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Abstract

We analyse data from the early epidemic of H1N1-2009 in New Zealand, and estimate the reproduction number R. We
employ a renewal process which accounts for imported cases, illustrate some technical pitfalls, and propose a novel
estimation method to address these pitfalls. Explicitly accounting for the infection-age distribution of imported cases and
for the delay in transmission dynamics due to international travel, R was estimated to be 1:25 (95% confidence interval:
1:07,1:47). Hence we show that a previous study, which did not account for these factors, overestimated R. Our approach
also permitted us to examine the infection-age at which secondary transmission occurs as a function of calendar time,
demonstrating the downward bias during the beginning of the epidemic. These technical issues may compromise the
usefulness of a well-known estimator of R - the inverse of the moment-generating function of the generation time given
the intrinsic growth rate. Explicit modelling of the infection-age distribution among imported cases and the examination of
the time dependency of the generation time play key roles in avoiding a biased estimate ofR, especially when one only has
data covering a short time interval during the early growth phase of the epidemic.
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Introduction

Influenza A (H1N1-2009) emerged in 2009 [1]. The ensuing

pandemic precipitated an international effort to quantify epide-

miological parameters, as a necessary first step to assessing its

potential impact [2]. Among epidemiological quantities, the most

commonly used determinant of the transmission potential has

been the basic reproduction number R0ð Þ, defined as the expected

number of secondary cases arising from a typical primary case

throughout its entire course of infection in a fully susceptible

population. The value ofR0 is a primary determinant of the size of

an epidemic and the effort required to contain it [3,4]. Given that

R0 has been theoretically defined for a fully susceptible popu-

lation, we (in common with other authors, e.g. [5,6]) refer to the

reproduction number R, which we estimate from the initial

growth phase of the epidemic [7,8]. Such an estimate can aid

public health decision-making in real-time during the course of a

pandemic [9,10].

The emergence of H1N1-2009 was first detected in North

America in March 2009, and initial estimates of its reproduction

number, ranging from 1:4 to 1:6 [6], and from 2:2 to 3:1 [5], were

published in May of the same year, and derived from Mexican

data. Because the emergence in Mexico was at the same time as

the beginning of the winter influenza season for Southern

Hemisphere countries, it was important to determine if there

was a higher transmission potential under winter conditions. A

preliminary study in New Zealand estimated R to be in the range

1:8{2:2 [11], determined from the exponential growth rate of

locally transmitted cases and the assumption that the generation

time was known, with a mean of 2:8 days. Another study in

Victoria, Australia, estimated the reproduction number to be in

the range 2:1{2:6 [12]. Later analyses of the same datasets from

New Zealand and Australia, which distinguished imported cases

from local cases, estimated the instantaneous (effective) reproduc-

tion number as a function of time, and the highest estimate

appeared to be smaller than those published in the earlier studies

(1:2{1:9 for New Zealand and 1:4{1:6 for Victoria) [13,14].

Because the H1N1-2009 pandemic in these countries (and all the

countries other than Mexico) involved repeated introductions of

imported cases, it is essential to explicitly account for this aspect in

order to appropriately model the transmission dynamics.

Despite the recognition of the role of imported cases in New

Zealand, we have yet to clarify the reasons behind the

overestimation of R in the above-mentioned study [11,15]. The

purposes of the present study are to illustrate two technical pitfalls

in estimating R during the early epidemic growth phase, and to

offer a novel estimation method for R in the presence of imported

cases. Because one should know the best method of obtaining an

unbiased estimate of R in a similar setting, in order to give

appropriate feedback to the public health authorities, we compare

different modelling strategies for estimating R in the presence of

imported cases. In the next section, we describe the H1N1-2009
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epidemic in New Zealand, and illustrate of the estimation method

for R as used in the earlier study. We then explore the underlying

reasons for the overestimation of R. Although a potentially

important source of error is heterogeneous mixing (e.g. age-related

heterogeneity and other social contact structures), we will not

discuss this. Heterogeneous mixing was important in Japan [16],

but there was no strong signature of clustering of cases among

children during the containment phase in New Zealand. The

proportion of children among local confirmed cases by 22 June

was as small as 51.4%, and the mean and median ages of local

confirmed cases were 22.4 and 19.0 years, respectively. Rather

than age-related heterogeneity, we describe two critical factors,

one of which is concerned with an explicit modelling approach to

imported cases.

In the next section we describe the epidemic in New Zealand,

and reexamine the data for the incidence of infection. We then

propose a model for the epidemic, based on a renewal process with

immigration. The proposed model is used as the basis for a

statistical estimation of R, and we conclude with some remarks

concerning the infection-age distribution.

Methods

H1N1-2009 in New Zealand
The daily incidence of confirmed cases of H1N1-2009 in New

Zealand is shown in Figure 1. The first cases were in a group of

students who had visited Mexico and returned on April 25 [11].

The infection was declared notifiable shortly afterwards, and cases

were recorded in the EpiSurv database. The date of incidence in

Figure 1 is assumed to be the earliest date provided on the

database, which may be either the date of symptom onset,

hospitalisation, death or reporting. Since the data do not offer

further information, we hereafter regard the earliest recorded date

as the date of infection (see Discussion). As was adopted elsewhere

[17,18], cases with a history of overseas travel within 10 days

preceding the onset of illness tend to be defined as imported cases.

Since we examine only early epidemic phase without obvious

clustering among locally-acquired cases, we assume that no

misclassification has occurred in distinguishing between imported

and locally-acquired cases.

The initial outbreak declined to extinction in early May and the

major epidemic began in June. Until June 22, all reported cases

were subject to confirmatory diagnosis and were consistently

recorded. On June 22 the health authorities switched the control

policy from a containment to a management phase. During the latter

phase not all cases were confirmed, hence the reporting coverage

must have been incomplete. The last confirmed case in New

Zealand in 2009 was recorded in the database on December 29. A

total of 3210 confirmed cases were recorded. Because we estimate

R from the early epidemic growth phase (when the cases should

ideally be recorded consistently over time), we limit our analyses to

the containment phase before June 22.

Let |(t) be the incidence (i.e. the number of new cases) at

calendar time t. During the early growth phase, each primary case

generates on average R secondary cases. The relative frequency of

secondary transmission with respect to the time since infection of a

primary case is denoted by g(t), which is referred to as the

generation time (and t is referred to as infection-age). The

expected number of new cases (|(t)) in the absence of imported

cases is written (e.g. [3,19–21])

(|(t))~R
ð?

0

|(t{t)g(t)dt: ð1Þ

When the incidence grows exponentially with growth rate r, we

have |(t)~|0ert where |0~|(0), a constant. Replacing |(t) on the

both sides of (1):

R̂R~
1Ð?

0
exp({rt)g(t)dt

~
1

M({r)
, ð2Þ

where M({r) is the moment-generating function of the

generation time, given the intrinsic growth rate r [8]. Hence R
can be estimated, given an estimate of r and if the generation time

distribution g(t) is assumed to be known [7,8].

We should not ignore demographic stochasticity during the

early growth phase of an outbreak, hence the following pure birth

process is useful when estimating r [22,23]. Let I(t) be the

cumulative incidence at time t. Then

Figure 1. The daily incidence of H1N1-2009 in New Zealand from April to September 2009. Only confirmed cases are shown. White bars
represent local cases (i.e. locally transmitted cases without overseas travel), black bars represent imported cases. Vertical solid lines indicate the last
calendar date of each month. The vertical dashed line is at June 22, the date on which the control policy switched from a containment to a
management phase.
doi:10.1371/journal.pone.0017835.g001
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Pr I(tzh)~njI(t)~nð Þ~1{rnhzo(h),

Pr I(tzh)~nz1jI(t)~nð Þ~rnhzo(h),

Pr I(tzh)wnz1jI(t)~nð Þ~o(h):

ð3Þ

For the analytic solution of equations (3) see [24]. Given our

observations of the cumulative number of cases, we have

Pr I(t)~nzmjI(t{1)~nð Þ~
nzm{1

n{1

� �
e{rn 1{e{rð Þm ð4Þ

which can be used as a conditional likelihood function to

estimate r.

The observed and predicted cumulative numbers of local

confirmed cases are shown in Figure 2. Although the earliest dates

of incidence in Figure 1 have been refined and are different from

those analysed in an earlier study [11], the estimated growth rate

from 2–13 June is r~0:258 day{1 (95% confidence interval (CI):

0.219, 0.302), which is consistent with the estimate in [11]. The

mean m and variance s2 of the generation time have been

estimated from contact tracing in the Netherlands to be 2.70 days

and 1.21 days2, respectively [25]. Assuming that the generation

time follows a gamma distribution, the estimator of R based on

equation (2) is R̂R~ 1zrs2=m
� �m2=s2

, leading to R̂R~1:93 (95% CI:

1.76, 2.15). This is high compared with published estimates from

other countries (e.g. [5,6,12,16,26,27]), and is likely to be an

overestimate.

A general renewal process with imported cases
When analysing data for the initial growth of an epidemic it is

important to account for imported cases correctly. In equation (2)

a stochastic pure birth process was fitted to local cases alone. In

discarding imported cases, we correctly removed cases that would

otherwise be counted as secondary cases, but at the same time

removed some primary cases. This could artificially elevate the

estimate of r, and thus R. In the presence of imported cases with

incidence c(t) at time t, the renewal process (1) could read

(|(t))~R
ð?

0

|(t{t)g(t)dtz

ð?
0

c(t{t)g(t)dt

� �
: ð5Þ

Equation (5) is a general form of the age-dependent branching

process with immigration [28]. Although equation (5) does not

account for different infection-age distribution among imported

cases (as compared to local cases), models of this type have been

applied to data sets for H1N1-2009 in several published studies

[13,14,26] If we have |(t)~|0ert, the estimator of R is

R̂R~
1

M({r)z|{1
0 e{rt

Ð?
0

c(t{t)g(t)dt
: ð6Þ

The denominator on the right-hand side includes the imported

cases, c(t), and hence a solution requires an approximation to c(t).
At the very least, equation (6) highlights that the estimate of R
based on equation (2) results in an overestimate in the presence of

imported cases.

Equation (5) requires further modification to capture the

underlying dynamics of the epidemic. Before being diagnosed in

New Zealand, imported cases were infected overseas, hence there

was a time-lag from their infection to their involvement in local

transmission. To approximate this, we introduce a constant delay

in the involvement of imported cases, i.e.

(|(t))~R
ð?

0

|(t{t)g(t)dtz

ð?
t0

|(t,s)g(s)ds

 !
, ð7Þ

where t0 represents the time taken from infection to importation

(for example the time taken for an international flight). The

shortest connecting flight from Mexico City to Auckland is

20 hours 30 minutes, hence we assume that t0~1 day. The

importance in capturing this delay has been emphasised else-

where [15]. We have ignored possible transmission during transit.

In reality, the infection-age distribution among imported cases

is influenced by the transmission dynamics at the origin of

importation. However the second integral contains the term |(t,s),
the number of new imported cases arriving at time t and infection-

age s (instead of c(t{t)). The times of infection among imported

cases are seldom known, hence we postulate an epidemic process

at the origin of importation. First, assume that |(t,s) may be

expressed by the convolution

|(t,s)~

ðt

{?
c(u)q(s{u)du

where c(t) corresponds to the observed counts of new imported

cases at time t, and q(s) is the density function of the infection-age

of imported cases. Second, assume the incidence of infection at the

origin of importation to be approximated by an exponential with

the same growth rate r as that in New Zealand. That is, we assume

that the epidemic is in an early phase at the origin of importa-

tion and the growth of cases is sufficiently approximated by

deterministic exponential growth. The density function of the

infection-age of imported cases, q(s) is then given by

q(s)~
exp({rs) 1{G(s)ð ÞÐ?

t0
exp {ru)(1{G(u)ð Þdu

for swt0 [29] and q(s)~0 otherwise. It should be noted that

Figure 2. Observed (black) and predicted (grey) cumulative
numbers of confirmed locally transmitted cases. Predicted values
represent conditional expectations given by (ItjIt{1)~It{1er̂r where It

is the cumulative number of cases at day t, and r̂r~0:258 day{1 is the
maximum likelihood estimate of the growth rate.
doi:10.1371/journal.pone.0017835.g002
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dynamics other than exponential growth would require us to

examine additional data (e.g. epidemic data at the origin of

importation), but our assumption permits us to account for the

infection-age of imported cases by using local epidemic data only

(i.e. the data set in New Zealand). Consequently, the time- and

age-dependent number of imported cases is modelled as

|(t,s)~

Ð t

{? c(u)e{r s{uð Þ 1{G(s{u)ð ÞduÐ?
t0

e{ru 1{G(u)ð Þdu
ð8Þ

in equation (7). The growth rate r in the right-hand side of (8) can

be replaced by m Rs2=m2
{1

� �
=s2 as in the estimator of R

described above.

In summary, we have devised a modelling approach to early

epidemic processes with imported cases that accounts for two

issues. The first is a constant delay (t0) in transmission dynamics

involving imported cases, which corresponds to the time in transit.

The second is a distributed delay. The imported cases are likely to

have been infected shortly before departure, but their infection-age

distribution should take account of transmission dynamics at their

origin. There are other factors that could add further detail: for

example the relative contribution of imported cases to secondary

transmission in comparison with local cases (see [15] for a

description), and heterogeneous mixing. However, we have

insufficient data to account for these. It should be noted that the

time-dependency of imported cases in the proposed model (7) does

not lead to an exponential growth of local cases. Simpler age-

dependent branching process models with immigration have been

examined elsewhere to find the analytical solutions to describe the

growth of local cases [30,31].

Statistical estimation of R
We now estimate R using the modelling approaches described

above. Figure 3A shows the daily incidence of confirmed imported

(black) and local (grey) cases from 28 May to 22 June 2009. Since

we failed to jointly estimateR and the generation time distribution

(see below), we assume that the generation time distribution g(t) is

known, with the mean 2.70 days and the variance 1.21 days2 [25],

but we examine the sensitivity of R to the mean generation time.

While R may vary by location, over time and according to the

level of public health interventions, we generally expect the

generation time to be consistent between locations, unless extrinsic

measures significantly influence epidemiological patterns of

transmission [32]. Since the observed data are provided as daily

reports, we discretize the distribution,

gt[
G(t){G(t{1)

G(tmax)

for tw0, with g0~0, and where tmax is the longest infection-age

causing secondary transmission. In the following we set tmax~9,

Figure 3. Transmission dynamics of H1N1-2009 in New Zealand. A: Observed daily incidence of imported (black) and local (grey) cases from
28 May to 22 June 2009. We examine only confirmed cases during the containment phase. B: Discretised distribution of the generation time. Mean
and variance are assumed to be 2.70 days and 1.21 days2 , respectively. C: Observed (black) and predicted (grey) numbers of local confirmed cases.
Predicted values represent conditional expectations derived from our proposed model, which includes adopting a negative binomial offspring
distribution. D: Sensitivity of the estimated reproduction number to the mean generation time, over the range 1:9{3:5 days. Whiskers extend to the
upper and lower 95% confidence intervals based on the profile likelihood.
doi:10.1371/journal.pone.0017835.g003
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because the frequency of secondary transmission after infection-

age 9 days is negligible.

We examine three different models to illustrate the impact of

underlying assumptions with regard to imported cases on the

estimate of R, and to determine the best modelling strategy. Let |t
and ct be the incidence of local and imported cases on day t,
respectively. We denote the history of both series of cases up to day

t by Ht. The first model we examine is the renewal equation with

imported cases, but without an adjustment of infection-age

distribution and without a delay. Given Ht{1, the conditional

expected incidence of local cases on day t is

|tjHt{1ð Þ~R
X?
s~1

|t{sgsz
X?
s~1

ct{sgs

 !
: ð9Þ

The second model accounts for a constant delay in imported cases,

but without adjustment for their infection-age distribution, i.e.

|tjHt{1ð Þ~R
X?
s~1

|t{sgsz
X?

s~1zt0

ct{sgs

0
@

1
A, ð10Þ

where t0 is the time taken for transit, assumed to be one day. In

the third model, we incorporate the adjustment of infection-age

distribution and a constant delay in the transmission dynamics:

|tjHt{1ð Þ~R
X?
s~1

|t{sgsz
X?

s~1zt0

Xt

u~{?

cuqs{ugs

0
@

1
A, ð11Þ

where

qs{u~
exp {r s{uð Þð Þ 1{G(s{u)ð ÞÐ?

1
exp {rwð Þ 1{G(w)ð Þdw

and r~m Rs2=m2
{1

� �
=s2.

We examine two conditional likelihood functions for the

estimation of R. First, if we regard R as a (deterministic)

parameter and ignore individual heterogeneity in the number of

secondary transmissions, then the infection process is Poisson [3].

Assuming that the discrete generation time follows a multinomial

distribution, a thinned Poisson is obtained [33] which is known to

be useful for the joint estimation of R and gt [26,33]:

L RjHt{1ð Þ~ P
T

t~1

exp { |tjHt{1ð Þð Þ |tjHt{1ð ÞNt

Nt!
, ð12Þ

where T is the last date of observation (equivalent to 22 June 2009)

and Nt represents the observed number of local cases on day t. As

an alternative, we incorporate a gamma-distributed individual

heterogeneity for the infection process, which results in a negative

binomial distribution [6,34]:

L RjHt{1ð Þ~ P
T

t~1

C(Ntzk)

Nt!C(k)

k

kz |tjHt{1ð Þ

� �k

|tjHt{1ð Þ
kz |tjHt{1ð Þ

� �Nt

:

ð13Þ

The dispersion parameter k has to be jointly estimated when

employing equation (13). The Poisson distribution is obtained as

k??, and the logarithmic series distribution is obtained as k?0.

A maximum likelihood estimate of R (and additionally, k for the

negative binomial likelihood distribution when applicable) is

obtained by minimizing the negative logarithm of either (12) or

(13), and the 95% CI is derived from the profile likelihood. To

compare model fit we employ Akaike’s Information Criterion,

AIC~{2LLmaxz2m, where LLmax is the maximum value of the

loglikelihood function and m is the number of parameters

estimated.

Assessment of the infection-age distribution
In equations (9–11), the right-hand side inside parenthesis (i.e.

other than the factor R) may be interpreted as the expected

number of cases who have a potential to cause transmission at time

t (We refer to these as primary cases). For example, using the best-

fit model (11), the expected number of primary cases is

X?
s~1

|t{sgsz
X?

s~1zt0

Xt

u~{?

cuqs{ugs:

The mean infection-age at which secondary transmission has

occurred is

�aat~

P?
s~1 s|t{sgsz

P?
s~1zt0

s
Pt

u~{? cuqs{ugsP?
s~1 |t{sgsz

P?
s~1zt0

Pt
u~{? cuqs{ugs

, ð14Þ

and the variance is

v2
t~

P?
s~1 s{�aatð Þ2|t{sgsz

P?
s~1zt0

s{�aatð Þ2
Pt

u~{?cuqs{ugsP?
s~1 |t{sgsz

P?
s~1zt0

Pt
u~{? cuqs{ugs

:ð15Þ

The time required for the generation time to converge to a

stable distribution has attracted the recent attention of epidemic

modellers [35], but this has been preceded by discussions in the

mathematical demography literature for more than 30 years. The

population entropy, proposed by Lloyd Demetrius, is defined by

Q~
{
Ð?

0
g(t)log g(t)dtÐ?

0
sg(s)ds

,

and has been shown to measure the rate of convergence of a

population to a stable age distribution [36]. Further theoretical

accounts of Q, and insights into its interpretation employing a

Leslie model, are described in [37].

Results

Estimates of the reproduction number
The maximum likelihood estimates of R ranged from 1:18 to

1:37, see Table 1. Where different offspring distributions were

used with the same type of model, the negative binomial dis-

tribution resulted in a better fit than the Poisson distribution (lower

AIC). In addition, the negative binomial distribution always led to

a greater R than the Poisson distribution, but with wider

uncertainty bounds reflecting its fatter tail. When different models

were compared, the model that accounted for the infection-age

distribution and a constant delay for imported cases (AD) was the

best fit, and resulted in the estimateR~1:25 (95% CI: 1.07, 1.47).

Differences in the estimates of R were very small between models

Estimation of the Reproduction Number of Influenza

PLoS ONE | www.plosone.org 5 May 2011 | Volume 6 | Issue 5 | e17835



with and without a constant delay for imported cases (RP & RD).

This is because g1 of the assumed generation time distribution is

small, but if the generation time were shorter than assumed, its

influence would be greater [15].

In Figure 3C the observed and expected (based on the best-fit

model) numbers of locally transmitted confirmed cases are

compared as a function of time. In Figure 3D the sensitivity of

R to different mean generation times, ranging from 1.9 days to 4.0

days (assumed maximum), is examined. As in previous studies

[7,8], as the mean generation time increases the estimate of R also

increases (ranging from 1.15–1.39). This illustrates the importance

of having a reliable estimate of the generation time distribution if

one is to obtain a precise estimate of R.

In addition to the results shown in Table 1, we attempted to

jointly estimate R and the generation time distribution using a

Poisson-distributed likelihood function. Employing a model with a

one day delay for importation, and limiting the maximum

generation time to 4 days, we obtained g1~0:448, g2~0:083,

g3~0:105 and g4~0:364. Thus, the mean of the jointly estimated

generation time was 2.38 days. Attempts to estimate with a greater

maximum generation time did not result in successful conver-

gence. We know of no explanation for the implied bimodal

distribution, so regard this as a failure to implement a joint

estimation. We discuss this outcome in the next section.

Infection-age at which secondary transmission occurs
In Figure 4A the mean generation time (i.e. the mean infection-

age at which secondary transmission occurs) is shown as a function

of time, as derived from equation (14). Initially, the mean

infection-age of secondary transmission is small, and is shorter

than the assumed mean generation time, 2.70 days. As the

epidemic progresses, the mean generation time increases and

converges to the assumed mean. Despite its convergence to 2.70

days, the mean generation time tends to be short during the first 2

weeks of the epidemic. In Figure 4B the variance of the generation

time is shown to fluctuate as a function of time (from equation

(15)), before converging to the assumed variance.

The assessment of the time-dependent generation time distir-

bution plays a key role in interpreting the reason behind the

overestimation of R when employing the exponential growth rate

r based on a pure birth process (4). It must be noted that the well-

known estimator R~1=M({r) depends on the assumption that

the infection-age distribution is stable. If not stable, the direct

application of the estimator could yield a biased estimate of R.

Even provided that r is estimated to be as large as 0.258 day{1

during the initial phase of the epidemic, the estimate reflects

transmission that occurrs at earlier infection-ages than the mean

generation time. The illustrated time-dependency of the genera-

tion time distribution also partly explains the failure of the joint

estimation of R and the generation time reported above. Given

that the majority of observed transmission events take place at

early infection-ages, and given that the variance has also

fluctuated, a precise estimate of the generation time distribution

is not possible. In fact, the jointly estimated generation time would

be shorter than an unbiased estimate of the generation time. A

successful joint estimation would require a longer time series of

data than we examined. In addition, a recent study has shown that

the joint estimation involves several technical difficulties during the

early exponential growth phase of an epidemic, especially in the

presence of heterogeneous transmission [38].

In Figure 4C the sensitivity of Q to the mean generation time is

examined. It is evident that the time taken for convergence is

longer when the mean generation time is longer. In addition, it is

important to examine the influence of the variance of the

generation time on Q (Figure 4D). If the variance were zero (i.e.

for a delta function), the infection-age distribution would not

converge to a stable distribution. As the variance increases,

convergence improves. Since the reporting interval for influenza

(i.e. daily data) is similar to the mean generation time, the time

taken for convergence is less likely to be a significant problem than

it would be for slower diseases (e.g. HIV/AIDS). Nevertheless, this

issue cannot be ignored when we estimate R from a dataset

covering a short period of time during the early growth phase.

Indeed, the time-dependent infection-age distribution is a plausible

explanation for an overestimation using the growth rate r. In

addition to the issue of precise estimation of R from early

epidemic growth data, this highlights the critical importance of

quantifying the generation time distribution, and especially its

variance, if we are to understand the underlying epidemic

dynamics.

Discussion

We have estimated the reproduction number R for H1N1-2009

in New Zealand, by reanalysing the early epidemic growth data.

We explored two modelling issues: taking account of imported

cases; and the infection-age distribution at which secondary

transmission occurs during the early growth phase of the epidemic.

We believe these provide at least part of the underlying reasons for

a previous overestimate of R [11]. Explicitly accounting for the

Table 1. Comparison of parameter estimates and model fit.

Model1 Offspring distribution2 R (95% CI)3 AIC4 Dispersion parameter5

RP P 1.22 (1.11, 1.33) 168.9

RP NB 1.36 (1.13, 1.66) 149.9 10.2 (3.8, 30.1)

RD P 1.22 (1.11, 1.33) 169.6

RD NB 1.37 (1.14, 1.68) 150.1 10.0 (3.7, 29.1)

AD P 1.18 (1.08, 1.28) 157.2

AD NB 1.25 (1.07, 1.47) 144.3 14.4 (5.1, 48.2)

1RP: renewal process, equation (9); RD: RP plus a constant delay in imported cases, equation (10); AD: RD plus statistical adjustment of infection-age distribution among
imported cases, equation (11).

2P: Poisson distribution, equation (12); NB: negative binomial distribution, equation (13).
3R: reproduction number, CI: confidence intervals derived from profile likelihood.
4AIC: Akaike Information Criterion.
5Dispersion parameter of negative binomial distribution.
doi:10.1371/journal.pone.0017835.t001
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infection-age distribution of imported case, and the delay due to

transit, R was estimated to be 1.25 (95% CI: 1.07, 1.47). Despite

wide uncertainty, the upper 95% CI is smaller than the lower 95%

CI of the published preliminary estimate [11]. Moreover, our

modelling approach permitted us to examine the generation time

as a function of calendar time, demonstrating that generation time

is biased downwards during the beginning of the epidemic. Both

points illustrate important technical pitfalls in the use of the

exponential growth rate r and the estimator R~1=M({r) for

early growth data. To avoid a biased estimate of R, we propose

investigation of both of these issues, especially when one has to

measure R from data collected over a short period of time during

the early growth phase.

We have shown that explicitly accounting for imported cases

would be a key factor in avoiding an overestimation ofR. We have

also emphasised the importance of addressing the infection-age

distribution for imported cases, which will be different to that for

local cases. When modelling transmission from imported cases,

one should account for the time-lag from infection to importation,

and account for the transmission dynamics at the origin of

importation. The former can be approximated by a fixed delay,

the average time required for international travel. The latter

requires an assumption concerning the transmission dynamics at

the origin. In addition, the use of a negative binomial offspring

distribution was favoured for the three models we examined.

Demographic stochasticity during the early growth phase is not

negligible, and it appears that the stochastic early epidemic process

in New Zealand was better captured by the negative binomial

distribution than the Poisson distribution, indicating the presence

of individual heterogeneity in the transmission process.

One implication of the proposed model is that the generation

time was yet to converge to a stable distribution in New Zealand at

June 22, 2009. In particular, the mean infection-age at which

secondary transmission occurred appeared to be short, partially

explaining the reason for the overestimation of R. It must be

remembered that the estimator R~1=M({r) is based on the

assumption that the generation time is stable, and this is frequently

not the case early in the epidemic. One should then employ a

renewal process (equations (1) and (11) in the absence and

presence of imported cases, respectively) and estimate R as a

parameter. The population entropy Q indicates the rate of

convergence to a stable distribution.

Four limitations of this analysis should be noted. First, our

estimate of R is based on the daily incidences of confirmed cases,

which are recorded when an infection is classified as notifiable. As

with any data set there could be issues with classification and

interpretation, but these are the best items of information available

at the time. In particular, the earliest date recorded has been taken

as a proxy for the date of infection for locally transmitted cases.

Further in-depth investigation of each case (e.g. taking account of

the incidence and reporting delay) could potentially produce a

more accurate data set, but our objective is to produce an estimate

based on the information to hand. Second, although we recognise

the crucial role of the generation time distribution, we have based

Figure 4. Assessment of the distribution of generation time. A: The mean generation time as a function of calendar time. B: The variance of
the generation time as a function of time. C: Sensitivity of population entropy to mean generation time. D: Sensitivity of population entropy to the
variance of the generation time. The horizontal dashed line in A, and the vertical dashed line in C, represents the assumed mean generation time, 2.70
days; which is fixed in B and D. The horizontal dashed line in B, and the vertical dashed line in D, represents the assumed variance, 1.21 days2 ; which is
fixed in A and C.
doi:10.1371/journal.pone.0017835.g004
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our distribution gt on the published result of a contact tracing

exercise [25]. Despite the existing method for estimating gt in real

time [33], we have yet to invent a method for its unbiased

estimation [38–40]. Third, we have ignored heterogeneity (other

than infection-age) and adopted the homogeneous mixing

assumption. As has been discussed elsewhere [6,12,22,27], age-

related heterogeneity is likely to provide additional insights

into the transmission dynamics, and estimation of the relative

contribution of imported cases to secondary transmission (com-

pared with local cases) should be possible through examining

additional epidemiological information. Fourth, although unlikely

to vary the results of the present study (because the flow of cases

can be assumed to be unidirectional from North America to New

Zealand), we focused on the mobility of primary cases and did not

discuss that of secondary cases. Where emigration would influence

the growth estimate of cases (e.g. in Mexico or for a meta-

population model), models with bidirectional mobility would be

called for.

In conclusion, the early epidemic data in New Zealand did not

suggest that the transmission potential of H1N1-2009 was higher

than in Northern Hemisphere countries [6,16,26,27]. The present

study has highlighted the importance of modelling the transmis-

sion dynamics of imported cases and examining the infection-age

distribution of primary cases during the early stage of an epidemic,

and we believe that these aspects explain some of the reasons for

the overestimation of R in an earlier study [11]. When it is

necessary to obtain an estimate of the transmission potential for a

novel emerging disease, we suggest the use of equation (11) with a

negative binomial offspring distribution, and equation (14) for the

assessment of the mean infection-age of primary cases.
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