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Fast DNA-PAINT imaging using a deep neural
network

Kaarjel K. Narayanasamy 1,2, Johanna V. Rahm2, Siddharth Tourani3 &
Mike Heilemann 1,2

DNA points accumulation for imaging in nanoscale topography (DNA-PAINT)
is a super-resolution technique with relatively easy-to-implement multi-target
imaging. However, image acquisition is slow as sufficient statistical data has to
be generated from spatio-temporally isolated single emitters. Here, we train
the neural network (NN) DeepSTORM to predict fluorophore positions from
high emitter density DNA-PAINT data. This achieves image acquisition in one
minute. We demonstrate multi-colour super-resolution imaging of structure-
conserved semi-thin neuronal tissue and imaging of large samples. This
improvement can be integrated into any single-molecule imaging modality to
enable fast single-molecule super-resolution microscopy.

The advent of super-resolution imaging has overcome the diffraction-
limited barrier of lightmicroscopy into obtaining images at nanometre
spatial resolution. One powerful super-resolution technique for ima-
ging cellular samples is single-molecule localisation microscopy
(SMLM) which builds on the spatio-temporal isolation of single fluor-
ophores and the precise determination of their position, leading to the
reconstruction of a super-resolved image1. Methods such as (fluores-
cence) photoactivated localisation microscopy ((F)PALM)2,3 and
(direct) stochastic optical reconstruction microscopy ((d)STORM)4,5

use photoswitchable fluorophores to obtain a temporally and spatially
separated fluorescence signal. Points accumulation for imaging in
nanoscale topography (PAINT)6 and DNA-PAINT7 employ transiently
binding, low-affinity fluorophore labels for this purpose. Both con-
cepts generate a super-resolved image through the localisation of a
large number of single-emitter positions and achieve a spatial resolu-
tion in the range of tens of nanometres.

The trade-off to acquiring super-resolved images with SMLM is
the long image acquisition time. The requirements for an SMLM
experiment are sparse and isolated emitters per image and a suffi-
ciently high number of emitters detected over time to reconstruct a
cellular structure. These two criteria require a large amount of data
generation, hence the long imaging time. Several SMLM studies are
focusing on overcoming this limitation using improved localisation
software8, high-performance computing and algorithms9,10, or mod-
ulating the hybridisation times of DNA oligonucleotides11,12.

In recent years, various deep learning (DL) tools have emerged to
facilitate faster image acquisition in SMLM. The ANNA-PALM neural
network predicts a complete super-resolved image from a small set of
input frames with incomplete structural features13. Other neural net-
works aim to predict 2D and 3D structures from high-density SMLM
raw images such asDeep-ULM14, DECODE15, DRL-STORM16, DeepLoco17,
and LSPARCOM18. DeepSTORM19,20 is one such convolutional NN that
can be trained to predict single-emitter positions from high-density
data to obtain super-resolution images from shorter SMLM movies.
The ease-of-use of DeepSTORMwas bolsteredwith its implementation
into the ZeroCostDL4Mic platform21.

DeepSTORM performance is largely dependent on an optimal
range of emitter densities. While (d)STORM and PALM methods were
initially used for DeepSTORM, the exponential decrease in emitter
density over acquisition time due to photobleaching reduces the effi-
ciency of the method as the emitter density is no longer within the
optimal performance window of the NN. Here, we report the integra-
tion of DNA-PAINT into image prediction with DeepSTORM, which
offers several advantages. First, the concentration of imager strands
canbe tailored towards obtaining a constant emitter density optimised
to the performance window of the NN. Second, generating sparse-
density emitter data provides true experimental emitters for NN
training, which captures the optical properties of the microscope.
Third, low-density and high-density emitter data can be generated on
the same sample to obtain a ground truth image for each prediction,
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hence bypassing using simulated datasets for NN assessments. Fourth,
Exchange-PAINT permits multi-colour imaging by exchanging
fluorophore-labelled oligonucleotide strands from the imaging buffer,
which facilitates multi-target prediction with only a single NN
model22,23. Finally, the bleaching-independent nature of DNA-PAINT
permits the acquisition of large-sample areas in a short time.

Here, we utilise DeepSTORM for the prediction of super-
resolution SMLM images from high-density DNA-PAINT data. First,
NN training is performed with sparse emitter density DNA-PAINT data.
Using the trained model, we predict cellular structures in semi-thin
neuronal tissue samples with complex structural morphology.
Sequential imagingofmultiple targets usingdifferent oligonucleotides
labelled with the same fluorophore enables aberration-free multi-tar-
get imaging (Exchange-PAINT)22. Coupled with the use of a single NN
model for multi-colour prediction, this facilitates the acquisition of
information-rich structural data. Image prediction quality was asses-
sed using image-based similarity metrics. In summary, this approach
enables data acquisition for an SMLM image within 1–2min for prac-
tical multi-colour and large region-of-interest (ROI) imaging, and by
that in a fraction of the time compared to conventional multi-colour
SMLM methods.

Results
NN training and prediction workflow
DNA-PAINT is a variant of SMLM that provides a constant signal over
time and enables aberration-free multi-colour imaging24. The spatial
density of fluorophores in a DNA-PAINT experiment can easily be
adjusted by tuning the imager strand concentration in the buffer such
that the recording of datasets of the same structure with different
fluorophore densities is feasible. These experimental features are ideal
for the implementation into neural networks designed to reconstruct
SMLM images from high-density single-molecule data19,20. To this end,
we established a workflow that harnessed the characteristics of DNA-
PAINT to enhance the usability of DeepSTORM. On a whole, sparse-
density, low-density and high-density emitter data were recorded with
DNA-PAINT for NN model training, ground truth (GT) images, and
image prediction, respectively (Fig. 1). In the first step, we recorded
experimental training data at sparse emitter density (0.028 emitters/
µm2) and localised single emitters using the single-molecule localisa-
tion software Picasso24 to prepare a training dataset for the NN. This
provides an alternative method to generate training data for NNs, and
complements the approach of using simulated data19. To generate
high-density emitter data for network training, small patches of 16 × 16
pixels with on average one-emitter per frame were generated. These
patches were then summed together randomly to output a high-
density patch of ~2 emitters/µm2. These patches, together with the
corresponding coordinates of the emitters, were used to train a
DeepSTORM model (Fig. 1a). The trained model was then applied to
predict SMLM images from high-density DNA-PAINT data recorded
with high concentrations of imager strands (Fig. 1b, c). Concurrently, a
single-molecule DNA-PAINT image with low emitter density was gen-
erated from the sameROI which served as the GT image (Fig. 1d). DNA-
PAINT data was recorded in semi-thin structurally conserved tissue
labelled for α-tubulin and the mitochondrial protein TOM2023. The
predicted images were compared to their respective GT images and
the prediction quality was assessed using several quantitative metrics.

NN-assisted SMLM imaging in neuronal tissue
We applied the trained model to predict multi-colour SMLM super-
resolution images. Structurally preserved semi-thin (~350nm) cryo-
sectioned rat neuronal tissue sections in the medial nucleus of the
trapezoid body (MNTB) region25 were stained for α-tubulin and
TOM20 using DNA-labelled antibodies (see Methods; Table 1) and
imaged sequentially following the Exchange-PAINT protocol22,23. A
super-resolution image reconstructed from low emitter density DNA-

PAINTdata (0.5 nM imager strands P1/P5; 10,000 frames) served as the
ground truth (Fig. 2a). For the same sample, high emitter density DNA-
PAINT data (5 nM imager strands P1 (α-tubulin), 10 nM P5 (TOM20);
400 frames) were recorded (Supplementary Fig. 1). The trained
DeepSTORM model was applied to the high emitter density DNA-
PAINT data for prediction of the tissue structure (Fig. 2b). With an
integration time of 150ms, the acquisition of the low emitter density
dataset took 25min, whereas the high emitter density dataset took
only 1min. Visual inspection shows good agreement between GT and
predicted super-resolution images, with structures reconstructed
faithfully (Fig. 2c, d). The structural features of the five cells (dotted
lines in Fig. 2a, b) were predicted and nuclear regions within the cells
were clearly defined, as observed in the GT image. Transverse sections
of axons (arrow in Fig. 2a, b) and dense circular tubulin bundles in the
centre of the image were reproduced in the predicted image. The
distribution of mitochondria in the predicted image was correctly
reproduced,wheremitochondriawere foundat ahigher densitywithin
the cytoplasm of cells (Fig. 2a, b). For comparison, the performance of
a single-molecule reconstruction on the same high-density dataset is
shown in Supplementary Fig. 2.

To scrutinise the quality of predicted images at a smaller length
scale, magnified regions of the GT (Fig. 2c) were compared to the
predicted structures (Fig. 2d). Tubulin within MNTB tissue is found to
organise into different morphological structures26,27, which we termed
here as 1-dimensional (1D) linear structures such as filaments or single
mitochondria outlines, or complex 2-dimensional (2D) structures with
dense or layered regions such as clusters, patches, or filament bundles.
The magnified images show 1D filamentous structures of α-tubulin in
the cytoplasm of the principal cell, with thin, elongated, or random
patterns that are visuallywell predicted by theNN (Fig. 2c, d i, ii). Other
regions in the tissue show dense and complex 2D arrangements of
tubulin (Fig. 2c, d iii–vi) which overall are well predicted in their shape
but with reduced performance in their predicted structural density.
The structural patterns of TOM20 are mostly uniform and appear as
thin, single layer outlines ofmitochondria with oblong shapes that can
mainly be categorised as 1D structures (Fig. 2c v–vii). These structures
are predicted very well throughout by the DeepSTORM model,
determinedby visual inspection and comparisonwith theGT imagesof
the corresponding mitochondrial regions (Fig. 2c, d v–vii). In sum-
mary, wefind that our trainedDeepSTORMmodel has goodprediction
quality for the structural features of the two targets labelled in the
tissue sections, with a slightly better performance for 1D structures
over 2D structures.

Assessment of image prediction quality
To quantify the quality of SMLM image prediction with the trained
DeepSTORM model, we applied image similarity metrics and com-
pared GT to predicted images. First, we applied the HAWKMAN ana-
lysis to compare the structural similarity between GT and predicted
images (Fig. 3, Supplementary Fig. 3). HAWKMAN is sensitive to
nanoscale structural differences between images and artificial shar-
pening (differences in structure density) while also providing con-
fidence maps for super-resolved structures (Supplementary Note 128).
First, we assessed the quality of structure prediction from high emitter
density data for samples stained with TOM20 that were recorded with
different imager strand concentrations (5, 10, and 20 nM; Fig. 3a).
HAWKMAN generated a structure map of skeletonised structures that
showed the highest overlap between predicted and GT images for an
imager strand concentration of 10 nMbased on the higher presence of
yellow outlines in the map (Fig. 3b, yellow arrow). Similarly, the shar-
pening map reflects highest structural overlap for an imager strand
concentration of 10 nM (highest density of yellow structures), whereas
at a concentration of 5 nM, the structural envelope of the mitochon-
dria was not completely reconstructed (high density of cyan struc-
tures;white arrow), and at a concentrationof 20nMartefacts appear at
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the edge of structures due to artificial sharpening from the formation
of false structures outside the GT outline (Fig. 3c; magenta arrows
pointing atmagenta structures). This effectmaybe because an emitter
density at 20 nM is beyond the performance capability of the NN. PCC
values for structuremapand sharpeningmapare also highest at 10 nM,
with 0.66 and 0.68 respectively. The confidence maps support these
findings and show the highest confidence (cyan structures) at 10 nM

imager strand concentration (Fig. 3d). HAWKMANanalysis ofα-tubulin
structures in tissue show that structure dimensionality impacts the
prediction quality, in that, while 1D structures were predicted well for
all three imager strand concentrations, 2D structures were incomple-
tely predicted (Supplementary Fig. 3). For further image comparison
metrics, we applied (1) SQUIRREL to calculate the resolution-scaled
Pearson correlation coefficient (RSP), the resolution-scaled root mean
squared error (RSE) and an error map29; (2) the multi-scale structural
similarity index (MS-SSIM)30,31; and (3) determined the spatial resolu-
tion by decorrelation analysis32 (Supplementary Figs. 3–5, Supple-
mentary Note 1). Taken together, these metrics show that from the
imager strand concentrations tested and analysed, 5 nM showed the
best results for α-tubulin imaging (~6 emitters/µm2) and
TOM20 structures were comparable in image similarity for con-
centrations of 5 and 10 nM (~1.6 and 3.1 emitters/µm2 respectively). In
particular, for high epitope densities (see also Discussion) and high
concentrations of imager strands, the local density of emitters per µm2

may increase much beyond the average value and hence beyond the

Table 1 | Sequences of docking and imager strands

Name Sequence Modification

P1 docking strand TTATACATCTA 5′—Thiol

P5 docking strand TTTCAATGTAT 5′—Thiol

P1 imager strand TAGATGTAT 3′—Cy3B

P5 imager strand CATACATTGA 3′—Cy3B

R1 docking strand TCCTCCTCCTCCTCCTCCT 5′—Azide

R1 imager strand AGGAGGA 3′—Cy3B

a

Image similarity metrics

High emitter density
5 nM 10 nM 20 nM

Sum image

Frame x [nm] y [nm]
113 23108 36363

3103 34381 38933
. . . n

D
eepSTO

R
M

 m
odel

b Diffraction limited

20 pM

d

Low emitter
density

0.5 nM

Ground Truth c Prediction

NN training

Fig. 1 | Neural network (NN)-assisted DNA-PAINT imaging. a Sparse emitter
density DNA-PAINT images (20 pM imager strands) were summed into high emitter
density patches, and together with the single-molecule coordinates served as input
for the DeepSTORM U-Net architecture to train a DeepSTORMmodel (pink flow
chart). b DNA-PAINT imaging of tissue samples was performed with different
concentrations of fluorophore-labelled imager strands (5, 10, and 20 nM) yielding
varying emitter densities. High emitter density DNA-PAINT frames were input into

the trained DeepSTORM model (blue flow chart) and (c) super-resolution images
were predicted. d For the same sample, a ground truth (GT) image was generated
with low emitter density DNA-PAINT (0.5 nM imager strands) and used to assess the
reconstruction and quality of the predicted super-resolution image (yellow flow
chart). Yellow Picasso icon represents the ground truth image, DeepSTORM icon
represents the trained neural network. N = 1 image (b, c, d); scale bars: 0.5 µm (a),
2 µm (b, c, d).
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optimal operationwindowof the neural network, leading to a decrease
in the quality of structure prediction and the appearance of artificial
sharpening.

Quantitative imaging of functional nanostructures with NN-
assisted DNA-PAINT
Extending the application of the NN, we applied our workflow to
quantitative imaging of cellular structures at the nanoscale in neuronal
tissue.We chose two common synapticmarkers of the active zone, the
scaffold proteins Bassoon and Homer, which organise in a specific
spatial conformation and constitute the structural framework for
synaptic activity33. Bassoon is found on the presynaptic boundary
while Homer localises within the postsynaptic density. Both proteins
lie juxtaposed to each other and are separated by the active zone. The
cross-section of these two proteins in MNTB were previously imaged
with Exchange-PAINT, obtaining a size of ~280 nm lengthwise and
83 nm across, and a separation distance of ~143 nm23. Here, we imaged
Homer and Bassoon using an imager strand concentration of 5 nM and
a recording length of 800 frames, which we found minimised artificial
sharpening attributed to dense emitters at higher imager strand con-
centrations. We found that DeepSTORM was able to correctly predict
the structural conformation of these nanoscale proteins as well as
clearly resolve their spatial distance (Fig. 4a). To accurately study

DeepSTORMperformance, we quantified the cluster area of individual
Bassoon clusters (cross-section and en face) in GT and predicted
images. We found that DeepSTORM cluster size determined for each
individual cluster was in good agreement to cluster sizes determined
from GT images (Fig. 4b).

NN-assisted large-field super-resolution imaging
Super-resolution imaging of large samples requires recordingmultiple
neighbouring field-of-views and subsequent image stitching. SMLM
methods which use covalent dyes suffer from photobleaching around
the field-of-view because of laser illumination extending the area
capturedwith the camera34. In comparison, thebleaching-independent
fluorophore labels of DNA-PAINT ensure a constant replenishment at
the target epitope, rendering the method less sensitive to photo-
bleaching and enabling recording of large, multi-field-of-view images.
We demonstrate this feature in combination with NN-assisted SMLM
imagingof a large area ofMNTB tissue, inwhichCalyx ofHeld synapses
are densely organised (Fig. 5a)35. In a tissue sample labelled for α-
tubulin, 16 full-view patches were recorded in 1min per image, as
opposed to hours when using non-NN DNA-PAINT imaging. Images
were recorded with the same settings as single field-of-view images
(Fig. 2); NN-assisted image prediction was performed with the same
DeepSTORM model, assuring similar image quality as assessed for

Fig. 2 | Comparison between Exchange-PAINT super-resolution images of
ground truth (GT; yellow Picasso icon) and DeepSTORM predicted images
(DeepSTORM icon) in an MNTB tissue section. a, b Tissue sample labelled for α-
tubulin (red; P1 imager strand) and TOM20 (cyan; P5 imager strand) containing 5
cells (dotted lines) rendered asa (a) GT image (0.5 nM imager strandsP1, P5; 10,000

frames, 25min acquisition time) and (b) predicted image (5 nM P1, 10 nM P5; 400
frames, 1min acquisition time). c, dMagnified regions of (c i–vii) GT and compared
to (d i–vii) predicted images. N = 1 image (a–d); scale bars: 5 µm (a, b), 1 µm
(c, d i–vii).
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single field-of-view images (Fig. 3). This produced a large-view repre-
sentation of the underlying ultrastructure of the MNTB containing a
rich amountof information from themicroscale down to thenanoscale
(Fig. 5b). Unlike a confocal image where information breaks down at
the nanoscale, or a super-resolution image where only a fraction of
cells are found in one image, our stitchedmulti-patch image possesses
a top-down approach where a macroscale overview of a tissue section

can be magnified many folds to observe nanoscale details (Supple-
mentary Fig. 6). This demonstration shows the potential of NN-assis-
ted, high-density emitter image reconstruction for imaging large
samples. A straightforward extension to this method is the integration
of multiple target labels (Figs. 2, 4, Supplementary Fig. 7) with grid
imaging, for example to identify different cell populations in theMNTB
and nanoscale synaptic architecture at the active zone.
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Fig. 4 | Resolving synaptic active zone nanostructures Bassoon and Homer
using DeepSTORM. a Comparison of two images of presynaptic Bassoon (cyan)
and postsynaptic Homer (red) scaffold proteins in the active zone of neurons
between ground truth (GT; 0.5 nM, 10,000 frames, 25min; yellow Picasso icon) and
predicted images (5 nM, 800 frames; 2min; DeepSTORM icon). b The cluster area

of single Bassoon structures of GT plotted against DeepSTORM predicted clusters
to quantify structural similarity and reconstruction; slope = 91 and Pearson’s
r =0.99; n = 75 clusters from 3 tissue samples. Scale bars: 0.2 µm. Source data
are provided as a Source Data file.

Fig. 3 | Quantitative analysis of image similarity between ground truth (GT;
yellowPicasso icon) andpredicted super-resolution images (DeepSTORMicon)
using HAWKMAN. aGT (cyan) and DeepSTORM (DS) predicted images (magenta)
of a TOM20-labelled structure recorded for imager strand concentrations of 0.5, 5,
10, and 20 nM. b Structure map with Pearson correlation coefficients (PCC) indi-
cating either regions of good overlap between GT and predicted image (yellow
structures; yellow arrow), denser GT structures (cyan structures; white arrow) or

denser DeepSTORM predicted structures (magenta structures; magenta arrow).
c Sharpening map indicating regions of artificial sharpening with the same colour
scheme as the structure map. d Confidence map highlighting structures of high
confidence (cyan) and low confidence (red). b, c, d; first column) Schematic
explaining HAWKMAN maps. HAWKMAN applied to n = 1 ROI (a–d); scale
bars: 1 µm.
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Discussion
With the recent developments in artificial intelligence for microscopy,
a myriad of tools became available for SMLM, and with this the chal-
lenge of optimising the interface between imaging data and compu-
tational treatment36. Here, we present an experimental workflow that
facilitates the use of neural networks for high emitter density image
prediction by introducing the unique imaging features of DNA-PAINT.
The complementarity with DNA-PAINT imaging makes the application
of these networksmore robust, extends their capabilities and removes
barriers for their everyday implementation. Key features to this
method are (1) a constant and adjustable emitter density over time,
manoeuvring the experimental data into the optimal performance
window of a NN; (2) NN training with experimental imaging data as an
alternative approach to simulated single-molecule data; (3) sequential
imaging rounds of the same sample, which facilitate the recording of
low- and high-density data from the same structure for robust quan-
titative image similarity assessment; (4) multi-target prediction with
only a single NN-trained model for various structures; (5) large-field
imaging by the sequential grid imaging of multiple regions within a
large sample.

We implemented these experimental features and demonstrated
NN-assisted prediction of super-resolved cellular structures in
structure-conserved semi-thin brain tissue, using the DeepSTORM
network19. Key advantages to using DeepSTORM are (1) its significant
acceleration in image acquisition time, (2) reduced drift due to short
image acquisition time which in turn improves localisation precision37,
and (3) the reduced need for data storage capacity. In this study, a 1 to
2min imaging time at 5–10 nM imager strand concentration was suf-
ficient to produce structures comparable to GT images. Previous stu-
dies have compared DeepSTORM prediction to leading multi-emitter
algorithms and found that DeepSTORM computed much faster and
with better accuracy to ThunderSTORM21, FALCON and CEL019. Fur-
thermore, DeepSTORM is structure-independent in that one model
can be used for predicting various targets/structures without

generating hallucination artefacts (false predictions) stemming from
memorising structural features or inadequate training. For the imple-
mentation of Exchange-PAINT, we trained a single NN model with
DeepSTORM using experimental single-molecule data recorded at an
emitter density of 1.9 emitters/µm2. The reportedoptimalperformance
window of a DeepSTORM neural network is in the range of
+/−2 emitters/µm2,with a decrease in performance beyond this range19.
This window is in line with average emitter densities found for imager
strand concentrations of 5/10 nM we report for PAINT microscopy of
TOM20 and tubulin, derived from analysing image similarity with dif-
ferent metrics (Fig. 3). However, we note that cellular structures might
showvarying local epitopedensities,which e.g. becomes evidentwhen
comparing the organisation of tubulin in tissue (Fig. 2) to those in
cultured cells with predominantly linear filaments. Such local varia-
tions in epitope density might create hotspots of very high-density
emitter regions. The presented workflow with a single NN showed to
perform reasonably well for several targets and local variations in
emitter density, while at the same time providing a low-barrier entry to
NN-assisted, fast DNA-PAINT imaging. In addition, we found that the
trained model was robust for a considerable time, and performed
equally well many months after initial training on the same optical
setup (Supplementary Fig. 8). The performance of NN-assisted image
prediction could be increased by training multiple NNs over a wider
range of emitter densities and background intensities tailored towards
different targets, at the cost of simplicity. We would also like to note
that alsoother neural networks that determine the position of emitters
in high-density single-molecule data can be used with the presented
workflow.

Previous studies evaluated the performance of DeepSTORM in
simulated and experimental data using different analysis metrics19,21.
Other studies used DeepSTORM as a benchmark to assess the perfor-
mance of novel dense-emitter NNs16,18. To establish uniformity in ana-
lyses for similar studies, we propose several tools that quantify image
similarity to be used to assess the performance of SMLM-based DL

Fig. 5 | Accelerated large-sample imaging with DeepSTORM DNA-PAINT.
a Confocal microscopy image of an MNTB tissue section and a graphical repre-
sentation of calyces organised within the MNTB region (inset; blue indicates prin-
cipal cells and in grey are the postsynaptic Calyx of Held). b Large-area super-
resolution image recorded for the tissue area defined by the bounding box in (a).

The α-tubulin super-resolution image was obtained by imaging 55 µm×55 µm pat-
ches recorded with 10 nM imager strand P1 in a 4 × 4 grid-like fashion with 400
frames per patch, obtaining high-density DNA-PAINT frames in 1min per image and
a total imaging time of 16min. N = 1 tissue sample; scale bar 50 µm (a), 20 µm (b).
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tools. We found that SQUIRREL29 and HAWKMAN28 are complementary
analysis methods, where the former expounds intensity discrepancies
whereas the latter focuses on nanoscale structural (dis-)similarities. We
also note that other tools for quantitative image comparison are
available8,15,38. We found that a combination of visual inspection and the
selection of different quality metrics were most suitable for assessing
prediction quality (Fig. 3, Supplementary Figs. 3, 4).

Further to image similarity, spatial resolution is a relevant para-
meter in predicted and GT images.We applied decorrelation analysis32

and found that the spatial resolution in predicted images was,
throughout all imaging conditions (5, 10, and 20 nM imager strands),
slightly higher (~45 nm) than in GT images (~35 nm) (Supplementary
Fig. 4e). The difference in spatial resolution could be attributed to a
number of reasons such as the method of rendering by different
software, the effect of structure dimensionality, or the local density of
emitters whichmay impair the quality of a predicted image (Fig. 2c, d).

DeepSTORM has the option to train a model using either simu-
lated or experimental point spread functions (PSFs). Considerations
for choosing between these two training methods are the use of real
coordinates with artificial PSFs in simulated data versus real PSFs with
precision-limited coordinates in experimental data. In the first
instance, an excellent model of the microscope is required for the
transformation of the image into numerical values for generating
simulated PSFs. While the underlying coordinates of the emitters
would be exact in simulated PSFs, the quality of the NN model scales
with the similarity of the simulated PSF to the experimental PSF.
Conversely, the latter method using real images for training would
ensure that PSFs are identical to experimental datasets. However, the
coordinates of the PSFs include an error originating from the locali-
sation precision of the emitters, which will influence the quality of
predicted images. In conclusion, the choice of the training method
either requires accurate extraction of PSF information or experimental
algorithms providing excellent localisation precision. To demonstrate
the preparation of an experimental dataset using DNA-PAINT, the
training dataset used for our model was derived from experimental
PSFs on the sameoptical setup (Fig. 1). The advantage of DNA-PAINT is
evident here as the imager strand concentration can be reduced until a
sparse emitter dataset is obtained, suitable for isolating single-PSF
patches. This bypasses the need to determine experimental para-
meters needed for the simulation of single-molecule data. Further-
more, large amounts of training data in the range of simulation-based
approaches15,19 can easily be generated. The calculated error that is
encoded in the emitter coordinates derived from the experimental
data is 5.2 nm±0.8 nm, extracted from a nearest neighbour analysis in
adjacent frames39. Based on the quality of predicted images here, the
training method using experimental PSFs and the determined emitter
localisation support very good NN performance.

The performance of a model trained with DeepSTORM has an
optimal operation range with respect to emitter densities, and image
prediction might break down above a certain density threshold.
Nehme et al. report good network performance up to 6 emitters/µm219.
In this work, a range of imager stand concentrations were used to
determine the best prediction output. Increasing the imager strand
concentration results in an increase in emitter density, which reduces
the number of frames required to obtain a fully formed image, hence
improving temporal resolution. However, beyond this point, one
introduces (1) too high emitter densities which are then predictedwith
lower accuracy and yield worse spatial resolution, and (2) higher
fluorescence background in the buffer, which reduces frame SNR, to
which DeepSTORM is susceptible19.

The prediction quality is also dependent on the dimensionality of
structures where complex 2D shapes were reconstructed with lower
precision compared to simple 1D structures (Fig. 2). Consequently, we
found that an optimal imager strand concentration is structure
dependent, with dense structures like tubulin requiring lower

concentrations compared tomitochondria. Furthermore, an increasing
imager strand concentration is beneficial only as long as the docking
strands on the samples are not saturated with imager strands. Beyond
this concentration, only background fluorescence increases without an
increase in emitter density. This depends on the local abundance of a
target epitope. In addition, the heterogeneity in target density in tissue
creates high-density hotspots of protein clusters that produce
high emitter densities which reach the limits of the NN-prediction.
Using Exchange-PAINT, the optimal density of emitters can be tailored
towards the structures being imaged, thereby maintaining good image
quality and short imaging time. Nevertheless, DeepSTORM prediction
was found to be very robust as themodel was able to handle a range of
emitter densities, from 5 to 10 nM imager strand concentrations (Fig. 3,
Supplementary Figs. 3, 4). At 20 nM, DeepSTORM performance dete-
riorated, likely due to lower SNR and locally excessively overlapping
emitters. The blob-like or pixelated appearance of predicted images is
also a feature of DeepSTORM, which becomes more evident at very
high imager strand concentrations. These trade-offs need to be con-
sidered for each target. Taking into account the diversity of targets we
studied, we found an imager strand concentration of 5 nM and
400–800 frames as good starting parameters.

The presented workflow makes use of the DeepSTORM neural
network,which is implemented into the low-entry-barrier environment
ZeroCostDL4Mic21. This environment is designed to democratise and
encourage the use of NNs in high-performance microscopy, and pro-
vides robustness and simplicity of use, extensive documentation and
expert support, a selection of sample data, and access to decentralised
high-performance computing resources. We believe that this envir-
onment is very attractive to many users that are either non-experts in
NNs, or not equipped with the necessary computing performance.
Thus, we envisage that our workflowmay push the use of NNs for high-
speedDNA-PAINT and SMLM ineveryday super-resolutionmicroscopy
experiments. The currently available package of DeepSTORM is
designed for 2D imaging data. 3D adaptation of this DNA-PAINT
workflow can be easily implemented by using NNs capable of handling
3Ddatasets suchasDeepSTORM3DandDECODE15,20. Furthermore, our
method for preparing training datasets can be extended to using other
localisation algorithms of the user’s choice such as spline- or MLE-
based fitting.

In conclusion, the combination of DNA-PAINT SMLM with a high-
density emitter NN has proven to be a robust method for super-
resolution structure prediction in neuronal tissue. Themodel was able
to generalise well for a range of emitter densities and structural
morphologies. Furthermore, the concurrent use of DNA-PAINT and
DeepSTORM allows for more control over emitter densities and fur-
ther enhances DeepSTORM efficiency as the whole dataset is at its
optimal working range. With the constant emitter density and photo-
stability of DNA-PAINT, a large-sample area can be imaged in a matter
of minutes. Before the incorporation of DL tools into super-resolution
microscopy, there had been a trade-off between image size and image
resolution. Based on the proof-of-concept shown here, it is possible to
overcome this trade-off using DL tools to be able to get a bird’s eye
view of the sample while also magnifying down to the nanoscopic
details of individual proteins. Coupled with Exchange-PAINT, multi-
target high-throughput microscopy is possible for the large-scale
classification of samples with the screening of nanostructures in a
software-aided decision process. We envision this to develop into a
powerful tool for biological discovery and biomedical diagnostics.

Methods
Ethics approval
All experiments that involved the use of animals were performed in
compliance with the relevant laws and institutional guidelines of
Baden–Württemberg, Germany (protocol G-214/20) and approved by
the Regierungspraesidium Karlsruhe.
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Tissue preparation
Animals were kept under environmentally controlled conditions in the
absence of pathogens and ad libitum access to food and water. Pre-
paration of brain sections containing the MNTB was performed
according to an established protocol25 with slightmodifications. Either
male or female Sprague-Dawley rats (Charles River) at postnatal day 13
were anaesthetised and perfused transcardially with PBS followed by
4% paraformaldehyde (PFA) in PBS (Sigma-Aldrich). Brains were dis-
sected and further fixed in 4% PFA overnight at 4 °C. Next, 200 µm
thick vibratome (SLICER HR2, Sigmann-Elektronik, Germany) sections
of the brainstem containingMNTBwere prepared.MNTBwere excised
and infiltrated in 2.1M sucrose (Sigma-Aldrich) in 0.1M cacodylate
buffer at pH 7.4 overnight at 4 °C. Tissue was mounted on a holder,
plunge-frozen in liquid nitrogen in 2.1M sucrose and semi-thin sec-
tions of 350 nm were cut using the cryo ultramicrotome (UC6, Leica).
Sectionswere picked upwith a custommademetal loop in a droplet of
1% methylcellulose and 1.15M sucrose and transferred to 35mm glass
bottom dishes (MatTek, USA) pre-coated with 30 µg/ml of fibronectin
from human plasma (Sigma-Aldrich) and nanodiamonds (100nm;
Adamas Nanotechnologies, USA) as fiducials. Dishes containing sec-
tions were stored at 4 °C prior to their use. For tissue staining, the
tissue sections were thawed and washed with PBS three times with
15min incubation each to remove the sucrose droplet and then
labelled with antibodies.

Antibody-DNA conjugation
Secondary antibodies of donkey anti-mouse (715-005-151), donkey
anti-rabbit (711-005-152), and donkey anti-chicken (703-005-155), were
purchased from Jackson ImmunoResearch. DNA strands were pur-
chased fromMetabion with a thiol or azide modification on the 5′ end
for each docking strand and a Cy3B dye on the 3′ end for the imager
strands (Table 1).The antibody to thiol-DNA docking strand conjuga-
tion was prepared using a maleimide linker24. The thiolated DNA
strands were reduced using 250mM DTT (A39255, ThermoFisher Sci-
entific). The reduced DNA was purified using a Nap-5 column
(17085301, GE Healthcare) to remove DTT and concentrated with a
3 kDa Amicon spin column (UFC500396, Merck Milipore). Antibodies
(>1.5mg/mL) were reacted with the maleimide-PEG2-succinimidyl
ester crosslinker (746223; Sigma-Aldrich) in a 1:10 molar ratio, pur-
ified with 7 K cutoff Zeba desalting spin columns (89882, Thermo-
Fisher Scientific) and concentrated to >1.5mg/mL. The DNA and
antibody solutions were cross-reacted at a 10:1 molar ratio overnight
and excess DNA was filtered through a 100 kDa Amicon spin column
(UFC510096, Merck Milipore). Azide-DNA conjugation (R1) was per-
formed using the DBCO-sulfo-NHS ester linker (CLK-A124-10; Jena
Bioscience)24. Concentrated antibodies were conjugatedwith the ester
linker at a 1:10 molar ratio, 90mins, at 4 °C, and subsequently reacted
with azide-DNA at 1:10 molar ratio, overnight at 4 °C. Filtration was
performed as described above for each step. The antibody-DNA solu-
tions were stored at 4 °C.

Tissue labelling
Tissue samples were labelled with primary antibodies against α-
tubulin-mouse (T6199, Sigma-Aldrich; clone DM1A; dilution 1:500),
TOM20-rabbit (sc-11415, Santa Cruz Biotechnology; dilution 1:80),
Bassoon-mouse (SAP7F407, Enzo Life Sciences; clone SAP7F407;
dilution 1:500), Homer1-rabbit (160003, Synaptic Systems; dilution
1:500), Glial Fibrillary Acidic Protein-chicken (GFAP; 173006; Synaptic
Systems; dilution 1:500), or Neurofilament M-mouse (NF-M; 171241,
Synaptic Systems; clone 103H5A1; dilution 1:500). Validation of these
commercial antibodies are included in the Reporting Summary. Tissue
samples in dishes werewashed with PBS three times for 10min each to
remove the sucrose-methylcellulose layer and blocked with 5% foetal
calf serum (FCS; Gibco) for 30min. The primary antibodies were
diluted in 0.5% FCS and applied to the tissue section for 1 h at room

temperature (rt) and washed off three times with PBS. The conjugated
secondary antibody-DNA docking strand (5.8mg/mL stock; dilution
1:100) in 0.5% FCS was applied onto tissue for 1 h at rt and washed 3
times with PBS.

SMLM setup
DNA-PAINT microscopy was performed on a home-built SMLM setup
with an Olympus IX81 inverted microscope frame equipped with an
Olympus 150× TIRF oil immersion objective (UIS2, 1.49NA). The sam-
ples were illuminated in HILO mode40 using a 561 nm laser line
(Coherent Sapphire LP) at an illumination density of 0.88 kW/cm2

through a 4 L TIRF filter (TRF89902-EM, Chroma Technology) and
ET605/70Mnm bandpass filter (Chroma Technology). Signals were
detected with an Andor iXon EM+ DU-897 EMCCD camera (Andor,
Ireland). SMLM frames were acquired using multi-dimensional acqui-
sition (MDA) mode in Micro-Manager 2.0-gamma41.

DNA-PAINT imaging
DNA-PAINT imaging was performed in Buffer C (2.5M NaCl; S7653,
Sigma-Aldrich in 5x PBS; 14200-059, Gibco Fisher Scientific) supple-
mented with 1mM ethylenediaminetetraacetic acid (EDTA; E6758,
Sigma-Aldrich), 2.5mM 3,4-dihydroxybenzoic acid (PCA; 03930590,
Sigma-Aldrich), 10 nM protocatechuate 3,4-dioxygenase pseudomo-
nas (PCD; P8279, Sigma-Aldrich), and 1mM (±)−6-hydroxy-2,5,7,8-tet-
ramethylchromane-2-carboxylic acid (Trolox; 238813-5G, Sigma-
Aldrich). Oxygen scavenging buffers PCA andPCDwere used to reduce
site-loss labelling due to DNA docking strand damage by ROS42. To
obtain images for training the DeepSTORM model, 20 pM P5 imager
strands were imaged in TOM20-labelled tissue samples. For conven-
tional DNA-PAINT imaging with Picasso software (v0.2.8) analysis to
obtain a GT super-resolution image, P strands (P1 and P5) were imaged
at an imager strand concentration of 0.5 nM for 10,000 frames and
acquisition rate of 150ms for both α-tubulin (P1) and TOM20 (P5), or
Bassoon (P1) and Homer (P5), or NF-M (P1). GFAP (R1; concatenated
docking strands for fast imaging43) was imaged with a 0.2 nM imager
strand concentration at 100ms for 10,000 frames. High-density
emitter DNA-PAINT datasets for DeepSTORM image prediction were
obtained by imaging protein targets with P1 or P5 at imager strand
concentrations of 5 nM, 10 nM, and 20nM for 400 frames. Bassoon
and Homer were imaged with 5 nM concentration for 800 frames.
GFAP (R1) was imaged at a concentration of 1 nM for 400 frames.
Exchange-PAINT was performed manually by adding the imaging
buffer to the sample chamber and acquiring camera images.Thebuffer
was then removed and the sample washed five times with 1× PBS to
remove all imager strands. The subsequent imaging buffer containing
the second imager strand was then added and the procedure repeated
to image the second target.

Raw DNA-PAINT frames imaged with 0.5 nM imager strands were
processed and rendered using Picasso software24. Events in each frame
were localised by fitting using the Maximum Likelihood Estimation for
Integrated Gaussian parameters44. The localised events were then fil-
tered by their width and height of the Point Spread Function (sx, sy).
The resulting localisations were drift-corrected using redundant cross-
correlation (RCC), rendered using the ‘One Pixel Blur’ function and
further processed using the ‘linked localisations’ function to merge
localisations that appeared in multiple consecutive frames. Rendered
images were oversampled to match the pixel size of DeepSTORM
images. Images were merged in Fiji45 using the ‘merge channels’ tool
and aligned by linear transformation using nanodiamonds as regis-
tration reference (Supplementary Fig. 7, yellow arrows). The individual
channels were assigned pseudo-colours.

Super-resolution large-sample imaging on α-tubulin was per-
formed using DNA-PAINT imaging with 10 nM P1 imager strands. Four
hundred DNA-PAINT frames per imaging area were acquired in a grid-
like fashion of 4 × 4 with an overlap of ~10% between images. The
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images were registered using Inkscape software based on structural
similarity. The whole image is available on https://doi.org/10.5281/
zenodo.696613246. Confocal microscopy for α-tubulin was performed
on aNikonC2 Plus with a Nikon Plan Fluor 40× oil immersion objective
(NA 1.30). The tissue sample was imaged on 300nM P1 imager strands
in Buffer C 1× with a 561 nm excitation laser.

Generating training patches
DeepSTORM model training requires a high-density emitter dataset
with precise emitter coordinates/localisations. This dataset was artifi-
cially generatedby adding up sparse emitter frames fromaDNA-PAINT
image acquisition experiment to create patcheswithoverlappingpoint
spread functions togetherwith their precise localisation coordinates. A
customscriptwaswritten for this task and is available at https://github.
com/JohannaRahm/ImageSumming (ImageSumming version 220306,
Python 3.9.2)47. Patches from the sparse emitter frames (20 pM) and
their localisation coordinates obtained from Picasso localisation soft-
ware were randomly selected and summed up to create high-density
emitter patches with matching localisation lists. The summing up of n
number of patches introduces additional camera offset which was
corrected by subtracting the value of the camera offset n − 1 times
from the high emitter density patches. The camera offset was esti-
mated as the average pixel intensity of frames acquired with a closed
shutter.

A low emitter density DNA-PAINT dataset of tissue labelled for
TOM20 was recorded using an imager strand concentration of 20pM
to obtain sparse and isolated single events at a density of
0.028 emitters/µm2. To generate training patches, 5000 DNA-PAINT
framesof 512 × 512 pixelswere input into the ImageSumming software.
Aminimum of 1 emitter per patch (17 × 17 pixels) was produced. These
patches were summed up randomly to generate 30,000 high-density
emitter patches at a mean emitter density of 1.9 emitters/µm2 with
a 17 × 17 pixel patch size and its corresponding localisation
coordinate list.

DeepSTORM training and prediction
DeepSTORM model training was performed on Google Colab. The
resources allocated for DeepSTORMon Colab was NVIDIA-SMI 460.56
with CUDA version 11.2 and Tensorflow version 2.4.1 or 2.5.0. The
model used for prediction was trained with 30,000 summed patches
and a density of 1.9 emitter/µm². Training took 35min with ColabPro.

Raw images with low emitter density, high emitter density sum-
medpatches used for NN training, andmodelmetadata are available at
https://doi.org/10.5281/zenodo.696613246. Summed image patches
along with the localisation list served as input for the ZeroCostDL4Mic
Colab notebook21. To directly use the summed image patches as input,
the number of patches per frame was set to 1 and the patch size to 16.
The maximum number of patches was set to 30,000, minimum
number of patches to 1, and default values were used for other para-
meters. Training parameters were set with a number of epochs of 100,
batch size of 256, number of steps of 0, percentage validation of 15,
and initial learning rate of 10−5.

For high emitter density image prediction, 512 × 512 pixels of 400
frames were input into DeepSTORM. A batch size of 1 was used with
default values for other parameters. Predictions were performed on
DNA-PAINT frames with imager strand concentrations of 5 nM, 10 nM,
and 20nM. Prediction took 7 to 25min depending on the resources
allocated by Colab (Colab/ColabPro). Training and prediction para-
meters are detailed in Supplementary Table 1. An artificial high-density
dataset was generated by drift-correcting, randomising, and adding up
low-density frames (0.5 nM) and subtracting the (n − 1)*offset using the
ImageSumming software (DeepSTORM2DAddOns). Assuming a linear
increase of emitters with the summing of frames, the frames were
summed in groups of 10, 20, and 40 to correspond to 5, 10, and 20nM
emitter density, and each final set contained 400 frames for

prediction. Predicted DeepSTORM images from artificially-generated
frames were obtained and compared to the experimental data using
HAWKMAN (Supplementary Fig. 9). For DeepSTORM extraction of
localisations (Supplementary Fig. 10), the high-density TOM20
experimental dataset (10 nM) and artificially-generated dataset
(Sum20) were used. Both experimental and artificial frames had
approximately the same number of emitters (~3.15 emitters/µm²)
assuming a linear relationship between imager strand concentration
and number of emitters, and 400 frames. Emitter localisations/coor-
dinates were extracted from the DeepSTORM predicted images using
the post-processing section in the Colab notebook version 1.13. This
step includes the three parameters “threshold”, “neighborhood_size”
and “use_local_average”. The threshold must be exceeded by a point’s
brightness to be selected as a localisation, and was set to generate
approximately the same amount of localisation compared to the
available ground truth. The neighbourhood size and local averaging
were set to achieve themaximum image similaritywhen comparing the
rendered DS localisation image to the ground truth. The neighbour-
hood size was set to 3 and the local averaging was activated.

Image analysis
Picasso-rendered ground truth (GT) andDeepSTORMpredicted super-
resolution images were visualised and analysed in Fiji45. Same-target
images (α-tubulin or TOM20) or Exchange-PAINT imagesweremerged
and registered in Fiji using theRegisterChannels tool in theNanoJCore
plugin32,48 or using fiducial nanodiamond markers.

Five imageswereobtained forα-tubulin andTOM20, imaged from
the same tissue sample and image similarity metrics were applied
either on the whole image (MS-SSIM, Decorrelation Resolution) or
images cropped at the edges (SQUIRREL, HAWKMAN; ~25 × 25 µm²),
unless stated otherwise. The spatial resolution was calculated for GT
and DeepSTORM predicted images using an ImageJ plugin for dec-
orrelation analysis32. Multi-scale structural similarity index was mea-
sured using the MS-SSIM plugin in Fiji30,31. GT and predicted images
were intensity-normalised, registered, and analysed at 16-bit depth.
Each predicted image was compared to GT to obtain the multi-scale
structural similarity index between two images.

For SQUIRREL analysis29, predicted images (with imager strand
concentrations of 5, 10, 20 nM) were used as reference images against
GT images (with imager strand concentration of 0.5 nM, renderedwith
Picasso) as the test images at 32-bit depth. A magnification factor of 1
was used. The GT images were both intensity-normalised and Point
Spread Function convolved by SQUIRREL, and an error map,
Resolution-Scaled Error (RSE), and Resolution-Scaled Pearson (RSP)
was output. SQUIRREL was also used to compare GT images with
diffraction-limited images. Raw DNA-PAINT frames were z-projected
with average intensity for the number of frames used to render the
final super-resolution image, i.e. 10,000 frames for 0.5 nM GT image,
and 400 frames for the 5, 10, and 20 nM DeepSTORM predicted ima-
ges. The z-projected image was input into SQUIRREL as a reference
image and compared to its corresponding super-resolution image,
yielding an error map, RSE, and RSP as output. For HAWKMAN
analysis28, super-resolution GT and predicted images were registered
and converted to 8-bit. The images were input into HAWKMAN
with GT as reference images and DeepSTORM prediction as test ima-
ges. The calculated length scale was 23 nm/pixel. A pixel scale of 3
corresponding to a 69 nm length scale was chosen for the analysis
based on the upper bounds of decorrelation resolution of predicted
images.

Bassoon cluster analysis was performed using an object-based
analysis method in Fiji. Briefly, Bassoon images were binarized using
the Otsu thresholding and the cluster area was calculated with the
Analyze Particles function. Corresponding area of each cluster
between GT and DeepSTORM was plotted for n = 75 from 3 biological
tissue samples.
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Frame length vs. DeepSTORM performance study was performed
by cropping high-density movies (5, 10, 20 nM) into different frame
lengths of 50, 100, 200, 400, 600, 1000, and 2000 frames. For each
frame length, a super-resolution image was predicted with Deep-
STORM and measured for image similarity against GT using HAWK-
MAN. Three whole images per data point weremeasured, taken for the
same tissue sample.

Statistics and reproducibility
One DeepSTORM model was trained and used on all high-density
emitter images. Five different images of low-density and high-density
emitters were obtained from a tissue sample to study the quality of the
DeepSTORMmodel and similar results were obtained for imageswithin
treatment groups. One-way ANOVA was performed for statistical sig-
nificance in Supplementary Fig. 4. For the Bassoon cluster analysis in
Fig. 4, 75 Basson structures from three tissue samples were analysed
and fitted with a simple linear function. All graphing and statistical
analyses were performed in OriginLab. No statistical method was used
to predetermine sample size. No data was excluded from the analyses.
The experiments were not randomised. The Investigators were not
blinded to allocation during experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data from this study are publicly available. (1) The raw data used to
create high-density patches for NN training, (2) summed high-density
patches with localisation list to train the NN, (3) the trainedmodel and
weights, (4) high-density movies of α-tubulin and TOM20 from which
high-resolution images were predicted with the neural network, (5)
low-density movies of 0.5 nM imager strands concentration, (6) ren-
dered ground truth images of α-tubulin and TOM20, (6) Bassoon and
Homer ground truth images with corresponding high-density frames,
and (7) large stitched super-resolution image obtained with the NN
have been deposited in the Zenodo database under accession code
https://doi.org/10.5281/zenodo.6966132 (Version 5)46. Source data are
provided with this paper.

Code availability
Software to prepare high-density training patches and artificially-
generated high-density datasets is freely available at https://github.
com/JohannaRahm/ImageSumming47.
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