pairs of regions. The generated
functional brain network has 246 × (246 − 1)/2 = 30, 315
weighted edges under the condition of 246 brain regions and
the strength of each edge is the Pearson correlation coefficient
between a pair of connected nodes.

2.2.2. Brain Network Analysis
A great deal of functional connections in the network may lead
to feature redundancy. A threshold t is employed in the dense
network to keep a certain proportion of edges with the highest
correlation. Graph-theoretic measures can quantify topological
organization of network. Thus, we can extract some measures
which can characterize the global or local functional connectivity
from the threshold network. We compute 5 local graph measures
using brain network analysis as feature representations, including
degree, betweenness centrality, nodal clustering coefficient, local
efficiency, and participation coefficient.

Degree is the most fundamental and important measure to
characterize the centrality of nodes. In general, nodes with a
higher degree are more important in networks. Betweenness
centrality can also reflect the centrality of nodes. The betweenness
centrality of a brain region can measure its ability on
information transmission. Nodal clustering coefficient represents
the possibility that any two neighbors of a given node are also
neighbors of each other. It measures the ability of the node on
functional segregation. Local efficiency measures the efficiency of
a subnetwork formed by a given node and all its direct neighbors
to transfer information. Local efficiency is related to the shortest
path length of the node, the shorter the shortest path length, the
greater the local efficiency of the node, the faster the information
transmission in the subnetwork. Participation coefficient of a
node measures its diversity of intermodular interconnections.
The nodes with low participation coefficient but high degree in
the module are regarded as provincial hubs, it indicates that
the hubs are likely to have a great impact on the modular
segregation. These five local measures play an important role
in information exchange of functional networks. They can be
calculated as follow:

K(i) =
∑

j∈N

aij (1)
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B(i) =
1

(N − 1)(N − 1)

∑

m 6= j 6= i

nmj(i)

nmj
(2)

C(i) =
2swi

(Ki(Ki − 1))
(3)

Eloc(i) =
1

NGi (NGi − 1)

∑

j 6=h6=Gi

1

ljh
(4)

PC(i) = 1−
∑

m∈M

(
ki(m)

ki
)
2

(5)

where K(i), B(i), C(i), Eloc(i), and PC(i) are the degree,
betweenness centrality, clustering coefficient, local efficiency, and
participation coefficient of node i, respectively. N is the number
of nodes in a network, aij = 1 if node i and node j are connected,
aij = 0 otherwise; nmj(i) is the number of shortest paths between
m and j that pass through node i, and nmj is the number of
shortest paths between m and j; swi is the sum of the weights of
all the connected edges between the neighbors of node i; Gi is
the subnetwork that contains node i and its all direct neighbors,
NGi is the number of nodes in the subnetwork Gi, ljh is the length
of shortest path between node j and node h in the subgraph; M
denotes the set of modules, ki is determined as the number of
links between i and the nodes within modulem.

In this study, we adopt the Brain Connectivity Toolbox
(http://www.brain-connectivity-toolbox.net) (Rubinov and
Sporns, 2010) to calculate these five local graph measures.
For each local graph measure (gm), we compute 246 values
corresponding to the 246 brain regions. Therefore, the dimension
of the final feature vector for each subject is 1,230.

2.3. Feature Selection
The raw feature matrices have high dimension, multiple
redundancy and multi-noise characteristics. Thus, applying a
suitable feature selection algorithm to identify features related
to SZ/HC identification and remove unnecessary information
appears especially important. Least absolute shrinkage and
selection operator (Lasso) (Chan et al., 2015) is widely used in
various areas due to the very low data requirements. In addition,
lasso can filter variables and reduce the complexity of the model.
It aims to select the most important features from dense data
matrix by using l1 norm constraint. The optimization problem
can be formulated as follow:

min
α

||y− Xα||2 + λ1||α||1 (6)

where X denotes an n × p feature matrix, and n is the number
of subjects, p represents the dimension of a feature vector. y
is defined as a class label, α is a coefficient vector, and λ1 is a
regularization parameter.

Graph measures within the same region usually have a certain
correlation. However, Lasso has not consider the relationship
between graph measures derived in the same brain region. Hence
we use the priori information of brain regions to group measures
and then perform feature selection based on this feature grouping
structure. Group Lasso (GLasso) (Yuan and Lin, 2006), a group
variable selection method, is the extension of Lasso. It can select

FIGURE 2 | The grouping structure: the nodes in the third layer represent local

graph measures and the blocks in the second layer represent brain regions;

Gj =
{

gmj_1, ..., gmj_5

}

is a group set which consists of 5 local graph

measures calculated for j_th region.

the most important groups by grouping all the variables and
penalizing the l2 norm of each group. The effect is that we can
eliminate the entire set of coefficients into zero at the same time
and then this set of features are excluded. The objective function
of GLasso is as follow:

min
α

||y− Xα||2 + λ2

M
∑

j=1

wj||αGj ||2 (7)

where αGj denotes the set of coefficients of all features in the
group Gj, wj is a weight for group Gj.

Actually, there are also many redundant features in the
important groups selected by GLasso. It is necessary to perform
another feature selection to choose the most important features
from these selected groups. Sparse Group Lasso (SGLasso) (Liu
et al., 2009) is introduced to select the most significant groups as
well as the discriminative features within the selected groups by
adding l1 and l2 penalties. The objective function of the SGLasso
can be written as:

min
α

||y− Xα||2 + λ1||α||1 + λ2

M
∑

j=1

wj||αGj ||2 (8)

Before performing SGLasso, 1230-dimensional feature vector for
each subject is grouped as G =

{

G1, ...,Gj, ...,GM

}

according the
brain regions defined by Brainnetome atlas. M is the number
of groups. Gj =

{

gmj_1, gmj_2, gmj_3, gmj_4, gmj_5

}

is a group
consists of 5 local graph measures calculated for j_th region. The
grouping structure is shown in Figure 2. In addition, z-score
transformation is used to normalize the feature matrix before
feature selection. It is worth noting that, after feature selection,
those features are kept with corresponding regression coefficients
greater than the mean value of absolute values of all elements in
coefficient vectors.
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2.4. Classification
SVM (Chang and Lin, 2011) is widely applied in various fields
such as natural language processing, target detection, pattern
classification due to its good performance as a supervised
machine learning approach. The choice of SVM kernel functions
is critical to their performance. In this study, we choose the linear
kernel SVM (LSVM) to identify SZs from HCs. Linear kernel is
mainly used in linear separability cases, and the dimension of
the feature space and input space is the same. It performs good
classification in most linear separable problems owing to the less
parameters and fast calculation. The formulation of SVM model
and linear kernel function are as follows:

max
λ

− 1
2

N
∑

i=1

N
∑

j=1
λiλjyiyjK(xi, xj)+

N
∑

i=1
λi

s.t.
N
∑

i=1
λiyi = 0

0 ≤ λi ≤ C, i = 1, 2, ...,N

(9)

K(xi, xj) =< xi, xj > (10)

where λ is the Lagrange multiplier, N is the number of samples,
xi represents the feature vector of the i-th sample, and yi is the
label corresponding to xi, K(., .) denotes the kernel function, C is
determined as the soft margin parameter.

After feature selection, the optimal feature set X =

{x1, ..., xi, ..., xn} is used as the input to SVM classifier, i = 1,..., n.
Giving a test subject x, the trained SVMwill predict its label based
on a decision function P(x) as follows:

P(x) = sign(

N
∑

i=1

λiyiK(xi, x)) (11)

3. EXPERIMENTS AND RESULTS

3.1. Experiment Settings
In our study, the classification performance of our proposed
method is estimated by adopting LOOCV scheme. LOOCV
scheme is not affected by the random sample partitioning because
n samples are only divided into n subsets in a unique way,
each subset contains one sample. Each subset will be tested
as a test data in turn while remaining subjects as the training
data. In addition, we usually adopt the LIBSVM library (Chang
and Lin, 2011) to solve SVM classification. We further calculate
classification accuracy (ACC), sensitivity (SEN), specificity (SPE)
to measure the performance of the method. These three metrics
can be written as follows:

ACC =
TP + TN

TP + FP + FN + TN
(12)

SPE =
TN

TN + FP
(13)

SEN =
TP

TP + FN
(14)

where true positive (TP), true negative (TN), false negative (FN),
and false positive (FP) are defined as the number of correctly
classified SZs, HCs and misidentified SZs, HCs, respectively.

FIGURE 3 | Classification accuracies for SZ identification based on different

network thresholds.

In addition, the area under receiver operating characteristic
(ROC) curve (AUC) is also used to evaluate overall classification
performance of our method.

At the stage of feature representation, we set t =

[0.1, 0.12, ..., 0.48, 0.5] to represent a collection of threshold values
from 0.1 to 0.5 by the step of 0.02, and then calculate the 5 local
graph measures at these 21 thresholds. The two regularization
parameters for SGLasso are set as λ1 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
and λ2 = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0], which are
optimized with the grid search algorithm.

3.2. Identification Performance for SZ
We use LSVM to perform SZ/HC classification on the optimal
feature set obtained from feature selection of SGLasso at each
of 21 thresholds. The classification results corresponding to 21
thresholds are showed in Figure 3.

According to Figure 3, we can see that the best accuracy
(93.10%) is achieved at t = 0.30. Furthermore, the classification
accuracies at these 21 thresholds are all higher than 70%.
In addition, the number of selected features is 55 and SEN,
SPE, AUC values are 92.96%, 93.24%, 0.950, respectively. The
experimental results indicate that the feature combination of five
local measures extracted at t = 0.30 has a relatively strong
correlation with SZ identification.

4. DISCUSSION

4.1. Comparison With Different Feature
Selection Methods
In order to demonstrate the SGLasso method is more effective
than the common feature selection methods based on these five
local measures for SZ classification, we compare four feature
selection methods. The first one is t-test which is the one of the
most basic feature selection method and the most critical part
of this method is selecting features based on the p-value (i.e.,
0.05). The rest methods are Lasso, GLasso and Elastic Net (Enet).
These three methods are based on linear sparse models. GLasso
and Enet are the extension of Lasso. GLasso is used to solve
l1/lq-norm regularized problem. Enet is used for the situations
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TABLE 2 | Classification with different feature selection methods.

Methods Number of

selected features

ACC (%) SEN (%) SPE (%)

t-test 153 78.62 80.28 77.03

Lasso 123 83.45 88.73 78.38

GLasso 225 86.21 85.92 86.49

ENet 64 85.52 84.51 86.19

SGLasso 55 93.10 92.96 93.24

FIGURE 4 | ROC curves for SZ/HC classification for different feature selection

methods.

where features are related to each other and always produce
valid solution.

These four feature selection methods perform the same
experimental procedure as SGLasso for the sake of fairness. It’s
worth noting that the five local graph measures are extracted at
the threshold of 0.30. Table 2 shows the experimental results of
the abovementioned fourmethods and SGLasso feature selection
method. As we can see that SGLasso method selects the least
features (55) but achieves the best ACC (93.10%), SEN (92.96%),
SPE (93.24%). The ROC curves for SZ/HC classification for
different feature selection methods as shown in Figure 4. We
notice that SGLasso achieves the highest AUC (0.950) than
other four feature selection methods. Experimental result shows
that considering within- and between- group sparsity is likely
helpful for selecting significant features that are effective for
SZ identification.

4.2. Comparison With Different Classifiers
In order to prove that LSVM is optimal to conduct classification
in this context, a series of comparative experiments using several
SVMs with different kernels including Radial Basis Function
kernel (RBF), Ploynomial kernel (Poly), Sigmoid kernel (Sigm)

TABLE 3 | Comparison with other SVMs using different kernels.

Methods ACC (%) SEN (%) SPE (%) AUC

RBF-SVM 80.00 76.06 83.78 0.8601

Poly-SVM 82.07 77.46 86.49 0.8506

Sigm-SVM 87.59 83.10 91.89 0.9393

LSVM 93.10 92.96 93.24 0.950

Bold text indicates that the best result is obtained on a certain evaluation metric.

TABLE 4 | Comparison with other commonly used classifiers.

Methods ACC (%) SEN (%) SPE (%) AUC

KNN 82.07 74.65 89.19 0.7912

RForest 77.93 74.65 81.08 0.8378

NBayes 84.83 83.10 86.49 0.9069

LDA 90.34 87.32 93.24 0.9418

LSVM 93.10 92.96 93.24 0.950

Bold text indicates that the best result is obtained on a certain evaluation metric.

under the same condition as the LSVM have been performed.
These SVMs are denoted as RBF-SVM, Poly-SVM, Sigm-SVM,
respectively. The experimental results of SVMs with different
kernels are shown in Table 3. It is worth mentioning that bold
text indicates that the best result is obtained on a certain
evaluation metric.

In addition, we also compare four commonly used classifiers,
such as k-nearest neighbors (KNN), Random Forest (RForest),
NaiveBayes (NBayes), and Linear Discriminant Analysis (LDA).
These classifiers are all implemented on the platform of
Matlab2016a. We evaluate the performance of the above four
classifiers under the same conditions as LSVM. The experimental
results of these five classifiers are shown in Table 4. As can be
seen from Tables 3, 4, LSVM can achieve the best classification
performance than other classifiers.

4.3. Regularization Parameter Selection
The regularization parameters of SGLasso have a great influence
on the results of feature selection. Using different regularization
parameters, the selected features are also different. It affects
not only the feature dimension, but also the final classification
performance. Therefore, selecting the appropriate regularization
parameters can improve the efficiency of SGLasso method and
obtain more effective features associated with the labels.

The two regularization parameters of SGLasso are λ1 and
λ2. λ1 is used to control the model sparseness, and λ2 can
control the sparse constraint of each feature group. We use
the grid search algorithm to find the optimal combination
of regularization parameters. Figure 5 shows the classification
results using different combination of λ1, λ2. According to
Figure 5, when the parameter combination is (λ1=9, λ2=0.1), the
features obtained from SGLasso feature selection method are the
most effective for SZ/HC classification.
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FIGURE 5 | Classification results using different combination of λ1,λ2.

4.4. Regression Coefficient Selection
In general, the non-zero elements in the coefficient vector α

generated from the SGLasso feature selection algorithm indicate
that the corresponding features are selected. In order to retain
the least but most informative features according to α, we test the
impact of the three coefficient selection strategies on classification
performance. We named these three strategies as SGLasso_absZ,
SGLasso_absM, and SGLasso_absMS. The description of these
three strategies is as follows:

• SGLasso_absZ is a common strategy to retain non-zero
coefficients of α.

• SGLasso_absM strategy is to retain those coefficients which are
greater than the mean value of absolute values of all elements
in α.

• SGLasso_absMS strategy is more strict for selecting
coefficients, since it retains the coefficients which are
larger than the mean value of absolute values of all non-zero
coefficients in α.

We apply the above mentioned three strategies to feature
selection, and then select the corresponding features according
to the retained coefficients in α. SVM performs SZ identification
using these selected features. The classification results using three
different regression coefficient selection strategies are shown in
Figure 6. According to Figure 6, the classification accuracy is
the best when using SGLasso_absM strategy. Experimental result
indicates that using SGLasso_absM strategy in feature selection
can select the most effective features for SZ/HC classification.
Therefore, we finally choose the SGLasso_absM strategy to select
the regression coefficients.

4.5. Classification Comparison Using
Different Feature Combinations
In order to explore the impact of different feature combinations
on SZ/HC identification, we combine these five local measures

FIGURE 6 | Classification results using three different regression coefficient

selection strategies.

extracted at the threshold of 0.30 in C2
5 + C3

5 + C4
5 + C5

5 = 26
ways. Furthermore, we don’t consider individual graph measure
because we only investigate multiple measures in this study.
We evaluate these 26 feature sets under the same experimental
settings. The classification results are shown in Figure 7.

As can be seen from Figure 7, the combination of 5 local
graph measures achieves the best classification performance
compared to other feature sets. At the same time, we also
find that the classification accuracies obtained by using feature
sets including two measures are lower than the classification
accuracies obtained by using feature sets including three
measures, four measures and five measures. It indicates that
using fewer measures may not be enough to characterize brain
network alternation, and we find that the combination of
five local measures can provide more useful information for
SZ identification.

4.6. Comparison With Existing
Classification Methods
To verify the effectiveness of our proposed classification
method, we compare some recently proposed methods for SZ
classification using fMRI in the literature. Huang et al. (2018)
proposed a tree-guided group sparse learning method to select
the most important information from FALFF data in four
frequency bands and get a classification accuracy of 91.1% by
using multi-kernel SVM. Cheng et al. (2015) calculated only
betweenness centrality measure to characterize the network.
They used the rank of betweenness centrality of all nodes as
feature representations and used SVM to classify SZs from HCs.

The two above mentioned methods are performed on the
COBRE dataset. The classification results and ROC curves for
SZ/HC classification of the two methods and our proposed
method are shown in Table 5 and in Figure 8, respectively.
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FIGURE 7 | Classification result for different feature combinations. A: betweenness centrality, B: nodal clustering coefficient, C: local efficiency, D: degree, E:

participation coefficient.

TABLE 5 | Comparison with some existing methods for SZ/HC classification.

Methods ACC (%) SEN (%) SPE (%) AUC

Huang et al. (2018) 77.24 77.46 76.58 0.815

Cheng et al. (2015) 74.48 73.53 69.12 0.792

Proposed 93.10 92.96 93.24 0.950

Bold text indicates that the best result is obtained on a certain evaluation metric.

According to Table 5 and Figure 8, Our proposed method gets
the best ACC (93.10%), SEN (92.96%), SPE (93.24%), and
AUC (0.950) values. The experimental result illustrates that
our proposed method has made a significant improvement in
classification performance on the COBRE dataset.

4.7. Analysis of Discriminative Graph
Measures and Corresponding Regions
The graph measures selected in the feature selection stage are
considered to be related to their corresponding brain regions.
Our method can select the most discriminative brain regions
as the biomarkers to guide the disease-induced interpretation.
There is a total of 145 experiments in the LOOCV scheme
due to 145 subjects. And the number of feature occurrence in
145 experiments is introduced to indicate the contribution of
the feature to classification. We assume that if the occurrence
number of a local graph measure extracted from a certain
brain region is greater than 140 in a total of 145 experiments,
the brain region is considered to have the most discriminative
power to distinguish between SZs and HCs. Based on this
hypothesis, 21 salient brain regions have been found. These
significant brain regions are shown in Table 6. Five brain
regions include left superior frontal gyrus (SFG_L_7_2), right
inferior temporal gyrus (ITG_R_7_7), right inferior parietal
lobule (IPL_R_6_4), right postcentral gyrus (PoG_R_4_1), and

FIGURE 8 | ROC curves for SZ/HC classification for different classification

methods.

right thalamus (Tha_R_8_7) are related to more than one local
graph measure.

These findings on discriminative brain regions are in
agreement with the following studies: superior frontal
gyrus,cingulate gyrus, postcentral gyrus (Szeszko et al., 1999;
Gur et al., 2000; Arbabshirani et al., 2013; Chyzhyk et al., 2015),
parahippocampal gyrus (Shenton et al., 1992; Chyzhyk et al.,
2015), middle temporal gyrus, fusiform gyrus and thalamus
(Chyzhyk et al., 2015; Li et al., 2019), inferior parietal lobule,
inferior temporal gyrus (Peng et al., 1994; Goldstein et al., 1999;
Li et al., 2019). However, we cannot report agreement with these
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TABLE 6 | The most discriminative graph measures and corresponding

Brainnetome regions.

Graph measures Hemisphere Brainnetome regions Occurrence

number

Nodal clustering coefficient SFG_L_7_2 Superior Frontal Gyrus 144

Degree SFG_L_7_2 Superior Frontal Gyrus 145

Nodal clustering coefficient SFG_R_7_2 Superior Frontal Gyrus 140

Participation coefficient SFG_R_7_7 Superior Frontal Gyrus 144

Betweenness centrality IFG_L_6_3 Inferior Frontal Gyrus 143

Betweenness centrality OrG_L_6_2 Orbital Gyrus 143

Betweenness centrality OrG_R_6_6 Orbital Gyrus 145

Betweenness centrality PrG_L_6_3 Precentral Gyrus 142

Degree MTG_L_4_4 Middle Temporal Gyrus 145

Betweenness centrality MTG_L_4_1 Middle Temporal Gyrus 141

Participation coefficient ITG_R_7_7 Inferior Temporal Gyrus 145

Betweenness centrality ITG_R_7_7 Inferior Temporal Gyrus 145

Betweenness centrality FuG_R_3_3 Fusiform Gyrus 145

Betweenness centrality PhG_L_6_3 Parahippocampal Gyrus 144

Degree PhG_R_6_5 Parahippocampal Gyrus 145

Local efficiency IPL_R_6_4 Inferior Parietal Lobule 145

Participation coefficient IPL_R_6_4 Inferior Parietal Lobule 145

Degree IPL_R_6_2 Inferior Parietal Lobule 145

Degree PCun_L_4_3 Precuneus 145

Nodal clustering coefficient PoG_R_4_1 Postcentral Gyrus 145

Betweenness centrality PoG_R_4_1 Postcentral Gyrus 145

Local efficiency PoG_R_4_1 Postcentral Gyrus 143

Degree PoG_R_4_1 Postcentral Gyrus 145

Participation coefficient CG_L_7_4 Cingulate Gyrus 145

Betweenness centrality CG_R_7_3 Cingulate Gyrus 145

Participation coefficient LOcC_L_4_3 lateral Occipital Cortex 145

Degree BG_R_6_1 Basal Ganglia 145

Betweenness centrality BG_R_6_4 Basal Ganglia 145

Participation coefficient Tha_L_8_8 Thalamus 145

Degree Tha_L_8_5 Thalamus 145

Degree Tha_R_8_8 Thalamus 145

Nodal clustering coefficient Tha_R_8_7 Thalamus 140

Local efficiency Tha_R_8_7 Thalamus 141

regions:inferior frontal gyrus, orbital gyrus, precentral gyrus,
precuneus, lateral occipital cortex and basal ganglia.

5. CONCLUSION

In this paper, we propose a method to classify SZs from
HCs using multi-view graph measures of functional brain

networks. We get five local network measures using graph
theoretical approach from multiple views. These measures
paly an important role in the information exchange of brain
networks. Our proposed method achieves a good classification
performance on the COBRE dataset. Experimental results
demonstrate that this approach is efficient for the clinical
diagnosis of SZ. Furthermore, multiple measures have the
potential to be used as clinical biomarkers to differentiate SZs
from HCs.
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