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Abstract: High homocysteine (Hcy) levels, mainly caused by vitamin B12 deficiency, have been
reported to induce amyloid-β (Aβ) formation and tau hyperphosphorylation in mouse models of
Alzheimer’s disease. However, the relationship between B12 deficiency and Aβ aggregation is poorly
understood, as is the associated mechanism. In the current study, we used the transgenic C. elegans
strain GMC101, which expresses human Aβ1–42 peptides in muscle cells, to investigate the effects of
B12 deficiency on Aβ aggregation–associated paralysis. C. elegans GMC101 was grown on nematode
growth medium with or without B12 supplementation or with 2-O-α-D-glucopyranosyl-L-ascorbic
acid (AsA-2G) supplementation. The worms were age-synchronized by hypochlorite bleaching and
incubated at 20 ◦C. After the worms reached the young adult stage, the temperature was increased to
25 ◦C to induce Aβ production. Worms lacking B12 supplementation exhibited paralysis faster and
more severely than those that received it. Furthermore, supplementing B12-deficient growth medium
with AsA-2G rescued the paralysis phenotype. However, AsA-2G had no effect on the aggregation
of Aβ peptides. Our results indicated that B12 supplementation lowered Hcy levels and alleviated
Aβ toxicity, suggesting that oxidative stress caused by elevated Hcy levels is an important factor in
Aβ toxicity.

Keywords: Alzheimer’s disease; amyloid-β; Caenorhabditis elegans; oxidative stress; reactive oxygen
species; vitamin B12

1. Introduction

B12 is a water-soluble vitamin that is well known for its complex chemical struc-
ture. The B12 molecule is composed of a corrin ring with a central cobalt atom linked to
dimethylbenzimidazole. B12 exists in four different chemical forms, depending on the
chemical group bound to the cobalt atom. Most commercially available B12 supplements
contain a cyano group and are known as cyanocobalamin. In biological systems, the cyano
group can be replaced with adenosyl, or methyl group to form the biologically active form
adenosylcobalamin (AdoCbl), or methylcobalamin (MeCbl), respectively [1]. Humans
mainly acquire B12 by consuming meat, dairy products, fish, and shellfish, as plants and
mushrooms do not contain substantial amounts [2].

B12-protein complexes in food must be digested by pepsin in the stomach to enable
absorption. Free B12 is transported by three different B12-binding proteins, haptocorrin,
intrinsic factor, and transcobalamin, before being absorbed in the small intestine. Elderly
people tend to have a lower rate of B12 absorption due to a high prevalence of atrophic
gastritis [3], which decreases the production of pepsin and intrinsic factor, resulting in B12
malabsorption. Therefore, vegetarians and the elderly are the most prone to B12 deficiency.

B12 plays an important role in the production of red blood cells, synthesis of DNA,
and protection of the nervous system [1,4]. The active forms, AdoCbl and MeCbl, func-
tion as cofactors for the enzymes methylmalonyl-CoA mutase (MCM, EC 5.4.99.2) and
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methionine synthase (MS, EC 2.1.1.13), respectively. MCM catalyzes the isomerization of
L-methylmalonyl-CoA to succinyl-CoA, whereas MS catalyzes the synthesis of methion-
ine from homocysteine (Hcy) [4]. B12 deficiency disrupts the homeostasis of propionate
catabolism and the S-adenosyl methionine cycle, leading to the accumulation of Hcy and
methylmalonic acid (MMA), a decrease in reduced glutathione levels, and a decrease in im-
mune response control, resulting in oxidative stress [5]. Oxidative stress occurs when there
is an imbalance between the production of reactive oxygen species (ROS) and the avail-
ability of antioxidants in the body. Furthermore, excessive production of ROS leads to the
degradation of macromolecules, resulting in cellular damage that triggers various diseases
such as diabetes, cardiovascular diseases, carcinogenesis, and neurodegeneration [5].

Alzheimer’s disease (AD) is the most common cause of dementia, accounting for
60–80% of all cases, and has been estimated to affect approximately 10–30% of people
over 65 years old [6,7]. AD is characterized by the extracellular aggregation of Aβ and the
accumulation of hyperphosphorylated tau protein in neurons (neurofibrillary tangles) [7].
Aβ peptide found in the brains of patients with AD is generated after consecutive cleavages
of amyloid precursor protein (APP) by β- and γ-secretases [8]. Although AD has been
studied for more than a century, owing to its complex mechanism, many clinical trials
conducted to discover effective therapeutic strategies against AD have failed [9]. Current
treatments for AD only treat the symptoms and are unable to prevent progression of the
disease [7].

B12 deficiency has been proposed as a risk factor for AD [1]. In addition, elevated
plasma Hcy levels, mainly caused by B12 deficiency, have been observed in elderly individ-
uals with mild cognitive impairment [1]. Furthermore, a study using transgenic mouse
models of AD reported that hyperhomocysteinemia causes memory deficits, increases Aβ

peptide accumulation, and increases tau phosphorylation—the three major pathological
features of AD [10]. However, whether a high plasma Hcy level is the primary factor in
AD pathology in humans or merely a marker for another underlying condition, such as
low folate level, poor lifestyle, or renal failure, is still under debate [11]. In addition, other
consequences of B12 deficiency, such as mitochondrial dysfunction and oxidative stress [5],
must also be considered to understand the relationship between high plasma Hcy levels
and the mechanism of AD.

Caenorhabditis elegans is a powerful genetic model organism that was introduced by
Sydney Brenner [12]. This free-living roundworm has been widely used as an animal model
in various fields of study, including neurodegenerative disease research. In our previous
study, we successfully induced B12 deficiency in C. elegans by growing them in M9 minimal
media with Escherichia coli OP50 as a food source [13]. Worms fed a strict B12-restricted diet
exhibited elevated Hcy and MMA levels, fertility loss, extended life cycles, and reduced
lifespans. In addition, C. elegans grown on nematode growth medium (NGM) with E. coli
OP50 as a food source have also been reported to exhibit B12 deficiency [14].

Transgenic C. elegans worms expressing Aβ peptides have been engineered to mimic
the pathological features of AD [15]. Multiple strains of transgenic worms have been
developed to produce Aβ peptides. In the C. elegans strain, GMC101, the production of
Aβ1–42 peptides in muscle cells is induced by temperature upshift [16]. In the current
study, we used the GMC101 strain to investigate the effects of B12 deficiency on Aβ peptide
toxicity and to gain a better understanding of the relationship between B12 deficiency
and AD.

2. Materials and Methods
2.1. C. elegans Strains

Pacdh-1::GFP (VL749) transgenic worms were used as reporters of dietary B12 sta-
tus [14]. The VL749 and GMC101 strains used in the current study were provided by the
Caenorhabditis Genetic Center (CGC), funded by the NIH Office of Research Infrastructure
Programs (P40 OD010440). The worms were maintained at 20 ◦C.
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2.2. Preparation of B12-Deficient Worms

Worms grown on NGM (1 mmol/L MgSO4, 1 mmol/L CaCl2, 5 mg/L cholesterol,
25 mmol/L KPO4 (pH 6), 17 g/L agar, 3 g/L NaCl, and 2.5 g/L bacto-peptone) without
cyanocobalamin were considered B12 deficient. Worms administered B12 supplementation
were grown on NGM with 100 µg/L cyanocobalamin.

2.3. Fluorescence Imaging of Pacdh: GFP Transgenic Worms

Worms were age-synchronized by hypochlorite bleaching and grown at 20 ◦C on
NGM with or without B12 supplementation until they reached the young adult stage. The
worms were then mounted on 5% agarose gel, and fluorescence images were captured
using an SZX-RFL-2 fluorescence microscope (Olympus Co., Tokyo, Japan).

2.4. Measurement of B12-Related Biomarkers Using Liquid Chromatography–Mass Spectrometry
(LC-MS/MS)

The N2 Bristol C. worms were age-synchronized by hypochlorite bleaching and
grown at 20 ◦C on NGM with or without B12 supplementation until they reached the
young adult stage. Then, the worms were collected from the plates and washed using M9
buffer. The worm pellets were then homogenized, and the supernatant was used for the
measurement of Hcy and MMA levels via LC-MS/MS according to the methods described
by Weaving et al. [17] and Mineva et al. [18], respectively.

2.5. Paralysis Assay

The paralysis assay was performed using GMC101 transgenic worms expressing
Aβ peptide according to the method described by McColl et al. [16]. Briefly, C. elegans
GMC101 was grown on NGM with or without B12 supplementation or with AsA-2G
supplementation. The worms were age-synchronized by hypochlorite bleaching and
incubated at 20 ◦C. After the worms reached the young adult stage, the temperature was
increased to 25 ◦C to induce Aβ production. The number of paralyzed worms was counted
at 12 h intervals. Worms unable to perform full-body wave propagation were scored
as paralyzed.

2.6. Quantitative Reverse Transcription PCR (qRT-PCR)

GMC101 worms were age-synchronized by hypochlorite bleaching and grown at
20 ◦C on NGM with or without B12 supplementation until they reached the young adult
stage. Worms were then transferred to NGM plates containing 75 µmol/L 5-fluoro-2′-
deoxyuridine, and the temperature was increased to 25 ◦C to induce Aβ peptide expression.
After 24 h, worms were collected, snap-frozen in liquid nitrogen, and stored at -80 ◦C
until RNA extraction was performed using Sephasol®-RNA1 (Nacalai Tesque, Kyoto,
Japan). Total RNA was used for cDNA synthesis using the PrimeScript™ RT Reagent
Kit with gDNA Eraser (Takara Bio, Shiga, Japan). The following primers were used for
the amplification: actin-1 (T04C12.6) (F) 5′-TCCAAGAGAGGTATCCTTACCC-3′ and (R)
5′-CTCCATATCATCCCAGTTGGTG-3′; Aβ (F) 5′-GCGGATGCAGAATTCCGACATGAC-
3′ and (R) 5′-TATGACAACACCGCCCACCATGAG-3′. qPCR was performed on a CFX
Connect Real-Time System (Bio-Rad Laboratories, Inc., Berkeley, CA, USA) using GeneAce
SYBR® qPCR Mix α (Nippon Gene Co., Ltd., Tokyo, Japan). The mRNA level of Aβ was
normalized to that of actin-1.

2.7. In Situ Detection of Intracellular ROS

Intracellular ROS production was detected via 2′,7′-dichlorodihydrofluorescein di-
acetate (DCFH-DA) assay, as previously described [19]. Briefly, N2 worms were age-
synchronized by hypochlorite bleaching and grown at 20 ◦C on NGM with or without B12
supplementation until they reached the young adult stage. The worms were then collected
from the plates and washed with M9 buffer. DCFH-DA was dissolved in dimethyl sul-
foxide, diluted to a final concentration of 100 µM using sterilized M9 medium, and used
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as a staining solution. Worms grown with or without B12 supplementation (labeled B12
+

and B12
−, respectively; approximately 12 worms per group) were treated with 1 mL of

the staining solution for 5 h in the dark. Following the staining, the worms were washed
10 times with sterile water and mounted on 5% agarose gel. Fluorescence images were
captured using the BZ-9000 series HS All-in-One fluorescence microscope with an FITC
filter (Keyence, Osaka, Japan). The anterior part of the worms was observed. Exposure
time was 666 ms. Fluorescence intensity was quantified using ImageJ (ImageJ Software,
Bethesda, MD, USA, http://imagej.nih.gov/ij/, accessed on 18 May 2021) for 8 worms per
treatment condition.

2.8. Immunoblot Analysis

Immunoblot analysis was performed as previously described [20], with a few modifi-
cations. GMC101 worms were weighed and homogenized in 500 µL of phosphate-buffered
saline. The homogenates were centrifuged at 800× g for 10 min, and the supernatants were
subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE) and
immunoblotting. SDS–PAGE was performed using p-PAGEL slab gels (P–T16.5S; ATTO
Corporation, Tokyo, Japan) according to the manufacturer’s instructions.

The gels were then stained with Coomassie Brilliant Blue R-250, and proteins were
transferred to polyvinylidene difluoride membranes (Immuno-Blot PVDF; Bio-Rad Labora-
tories, Hercules, CA, USA) using an electroblotting apparatus (model 200/2.0, Bio-Rad Lab-
oratories) set at 13 V for 30 min. Aβ peptide was detected using a monoclonal anti-Aβ1–16
primary antibody (BioLegend, San Diego, CA, USA) and an anti-mouse IgG–horseradish
peroxidase conjugate (Promega Corp. Madison, WI, USA) secondary antibody. Tubulin (the
loading control) was detected using a monoclonal anti-tubulin primary antibody (ab6160,
Abcam, Cambridge, MA, USA) and an anti-mouse IgG–horseradish peroxidase conjugate
(SA00001-15, Proteintech Japan, Tokyo, Japan) secondary antibody. Signals were detected
using EzWestBlue (ATTO Corporation) according to the manufacturer’s instructions.

2.9. Statistical Analyses

Statistical differences were assessed using the two-tailed Student’s t-test with para-
metric unequal variance in Microsoft Excel 2013 (Microsoft, Redmond, WA, USA). Data
in graphs are presented as the mean ± standard deviation (SD). Values of p < 0.05 were
considered statistically significant.

3. Results
3.1. Worms Grown on NGM without B12 Supplementation Exhibited B12 Deficiency

Although it was possible to induce severe B12 deficiency in worms by growing them
on M9 medium without B12 supplementation for five generations, the limited amount
of nutrition available in M9 medium may have inhibited Aβ expression. Furthermore,
Revtovich et al. [21] reported that worms grown on M9 medium for five generations have
lower fecundity, suggesting that M9 medium has insufficient nutrition to support the
development of worms. Therefore, since worms grown on NGM with E. coli OP50 as a
food source have been reported to exhibit B12 deficiency [14,21], we used NGM with or
without B12 supplementation for the paralysis assay.

Before performing paralysis assay in this culture condition, first, fluorescence im-
ages of Pacdh-1::GFP (VL749) worms were taken to observe dietary B12 status of worms
cultivated on NGM with or without B12 supplementation (B12

+ worms or B12
− worms).

The B12
− VL749 worms exhibited GFP expression, which increased as the worms devel-

oped (Figure 1A,B), whereas no GFP expression was observed in the B12
+ VL749 worms

(Figure 1C,D). Furthermore, to investigate the degree of B12 deficiency in the B12
− worms,

Hcy and MMA levels were measured using LC-MS/MS. The results showed a significant
accumulation of Hcy and MMA in B12

− worms compared to that in B12
+ worms (Figure 2);

the Hcy and MMA levels in the B12
− worms were 2.2- and 3.6-fold higher, respectively,

http://imagej.nih.gov/ij/
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than those in the B12
+ worms. These findings clearly indicated the B12 deficiency in the

B12
− worms.
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−

worms (* p < 0.05).
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3.2. B12 Supplementation Reduced Aβ Toxicity in B12-Deficient GMC101 Worms

To evaluate the effects of B12 deficiency on the nervous system, we performed a paral-
ysis assay using GMC101 worms grown on NGM with or without B12 supplementation.
After 48 h of incubation, approximately 74% of the B12

− GMC101 worms were paralyzed,
whereas after 72 h, more than 90% of the worms were paralyzed (Figure 3). In contrast,
only 26% of the B12

+ GMC101 worms were paralyzed after 48 h. The paralysis rate was
found to be significantly different between the B12

+ and B12
− GMC101 worms 48 h after

the temperature upshift.
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− +AsA-2G GMC101 worms. Young adult worms were

incubated at 25 ◦C to induce Aβ production. The mean percentage of unparalyzed worms is plotted
against the time post temperature shift (h). All values represent the mean ± SD of three independent
experiments (n = 3). Approximately 270 worms were screened for each condition. Asterisks indicate
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To investigate if B12 supplementation affects the transcription level of Aβ rather
than simply reducing its accumulation in muscle cells, qRT-PCR of the B12

+ and B12
−

GMC101 worms was performed 24 h after inducing Aβ expression. The results indicated
no significant difference in the Aβ mRNA levels between the B12

+ and B12
− GMC101

worms (Figure 4). Additionally, immunoblotting indicated no significant difference in the
level of the monomeric form and aggregated form of the Aβ peptide (Aβ1–42) between the
B12
− and B12

+ GMC101 worms (Figure 5).
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To investigate the effect of reduced ROS levels in B12
− GMC101 worms on paralysis

and aggregation of the Aβ peptide, the B12
− worms were supplemented with AsA-2G, a

stable ascorbic acid. Supplementation with AsA-2G reduced the amount of ROS accumula-
tion in B12

− worms to the same level as in B12
+ worms (Figure 6). Interestingly, AsA-2G

supplementation improved the paralysis phenotype in the B12
− GMC101 worms (B12

−

+AsA-2G) (Figure 3). However, AsA-2G supplementation did not affect to aggregation of
the Aβ peptide (Figure 5).

4. Discussion

AD is a progressive neurodegenerative disorder characterized by memory impairment,
disorientation, behavioral changes, and impaired communication [6]. A high Hcy level,
caused by low B12 or folate levels, is known to be one of the risk factors for AD [11].
In a clinical trial conducted on healthy elderly individuals with high Hcy levels, folate
supplementation over three years improved global functioning, memory storage, and
information-processing speed [23], suggesting that AD may be prevented by lowering Hcy
levels. In the current study, we used a transgenic C. elegans model expressing the Aβ1–42
peptide in muscle cells to investigate the effect of B12 deficiency on Aβ toxicity. Our results
showed that the level of Hcy and MMA accumulation was higher in B12

− worms than in
B12

+ worms (Figure 2). In addition, B12
− GMC101 worms exhibited a higher paralysis rate

(Figure 3) and higher ROS levels (Figure 6) than B12
+ worms.

In addition to its primary function as a cofactor, B12 is known to possess antioxidant
properties. Chan et al. [24] demonstrated that B12 alleviates cellular oxidative stress by
directly scavenging superoxide, in vitro and in vivo. Additionally, the protective properties
of B12 include the preservation of glutathione and modulation of cytokines and growth
factors that induce immune response–mediated oxidative stress [5]. Furthermore, Hcy is
known to produce ROS by autoxidation [25] and activation of NADPH oxidase [26], al-
though the complete mechanism is unclear. In addition, MMA is known to induce oxidative
stress [27]. Thus, B12 deficiency induces oxidative stress through various mechanisms.

To investigate the effects of oxidative stress caused by B12 deficiency on Aβ tox-
icity, B12

− GMC101 worms were grown with AsA-2G supplementation. As expected,
AsA-2G supplementation alleviated paralysis, and decreased ROS levels in B12

− worms
(Figures 3 and 6). However, AsA-2G supplementation had no effect on the aggregation
of Aβ peptides, suggesting that the enhanced ROS level was not involved in promoting
Aβ aggregation.

Yatin et al. [28] reported that Aβ1–42 peptide alone produces free radicals in vitro and
that Aβ peptide causes oxidative stress in rat neuron cells and C. elegans. These findings
suggest that Aβ toxicity is associated with oxidative stress. Interestingly, oxidative stress
and the paralysis phenotype in the transgenic C. elegans preceded the fibrillar deposition of
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Aβ peptides, suggesting that Aβ toxicity is caused by pre-fibrillar Aβ [29]. Multiple studies
have reported that increased oxidative stress plays an important role in the pathogenesis
of AD; oxidative stress can accelerate Aβ generation and aggregation, tau hyperphospho-
rylation and aggregation, and neuronal apoptosis (reviewed by Wu et al. [30]). As tau
hyperphosphorylation and aggregation and neuronal apoptosis were not observed in the
GMC101 worms, our results suggest that oxidative stress induced by B12 deficiency may be
associated with the cellular events leading to paralysis after Aβ expression. In conclusion,
oxidative stress caused by elevated Hcy and/or MMA levels may enhance Aβ toxicity in
B12-deficient worms.

Transcriptomic analysis has been performed to elucidate the mechanisms associated
with paralysis caused by Aβ expression [31]; however, these mechanisms are not completely
understood. Enhanced mitochondrial proteostasis has been reported to reduce the amount
of Aβ aggregation in cells, GMC101 worms, and transgenic mouse models of AD [32].
Further analyses are required to understand the molecular mechanisms underlying the
alleviation of Aβ toxicity by AsA-2G supplementation.

B12 has a relatively low recommended dietary allowance compared to other micronu-
trients, and our body maintains sufficient storage of B12 for up to several years. Therefore,
clinical B12 deficiency is uncommon and is mainly found in patients with hereditary dis-
eases [4]. However, with age, the risk of developing B12 deficiency increases due to several
factors, such as malabsorption and depletion of B12 storage [4]. A high Hcy level caused
by B12 deficiency is a known risk factor for neurodegenerative diseases; approximately
20% of dementia cases are reported to be strongly related to high plasma Hcy levels [33].
Furthermore, high Hcy and MMA levels have been observed in elderly people with normal
or high serum B12 levels [34]. Oxidative stress is known to promote the generation and
aggregation of Aβ, which is believed to be a toxic factor linked to AD pathogenesis [30].
Therefore, a higher daily intake of B12, folate, and antioxidants is required to lower Hcy
and MMA levels and reduce the incidence of AD.

In conclusion, our study suggests that the oxidative stress induced by B12 deficiency
promotes Aβ toxicity. Although the detailed mechanism is unknown, we will investigate
the effect of B12 deficiency on mitochondrial proteostasis.
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