
royalsocietypublishing.org/journal/rstb
Review
Cite this article: Koonin EV, Makarova KS.

2019 Origins and evolution of CRISPR-Cas

systems. Phil. Trans. R. Soc. B 374: 20180087.

http://dx.doi.org/10.1098/rstb.2018.0087

Accepted: 24 October 2018

One contribution of 17 to a discussion meeting

issue ‘The ecology and evolution of prokaryotic

CRISPR-Cas adaptive immune systems’.

Subject Areas:
evolution, genomics, microbiology

Keywords:
adaptive immunity, mobile genetic elements,

signalling, gene shuffling

Author for correspondence:
Eugene V. Koonin

e-mail: koonin@ncbi.nlm.nih.gov
& 2019 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Origins and evolution of CRISPR-Cas
systems

Eugene V. Koonin and Kira S. Makarova

National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA

EVK, 0000-0003-3943-8299

CRISPR-Cas, the bacterial and archaeal adaptive immunity systems, encom-

pass a complex machinery that integrates fragments of foreign nucleic acids,

mostly from mobile genetic elements (MGE), into CRISPR arrays embedded

in microbial genomes. Transcripts of the inserted segments (spacers) are

employed by CRISPR-Cas systems as guide (g)RNAs for recognition and

inactivation of the cognate targets. The CRISPR-Cas systems consist of

distinct adaptation and effector modules whose evolutionary trajectories

appear to be at least partially independent. Comparative genome analysis

reveals the origin of the adaptation module from casposons, a distinct

type of transposons, which employ a homologue of Cas1 protein, the inte-

grase responsible for the spacer incorporation into CRISPR arrays, as the

transposase. The origin of the effector module(s) is far less clear. The

CRISPR-Cas systems are partitioned into two classes, class 1 with multisubu-

nit effectors, and class 2 in which the effector consists of a single, large protein.

The class 2 effectors originate from nucleases encoded by different MGE,

whereas the origin of the class 1 effector complexes remains murky. However,

the recent discovery of a signalling pathway built into the type III systems

of class 1 might offer a clue, suggesting that type III effector modules could

have evolved from a signal transduction system involved in stress-induced pro-

grammed cell death. The subsequent evolution of the class 1 effector complexes

through serial gene duplication and displacement, primarily of genes for pro-

teins containing RNA recognition motif domains, can be hypothetically

reconstructed. In addition to the multiple contributions of MGE to the evolution

of CRISPR-Cas, the reverse flow of information is notable, namely, recruitment

of minimalist variants of CRISPR-Cas systems by MGE for functions that remain

to be elucidated. Here, we attempt a synthesis of the diverse threads that shed

light on CRISPR-Cas origins and evolution.

This article is part of a discussion meeting issue ‘The ecology and

evolution of prokaryotic CRISPR-Cas adaptive immune systems’.
1. Introduction
Thanks to the unprecedented success of the Cas9, Cas12 and Cas13 endonu-

cleases as genome editing tools, during the last decade, biochemical

activities, structures, comparative genomic and at least some of the biological

functions of CRISPR (Clustered Regularly Interspaced Short Palindromic

Repeats)-Cas (CRISPR-associated proteins) systems and individual Cas proteins

have been studied in exquisite detail [1–10]. The CRISPR-Cas are adaptive

(acquired) immune systems that store the memory of encounters with foreign

DNA, primarily that of mobile genetic elements (MGE), in unique spacer

sequences derived from MGE and inserted into CRISPR arrays. The transcripts

of the CRISPR spacers are used to recognize the cognate sequences and direct

Cas nucleases to their unique target sites upon new encounters with familiar

MGEs, resulting in the inactivation of the latter.

Like all defence mechanisms, CRISPR-Cas systems evolve in the regime of a

perennial arms race with MGE, which results in the rapid evolution of some of
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the cas gene sequences, primarily effector module com-

ponents [11], and remarkable diversification of the gene

composition and organization of the CRISPR-cas loci. This

molecular diversity underlies the diversification of the molecular

mechanisms of CRISPR-mediated defence [8,12,13].

Along with eukaryotic RNA interference (RNAi) and

prokaryotic Argonaute-centred defence mechanisms, the

CRISPR-Cas belong to nucleic acid-guided defence systems

[14–18]. Arguably, among these mechanisms, CRISPR-Cas

systems are the most biologically complex because, in contrast

with the innate immunity mechanisms, such as those of the

Argonaute-based systems and most of the forms of eukaryotic

RNAi, but similarly to the piRNA branch of RNAi, CRISPR-

Cas possess an integral capacity of creating immune memory

and thus represent bona fide adaptive immunity [19–22].

Complete CRISPR-cas loci consist of a CRISPR array, that

is, two to several hundred direct, often partially palindromic,

normally exact repeats (25–35 bp each), separated by unique

spacers (typically 30–40 bp each), and the adjacent cluster of

multiple cas genes which are organized in one or more oper-

ons encoding both the adaptation and the effector modules,

often along with accessory genes [13,23]. The CRISPR-Cas

immune response includes three distinct but often inter-

twined stages: (i) adaptation, (ii) pre-crRNA (pre-CRISPR

RNA) expression and processing, and (iii) interference.

During the adaptation stage, a complex of Cas proteins

binds to a target DNA molecule and, typically, after encoun-

tering a distinct, short (2–4 bp) motif known as PAM

(Protospacer-Adjacent Motif ), introduces two double-strand

(ds) breaks into the target DNA. The released segment, the

protospacer, is then inserted between two repeats in the

CRISPR array (most often, into the proximal repeat unit

that immediately follows the leader sequence), so that it

becomes a spacer [24,25]. The CRISPR array is then repaired

by the cellular repair machinery, resulting in the duplication

of the proximal repeat [26–28]. Some CRISPR-Cas systems

employ an alternative mechanism of adaptation, namely,

spacer acquisition from RNA (transcripts of a DNA genome

of an MGE) via reverse transcription by a reverse transcrip-

tase (RT) that is encoded in the CRISPR-cas locus and, in

most cases, fused to the Cas1 protein [29,30].

At the expression-processing stage, the CRISPR array is

typically transcribed into a single, long transcript, the

pre-crRNA, that is processed to generate mature crRNAs by

a distinct complex of Cas proteins, a dedicated processing

nuclease (Cas6), a single large Cas protein or an external

RNase [31,32].

At the final, interference stage, the crRNA that remains

bound to the processing complex is employed as the guide

(gRNA) to recognize the protospacer or a closely similar

sequence in the genome of a virus or a plasmid which is

then cleaved and inactivated by a Cas nuclease which can

be either a component of the same effector complex or a

separate Cas protein [33,34].

The brief description above is an over-simplified scheme

that, out of necessity, misses many important details of

CRISPR-Cas functions. Such details can be found in numer-

ous recent reviews on different facets of CRISPR-Cas

biology [1–9,24,25,31–34].

At both the structural and the functional levels, the

CRISPR-Cas systems have a distinct modular organization

[13,23]. The two principal components of the CRISPR-Cas

systems are the adaptation and effector modules. In most of
the CRISPR-Cas systems, the adaptation module consists of

the Cas1 and Cas2 proteins, which form a complex in

which Cas1 is the enzymatically active subunit, namely, the

endonuclease (integrase) involved in the cleavage of both

the source, protospacer-containing DNA and the CRISPR

array, whereas Cas2 forms the structural scaffold of the com-

plex [24,35–37]. In many CRISPR-Cas systems (see below),

additional Cas proteins, such as Cas4, Cas3, Cas9 or RT,

also contribute to the adaptation stage, in some cases forming

fusions with Cas1 or Cas2 [30,38–40]. In contrast with the

comparatively simple and uniform architecture of the adap-

tation module, the effector modules are highly diverse

among CRISPR-Cas systems, and their variation forms the

basis of the current CRISPR-Cas classification [8,13], which

is described in the next section.

The extraordinary, compared with other defence systems

in prokaryotes, complexity and diversity of CRISPR-Cas sys-

tems implies a complex evolutionary history. Phylogenomic

studies have revealed a pervasive trend in CRISPR-Cas evol-

ution, namely, the contributions of several classes of MGE to

the ultimate origin and the subsequent diversification of the

CRISPR-Cas systems, in particular the adaptation modules

[4,13,23,41–43]. However, the origin of the most prevalent

forms of the effector modules remains a much harder prob-

lem. In this article, we attempt to synthesize the available

clues on the origins and evolution of different components

of CRISPR-Cas systems along with the evidence of the

reverse trend, that is, recruitment of CRISPR-Cas and their

components by MGE.
2. Diversity, classification and evolutionary
modularity of CRISPR-Cas systems

The CRISPR-Cas systems are a universal immune mechanism

that, at least in principle, can adapt to defend the host from

any MGE. Because of this universal adaptability, CRISPR-

Cas systems do diversify as extensively as innate immune

systems, such as restriction-modification modules, the ubi-

quitous and most abundant defence component in archaea

and bacteria. Nevertheless, the Cas protein sequences and

the genomic organization of CRISPR-cas loci display sub-

stantial diversity. All CRISPR-Cas systems are divided into

two distinct classes, on the basis of the design principles of

the effector modules. Class 1 systems have multisubunit

effector complexes comprising several Cas proteins, whereas

in class 2 systems, the effector is a single, large, multidomain

protein [13] (figure 1). Classification of CRISPR-Cas systems

is a complicated matter. There are no universal Cas proteins

that could be used as phylogenetic markers, and even the

phylogeny of the most evolutionarily conserved protein,

Cas1, fails to adequately represent the relationships between

CRISPR-Cas systems owing to the semi-independent

evolution of different modules (see below). Therefore, the

existing classification of CRISPR-Cas systems employs mul-

tiple criteria including signature cas genes, organization of

the cas operons and phylogenies of conserved Cas proteins.

The two CRISPR-Cas classes are divided into three types

each, types I, III and IV in class 1, and types II, V and VI in

class 2; each type is characterized by distinct architectures

of the effector modules that include unique signature proteins

(figure 1). Each type is further classified into multiple sub-

types that are distinguished by subtler differences in locus
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organization and, also, often encode subtype-specific Cas

proteins [8,12,13,43]. The mechanisms of pre-crRNA proces-

sing in class 1 and class 2 CRISPR-Cas systems notably

differ. In class 1 systems, the maturation of crRNAs is cata-

lysed by a dedicated complex of multiple Cas proteins that

was first identified in subtype I-E and designated Cascade

(CRISPR-associated complex for antiviral defence) [44–48].

The Cascade complex binds the pre-crRNA and recruits an

additional Cas protein, Cas6 (or, on rarer occasions, Cas5),

which is the nuclease directly responsible for processing.

In type II systems, the prototype of class 2, processing is
catalysed by an external bacterial enzyme, RNAse III, with

the help of an additional RNA species, the trans-acting

CRISPR (tracr)RNA, encoded within the CRISPR-cas locus

[49–54]; tracrRNAs have been identified also in subtype V-B

systems, although in this case, the cleavage enzyme remains

uncharacterized [53–55]. In types V and VI, pre-crRNA pro-

cessing is catalysed by a distinct, still incompletely

characterized nuclease activity of the same large effector

protein that is involved in target cleavage [56–59].

Major differences between class 1 and class 2 CRISPR-Cas

systems are apparent also at the interference stage. In type I
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systems, the processing complex containing the mature

crRNA recognizes the protospacer sequence in the target

and recruits an additional Cas protein, Cas3, which consists

of a helicase domain that unwinds the target dsDNA and

the nuclease domain directly responsible for the cleavage

[60–62]. In type III, the nuclease involved in the target clea-

vage is a subunit of the processing complex itself; in this

case, no helicase is involved but DNA cleavage requires pri-

mary cleavage of RNA transcripts of the target genome by a

distinct CRISPR-associated RNase. In class 2 systems, clea-

vage is performed by the nuclease domain(s) of the large

effector protein [49,50,52,54,59,63–69] (see more below).

The adaptation and effector modules of the CRISPR-Cas

systems show pronounced autonomy not only with respect

to functions and structure, but also evolutionarily

(figure 1). The topology of the phylogenetic tree of Cas1,

the key subunit of all adaptation complexes and repeat struc-

tures, are poorly compatible with the overall classification of

the effector modules and phylogenies of individual effector

proteins, apparently because of frequent module exchange

among CRISPR-Cas systems of different types and subtypes

[13]. Numerous examples of such exchange have been

reported [30,70–72], including those that occur in situ, in

the vicinity of several ‘attractor’ genes, namely, cas6 and var-

ious combinations of the adaptation genes cas1, cas2, cas4 and

RT (figure 1). In most cases, the adaptation module, together

with the cognate CRISPR array and/or cas6 gene, remains

fixed, as judged by the conservation in related genomes,

whereas the effector module genes are shuffled [72]. This

in situ exchange often involves not only effector modules

from different variants of the same CRISPR-Cas subtype

but also other subtypes or even other types (figure 1). Type

III loci are especially prone to such module recombination:

in particular, RT-containing type III adaptation modules

have been shown to almost freely combine with effector mod-

ules from diverse subtypes of type III systems [30]. The

evolutionary pressure to exchange effector modules is likely

a consequence of an arms race against rapidly evolving

viruses. Viruses encode many anti-CRISPR proteins (Acrs)

which so far have been shown to target only components

of effector complexes and, typically, show high specificity

towards particular variants of CRISPR-Cas systems [73–80].

Exchange of effector modules could provide an escape

route from Acrs. The partial evolutionary independence of

the adaptation and effector modules is further corroborated

by the presence, in numerous bacterial and archaeal gen-

omes, of stand-alone adaptation and, even more often,

effector modules [13,43,72]. Notwithstanding all these mani-

festations of the modularity of the CRISPR-Cas systems, it

should be noted that the functional separation of the modules

is but an approximation because some Cas proteins, in par-

ticular class 2 effectors, appear to be involved in all three

stages of the CRISPR response [81,82].
3. Origin of the adaptation module and adaptive
immunity in prokaryotes from a distinct group
of transposons

Genomic surveys of cas genes show that Cas1, the endonu-

clease responsible for spacer integration into CRISPR

arrays, is not always encoded within CRISPR-cas loci [23].
Examination of the genomic neighbourhoods of ‘stand-

alone’ cas1 homologues has led to the unexpected finding

that these cas1 genes actually are embedded within

12–18 kb regions of genomic DNA flanked by terminal

inverted repeats (TIRs) and thus clearly resembling transpo-

sable elements [83]. These predicted transposons share two

universal genes encoding, respectively, Cas1 and a family B

DNA polymerase, and also encompass variable sets of

additional genes, mostly encoding diverse nucleases and

DNA-binding proteins containing helix–turn–helix (HTH)

domains. The biochemical mechanisms of the reactions cata-

lysed by Cas1 during spacer integration into CRISPR arrays

and by integrases during transposon integration are closely

similar, which naturally leads to the prediction that Cas1 is

the integrase of the newly identified group of transposons;

accordingly, these predicted transposons were named caspo-

sons and their predicted integrases were dubbed casposases

[83,84]. Given the invariable presence of a DNA polymerase,

casposons appear to be self-synthesizing transposons

that direct their own replication during transposition via a

copy-and-paste mechanism. This type of transposon so far

has not been found in prokaryotes but is common among

eukaryotes, many of which harbour polintons which also

encode a B family DNA polymerase along with a retro-

virus-type integrase that is unrelated to Cas1 [85–87]. The

integrase activity of the casposase was promptly confirmed

experimentally [88], and moreover, it has been shown that

casposons and CRISPR spacers insert into similar target

sites [89].

Although casposons are not among the most abundant

classes of MGE in prokaryotes, comparative analysis of

their gene organization revealed considerable diversity

and resulted in the identification of four distinct casposon

families which are integrated mostly into archaeal gen-

omes as well as those of some bacteria [90]. Notably, a

small group of casposons encode a predicted virus

capsid protein, indicating that some of these elements are

actually ‘caspoviruses’, in a close analogy to the polintons

which also possess capsid proteins and are predicted to

form virions [91]. Transposition of casposons has not yet

been demonstrated directly but comparative genomic

analysis of many strains of the archaeon Methanosarcina
mazei has led to the identification of clear signs of recent

mobility, indicating that at least some of the casposons

are active transposons [92].

The phylogenetic tree of the Cas1 family splits into two

major branches, one of which includes the casposases and

the other one consists of the CRISPR-associated Cas1 proteins

[83]. Although, technically, the root position is unknown, this

tree topology is compatible with a founding role of the caspo-

sase in the CRISPR-Cas evolution. The entire CRISPR

adaptation module likely originated from a casposon which

could have also contributed additional cas genes [41].

Although currently known casposons do not encode Cas2

(the key structural subunit of CRISPR adaptation complexes),

some encode nucleases homologous to Cas4, a component of

the adaptation module in several CRISPR-Cas subtypes, as

well as additional nucleases [83,84]. The ancestral casposon

configuration including a gene for a Cas2 homologue can

be expected to appear in the growing microbial genome data-

sets. Additionally, the ancestral CRISPR repeats and the leader

sequence could evolve from either the TIRs or a duplicated

target site of the ancestral casposon [90].
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The event that gave rise to the adaptation module and,

concomitantly, prokaryotic adaptive immunity could have

involved a chance insertion of a casposon into the vicinity

of an ancestral innate immunity locus, followed by immobil-

ization of the casposon and elimination of some of its genes,

including the DNA polymerase [41]. The ancestral innate

immunity system that gave rise to the CRISPR effector

module might have functioned by directly engaging guide

RNA derived from transcripts of foreign genomes, in an ana-

logy to prokaryotic Argonaute-centred defence systems

[16,18]. However, innate immunity systems homologous to

CRISPR-Cas effector modules have not been so far identified

in bacterial or archaeal genomes, and thus the ancestry of the

effector module remains a hard puzzle [23,53]. In the next

section, we consider some clues that might allow us to

glean a solution.
s.R.Soc.B
374:20180087
4. Ancestral class 1 effector modules: origin from
a stress-response system?

Despite limited direct sequence similarity, there is little if any

doubt that the effector complexes of type I and type III that

jointly compose the vast majority of class 1 systems share a

common ancestry (figure 2). These complexes have strikingly

similar overall architectures, and in both cases, the skeleton of

the complex is formed by multiple copies of Cas7 protein, a

member of the so-called RAMP (Repeat-Associated Myster-

ious Protein) superfamily [4,46,93,94]. Additionally, the

effector complexes of both types contain a single copy of

Cas5 protein, another RAMP superfamily member distantly

related to Cas7, and the so-called large and small subunits

(figures 1 and 2). Because of the generally fast evolution of

cas genes and the resulting low sequence conservation [11],

homology of the large and small subunits between types I

and III could not be ascertained at the sequence level; how-

ever, the small subunits show significant structural

similarity, which implies homology [95]. The large subunit

of type III systems, Cas10, is a protein containing two

RRM (RNA recognition motif ) domains [96,97]. One RRM

domain shows highly significant similarity to the palm

domain, the catalytic domain of a broad variety of RNA

and DNA polymerases and nucleotide cyclases [98,99]. This

palm domain is predicted to be an active enzyme, whereas

the second RRM domain is inactivated. The type I large subunit

is the Cas8 protein, which is highly diverged in sequence even

among different type I subtypes and shows no detectable

sequence similarity, and only tenuous structural similarity, at

best, to Cas10 [23]. This uncertainty notwithstanding, the con-

servation of the overall structural organization and the Cas7–

Cas5 scaffold provides sufficient evidence for the common

ancestry of the effector complexes between type I and type III

(figure 2). Furthermore, considering that type I and type III sys-

tems together represent about 90% of all detected CRISPR-Cas

loci, and moreover, amount to 100% among archaea [13], it is

not much of a stretch to propose that the common ancestor of

the type I and type III effector modules is also the ancestral

form of this module for CRISPR-Cas systems in general

[23,53]. By extrapolation, the ancestral effector module can be

inferred to have contained, at least, the RAMP-based scaffold

shared by the modern ones.

Can we reconstruct the evolution of the effector module

beyond the common ancestor of type I and type III? A key
clue seems to be that, in type III, the entire effector complex,

with the sole exception of the small subunit, is composed of

domains with the same structural fold, the RRM fold, which

is topologically identical to the widespread ferredoxin-like

fold [19]. It seems likely, therefore, that the complex orig-

inally evolved by serial duplications and fusions of the

RRM domains followed by subsequent extensive divergence

(figures 2 and 3) [23]. The direction of evolution appears

clear: from the RRM endowed with the polymerase–cyclase

activity, as in Cas10, to the common ancestor of the RAMP

superfamily which acquired a shared structural feature ident-

ifiable in all three groups of RAMPs, the glycine-rich loop

(figures 2 and 3). Furthermore, structural comparisons

suggest that small subunits from both type I and type III sys-

tems are homologous and similar to the C-terminal four-helix

bundle domain of Cas10 [95,100]. Thus, it seems plausible

that, following a duplication, fission of an ancestral Cas10-

like protein could have given rise to the ancestors of both

RAMPs and the small subunits (figure 3). Considering

that catalytically active RAMPs of all three major families,

Cas5, Cas7 and Cas6, are known, an ancestral RAMP also

could have been an RNase (figure 3). However, indepen-

dent origins of RNAse activity cannot be ruled out,

especially considering that different Cas6 protein have

different residues involved in catalysis (figures 2 and 3)

[23,101–103].

Recent discoveries suggest clues also to the hardest

puzzle, the organization and possible functions of the puta-

tive stand-alone ancestor of the CRISPR-Cas effector

module. Most of the type III CRISPR-Cas systems encode

proteins containing one or both characteristic domains:

CARF (CRISPR-Associated Rossmann Fold), a (predicted)

nucleotide-binding domain [104], and HEPN (Higher Eukar-

yote and Prokaryote Nucleotide-binding domain), an RNase

that is primarily involved in various defence functions in

both prokaryotes and eukaryotes [105]. The widespread

examples of CARF–HEPN fusion in type III systems include

Csm6 and Csx1; some type III systems instead include pro-

teins that consist of a CARF domain fused to an unrelated

nuclease or to a DNA-binding, HTH domain [104]. Years

after the enzymatic activities of Cas10 and the HEPN

domains as well as the nucleotide-binding capacity of the

CARF domains, which implies allosteric regulation of the

activity of HEPN (or other nucleases), have been predicted

by computational methods [98,104,105], their functions in

CRISPR-Cas have remain obscure, although it has been

speculated that these proteins are linked through oligonu-

cleotides synthesized by Cas10 [106].

One of the most notable findings in the CRISPR field in

the last few years has been the experimental validation of

this hypothesis. Two laboratories have independently

demonstrated that a dedicated signalling pathway activated

by target recognition is central to the immune function of

type III CRISPR-Cas systems. Specifically, target binding by

the crRNA–effector complex allosterically activates the poly-

merase activity of Cas10 which catalyses the synthesis of

cyclic oligoA (cOA). The produced cOA molecules are

bound by the CARF domain of the Csm6 protein (and by

inference, other CARF domain-containing proteins), resulting

in allosteric activation of the promiscuous RNase activity of

the HEPN RNase domain of Csm6 and degradation of both

the target RNA and other RNA molecules [107,108]. The out-

come of this indiscriminate RNA degradation is thought to be
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RNA; RAMP, Repeat-Associated Mysterious Protein. (Online version in colour.)
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the induction of dormancy or programmed cell death (PCD)

in response to infection, which could work as a ‘contingency

plan’ when immune response fails. Recently, it has been

shown that this cOA–Cas10 signalling pathway is tightly
regulated by cOA hydrolysis which is catalysed by CARF

domains of a distinct family [109,110]. This regulatory circuit

might be part of the microbial cell’s sensor that ‘makes the

choice’ between immunity and PCD [111,112].
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The discovery of the cOA–Cas10 signalling pathway

suggests a plausible possibility which, in fact, has been dis-

cussed previously solely on the basis of protein domain

and gene neighbourhood analysis, that the ancestor of the

CRISPR-Cas effectors was a stress-response system that trig-

gered PCD upon activation by an alarmone, such as cOA

[106,111] (figure 3). A potential candidate for the role of

such a signal transduction system with a defence function

has been identified in the genomes of several bacteria,

namely, a protein that contains a single palm domain hom-

ologous to the active polymerase–cyclase domain of Cas10

[106]. The potential effector coupled to this predicted signal-

ling enzyme remains unknown, although, in a few cases, both

CARF and HEPN domains are fused to the minimal cas10-

like gene [106]. Thus, the tight link between the three
domains apparently emerged very early during evolution.

Under the proposed model, the ancestral signalling system

evolved to become an innate immunity mechanism as a

result of the acquisition of an HD DNase domain and serial

duplications, fusions and diversification of the RRM domains

which yielded a complex endowed with the RNA-binding

and -processing capacity (figure 3). The complexity of the

organization of many type III loci encoding an active cOA

synthetase and the growing number of ancillary proteins

that are likely to be involved in the cOA signalling pathway

as effectors imply a key role of the cOA pathway in defence

mechanisms. Notably, in this model, the function of innate,

and eventually, adaptive immunity evolved from a primor-

dial PCD/dormancy induction form of defence (figure 3).

These type III systems with dual functions are the most
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complex among all CRISPR-Cas systems. The loss of the sig-

nalling capacity through inactivation of the palm domain of

Cas10 results in the loss of ancillary proteins, specialization

on DNA targeting and the overall reduced complexity of

the effector complex organization. This is the proposed

course of evolution for type I systems as well as some type

III variants (figure 3). Further reduction and loss of the

DNA cleavage capacity, most probably, gave rise to the

type IV CRISPR-Cas systems and other derivative CRISPR-

Cas variants that were recruited by mobile elements to

assist their replication and/or transposition (figure 3 and

see below).
 tb
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5. Class 2 effectors: multiple cases of nuclease
recruitment from mobile genetic elements

Class 2 effectors are radically different from those of class 1 in

that all the effector functions are concentrated in a single

protein [13]. In-depth analysis of the protein sequences of

class 2 effectors revealed a striking feature: they are all hom-

ologous to nucleases encoded by different classes of MGE

[42,43]. All type II and type V effectors (Cas9 and Cas12 pro-

teins, respectively) share a domain that belongs to the RuvC-

like endonuclease family which belongs to the RNase H fold

which is common to a great variety of nucleases and some

other proteins [113] (figure 4). However, the sequence simi-

larity between the RuvC-like domains of Cas9 and Cas12,

and even between different subtypes within each type is

low such that these proteins can be recognized as homol-

ogues only by highly sensitive sequence profile searches or

structural comparisons [43,53]. Outside of the RuvC-like

domain, the sequences of Cas9 and Cas12 show no similarity

to each other and appear not to be homologous [43,53]. The

structures of several Cas9 proteins [51,114–116], Cas12a

(Cpf1) [66,67] and Cas12b (C2c1) [54,66] complexed with

the guide RNA, target DNA and, in the cases of Cas9 and

Cas12b, tracrRNA have been reported. All these effector pro-

teins share similar size and overall shape which is a bilobed,

‘jaw-like’ structure accommodating the target DNA and the

gRNA between the lobes. However, beyond the RuvC-like

domains, the structures cannot be superimposed [117]. The

RuvC-like domains of Cas9, Cas12a and Cas12b contain

inserts, in similar but not identical positions, that represent

non-homologous domains, respectively, the HNH family

nuclease domain in Cas9 and unique, non-enzymatic

domains that facilitate target cleavage in the Cas12 proteins

[54,66,67,118].

An essential clue to the evolutionary origin of Cas9 and

Cas12 was the observation that, apart from the members of

the same family of Cas protein, both show the highest

sequence similarity to the RuvC-domain-containing TnpB

proteins of the IS605 and other related families of transposons

[42,53]. The tnpB genes are among the most abundant genes

in bacterial and archaeal genomes, and are encoded either by

autonomous transposons, which additionally encode a trans-

posase (TnpA), or more frequently, by non-autonomous

transposons, including the eukaryotic Fanzor elements, in

which TnpB is the only protein product [119]. The role of

TnpB in transposons remains unclear, given that this protein

is not required for transposition and, actually, appears to

downregulate it [120], but the perfect conservation of the
RuvC-like endonuclease catalytic sites in most TnpB

sequences indicates that these proteins are active nucleases.

Unexpectedly, the effectors of type II and different sub-

types of type V (Cas9 and Cas12a, 12b, 12c, respectively)

showed the highest similarity to different groups of TnpB

proteins, suggesting independent origins from the same

ancestral protein family [53]. Because of the low sequence

conservation, no reliable phylogenetic trees could be con-

structed for the type II and type V effectors together with

the TnpB proteins. However, the ancestry of Cas9 could be

readily traced to a distinct family of transposons (denoted

ISC, after Insertion Sequences Cas9-related) that are found

primarily in Cyanobacteria and encode IscB proteins which

share a signature domain architecture with Cas9, namely,

the insertion of an HNH endonuclease domain into the

TnpB (RuvC-like) domain [42,121] (figure 5).

The likely path of evolution from TnpB to the type V

effectors became more tractable with the identification of a

distinct variety of putative CRISPR-Cas systems that were

designated subtype V-U (after uncharacterized). Subtype

V-U loci lack adaptation modules and typically consist

solely of TnpB homologues encoded next to CRISPR arrays

[43]. The putative V-U effectors are much smaller than

Cas9 or Cas12 but are similar in size or only slightly larger

(400–600 amino acid residues) than typical, transposon-

encoded TnpB proteins. In contrast with Cas9 and Cas12,

the TnpB homologues encoded in the V-U loci are strongly

similar to the transposon-encoded TnpB. Accordingly, the

V-U proteins could be included in robust phylogenetic trees

which convincingly support independent origins of (at

least) five distinct groups of putative V-U2 effectors from

different TnpB subfamilies [43]. The experimental demon-

stration of the functionality of the type V-U systems is

pending. However, the evolutionary conservation of five dis-

tinct variants of subtype V-U in diverse bacteria, the finding

that the spacer sequences are completely different even in clo-

sely related V-U loci and the presence of multiple phage-

specific spacers jointly show that at least some V-U variants

are functional CRISPR-Cas systems [43].

The close similarity between the predicted V-U effectors

and transposon-encoded TnpB proteins implies that subtype

V-U represents recently evolved, ‘baby’ CRISPR-Cas systems.

The evolutionary scenario for type II and type V systems

(figure 5) starts with random insertion of the non-auton-

omous TnpB-encoding transposons next to CRISPR arrays.

Given the enormous abundance of these transposons in bac-

terial and archaeal genomes, such random insertions can be

expected to occur frequently, and indeed, apart from the evo-

lutionarily conserved V-U variants, a number of apparently

spurious juxtapositions of CRISPR arrays and tnpB genes

have been detected [43]. The subsequent evolution would

involve parallel, independent ‘maturing’ of the effectors via

acquisition of additional domains the sources of which

remain obscure and might have involved both internal dupli-

cations and recombination [43] (figure 5). The gained

portions of the proteins are unrelated between different sub-

types, but the convergent outcome is the emergence of an

effector protein that is large and flexible enough to accommo-

date the complex of the crRNA with the target DNA

(figure 5). It should be emphasized that not only the effector

modules but also the adaptation modules of class 2 systems

were acquired independently from different class 1 variants

(figure 5) [43].
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In addition to two distinct classes of MGE, casposons and

TnpB-encoding transposons, microbial toxin–antitoxin (TA)

modules seem to have been important contributors to the

evolution of CRISPR-Cas systems. The most common type
II TA modules consist of two proteins, a toxin and an anti-

toxin, of which the antitoxin is substantially less stable than

the toxin and is eliminated by proteolysis under stress, result-

ing in toxin activation [122–126]. The most common toxin



– insertion of non-autonomous element next
   to CRISPR array
– loss of mobility

– multiple random insertions increasing
   specificity of crRNA binding
– multiple independent acquisitions
   of adaptation module 

– multiple insertions increasing specificity
   of crRNA binding
– multiple independent acquisitions
   of adaptation module 

– mutiple independent insertions of
   non-autonomous element next to CRISPR array
– loss of mobility
– emergence of functional link with CRISPR array 

– insertion of HEPN-encoding element/gene
   next to CRISPR array
– duplication of HEPN domain

– multiple insertions increasing specificity of
   crRNA binding
– multiple independent acquisitions
   of adaptation module 

cas1 cas2

cas1 cas2

cas1 cas2

HEPN

TnpB-encoding
mobile element

IscB-encoding
mobile element

cas1 cas2

HNHI II III

cas1 cas2

cas1 cas2 cas13

cas12

cas9

HNHI II

I II

III

HNHI II III

III

I II III

I II III

complexity

complexity

complexity

HEPN-domain-containing protein
or system

TR TR

TR TR

CRISPR

CRISPR

CRISPR

generic type V system

generic type V-U system

generic type VI system

generic type II system

Figure 5. Origin of the class 2 CRISPR-Cas effectors from MGE. The figure depicts a hypothetical scenario of the origin of class 2 CRISPR-Cas from non-autonomous
transposons, for type II and type V systems, and from a defence system (toxin – antitoxin module) for type VI systems. IscB and TnpB are the inferred ancestors of
the type II (Cas9) and type V (Cas12) effectors, respectively. Inserts that could have contributed to increased specificity and efficiency of the effectors are shown by
grey rectangles of variable size. I, II and III are the distinct amino acid motifs that jointly compose the catalytic site of the RuvC-like nuclease. TR, terminal repeats.
(Online version in colour.)

royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

374:20180087

10
domains are the interferases, RNases that indiscriminately

cleave mRNAs inside the ribosome, resulting in microbial

dormancy or cell death [127,128]. The interferases belong to

several unrelated protein families including HEPN, RelE

and VapD, a distinct variant of the RRM fold [105,124].

Although the TA modules lack mechanisms of active mobi-

lity, they nevertheless qualify as MGE because they are

typically transferred on plasmids and are ‘addictive’ to the

host cells, which die if they do not receive the TA-carrying

plasmid upon segregation owing to the difference in stability

between the toxin and antitoxin proteins [123,125,126]. In

addition to plasmids, many TA loci are found in bacterial

and archaeal chromosomes, and are thought to induce

dormancy or PCD as an ‘altruistic’ defence strategy [129,130].
At least two unrelated classes of TA appear to have con-

tributed to the evolution of CRISPR-Cas. The structural

subunit of the adaptation complex, Cas2, belongs to the

VapD family of interferases [19]. The interferase catalytic

site is intact in the majority of the Cas2 proteins but is dis-

rupted in some and is not required for adaptation [36].

Thus, the role of the demonstrated nuclease activity of Cas2

[131–133] in CRISPR-Cas function remains uncertain, and it

cannot be ruled out that Cas2 functions as a toxin inducing

dormancy or PCD when the immune function of CRISPR-

Cas fails [112,134]. As discussed above, the cas2 gene might

have become a component of CRISPR-Cas systems via a caspo-

son that gave rise to the adaptation module (figures 3 and 6).

Given that some casposons encode also nucleases
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homologous to Cas4 [83,90], this Cas protein that is part of

the adaptation module in several CRISPR-Cas subtypes also

could originate from that ancestral casposon.

As also discussed above, the HEPN domain, the other

abundant toxin RNase, is present in many Cas proteins in

type III and in all type VI systems. In type III systems, the

HEPN domains present in accessory proteins, such as Csm6

and Csx1, are the endpoint RNA-cleaving effectors of the

cOA–Cas10 signalling pathway and likely originate from

the ancestral signal transduction module (see above;

figure 3). The type VI effectors (Cas13) are large proteins con-

taining two diverged HEPN domains that are both required

for target RNA cleavage and the promiscuous RNase activity

that is activated by target binding [43,53,59,68,69]. The pres-

ence of two HEPN domains is a unique signature of the type

VI effectors that testifies to their common origin despite the

extreme divergence of the HEPN domain sequences and the

lack of detectable sequence similarity outside of these

domains. The extremely low sequence conservation typical

of the HEPN domains precludes reliable phylogenetic
analysis and thus confident identification of the specific

ancestors. Thus, it is unclear whether the HEPN domains in

type VI effectors originate from type III HEPN-containing

proteins or, independently, from toxins. Regardless, a ‘matur-

ing’ path of evolution resembling that proposed for the type

II and type V effectors appears likely for Cas13 (figure 5).
6. Origin of reverse transcriptase-containing
adaptation modules for group II introns

A large subset of type III CRISPR-Cas systems, in addition to

the regular process of spacer capture from foreign DNA, are

capable of acquiring spacers from RNA (typically, transcripts

of an invading DNA genome) that is reverse-transcribed by a

CRISPR-associated RT [29]. As pointed out above, the RT is a

component of a distinct variety of adaptation modules that

have been shown to combine promiscuously with diverse

variants of type III effector modules or found in a stand-

alone form, adjacent to a CRISPR array [30]. In these
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adaptation modules, the RT is often fused to Cas1 or, alterna-

tively, is encoded by a gene adjacent to cas1. Phylogenetic

analysis of the RT superfamily shows that most of the

CRISPR-associated RTs form a strongly supported clade

that is affiliated with the RTs of group II introns

[30,135,136]. Thus, the RT–Cas1 fusion represented in diverse

type III loci appears to have emerged at a single point in evol-

ution, conceivably, as a result of a random insertion of a

group II intron into a type III CRISPR-cas locus (figure 6).

There is a clear, striking parallel between this evolutionary

scenario and that for the origin of type II and V effectors

from TnpB-encoding transposons.
 tb
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7. Derived CRISPR-Cas variants: reductive
evolution and exaptation for non-defence
functions

In addition to the diversification of the immune functions, an

emerging trend in the evolution of CRISPR-Cas systems is the

emergence of derived, defective variants that lose the adap-

tation and interference capacities, and are exapted for roles

other than adaptive immunity. In particular, such minimalist

CRISPR-Cas variants are carried by transposons and plas-

mids [137] (figures 3 and 6). The most common of these is

a minimal version of subtype I-F that is encoded by a large

family of Tn7-like transposons; smaller groups of Tn7-like

transposons encode similarly degraded subtype I-B systems

[138]. Phylogenetic analyses of both Tn7 genes and Cas7,

the most highly conserved protein in these minimalist

CRISPR-Cas systems, identified a single event of subtype I-

F capture by a transposon and two independent events of

subtype I-B acquisition [138]. All these Tn7-encoded

CRISPR-Cas variants lack both the adaptation module and

the Cas3 protein that is required for target cleavage by type

I systems and, accordingly, are incapable of either adaptation

or interference. However, they encompass all the subunits of

the pre-crRNA processing complex and therefore can be

inferred to generate mature crRNAs and recognize the

target DNA (figure 3). The Tn7-encoded CRISPR-Cas loci

encompass short CRISPR arrays, some of which contain

spacers that target plasmids, bacteriophages sharing hosts

with the respective transposons or chromosomal sequences

adjacent to integration sites. The transposon-encoded

CRISPR-Cas systems remain to be studied experimentally.

Nevertheless, the predicted ability of these systems to recog-

nize but not to cleave cognate targets suggests the intriguing

possibility that they facilitate insertion of transposons into

MGE by generating R-loops at the target sites [138]. In evol-

utionary terms, the transposon-encoded CRISPR-Cas systems

clearly are derived forms that evolved from the respective

complete systems.

Type IV CRISPR-Cas systems represent another minimal-

ist variant unrelated to those carried by Tn7-like transposons.

Type IV loci are typically carried by plasmids and, in some

cases, by prophages of diverse bacteria. Analogous to the

transposon-encoded type I variant, type IV systems, with a

few exceptions, lack an adaptation module and consist of

cas5, cas7 and cas8 genes, and in certain cases, also cas6,

along with an additional gene, which in different type IV var-

iants encodes either a DinG family DNA helicase or an

uncharacterized small protein [8,13]. Type IV loci rarely
include CRISPR arrays and accordingly can be predicted to

use in trans arrays located in another region of the same

plasmid away from or on the host chromosome. As with

the transposon-encoded variants, the functions of type IV

CRISPR-Cas systems remain obscure but, given their almost

exclusive localization on plasmids, it should be expected that

they facilitate maintenance and/or enhance the mobility of

plasmids via as yet unknown mechanisms.

A recent systematic screening of microbial genomes for

CRISPR-linked genes [139] has led to the discovery of an

apparently defective variant of I-E systems that lacks the

cas3 gene and, by implication, cannot cleave targets. Instead,

these loci encode an NTPase of the STAND (Signal Trans-

duction ATPases with Numerous Domains) superfamily

[140] which is implicated in signalling processes, possibly

stress-induced PCD.

The subtype V-U loci discussed above also constitute a

variety of ‘minimal’ CRISPR-Cas systems. One of the five dis-

tinct groups within subtype V-U, V-U5, encompasses a TnpB

homologue that is predicted to be inactivated as a result of

the replacement of the catalytic amino acid residues in the

RuvC-like nuclease domain [43]. Thus, this system is pre-

dicted to perform functions that do not involve target

cleavage.

Taken together, these examples show that the reductive

evolution of CRISPR-Cas systems leading to their exaptation

(recruitment) for non-defence (or at least, not involving target

cleavage) functions occurred on multiple independent

occasions. So far, none of these functions has been explored

experimentally, so the study of these systems appears to be

a wide-open research direction that is bound to yield new

insights into microbial physiology. More instances of defec-

tive CRISPR-Cas systems can be expected to emerge with

the advances of genomic and metagenomics, particularly, in

MGE genomes.
8. The emerging synthesis on CRISPR-Cas
evolution

The CRISPR-Cas systems are highly complex molecular

ensembles, and as such, undoubtedly are products of a com-

plicated succession of evolutionary events. Moreover, as with

all complex systems, the spectre of irreducible complexity

looms: a satisfactory evolutionary scenario is expected

to account for the functionality of intermediate stages

[141–144]. Perhaps, surprisingly, we believe that the findings

discussed above provide enough clues for a plausible overall

scenario (figures 3, 5 and 6).

The single over-arching theme of CRISPR-Cas evolution

is the evolutionary entanglement between these systems of

microbial adaptive immunity and various types of MGE.

Strikingly, at least four unrelated MGE varieties have contrib-

uted to CRISPR-Cas evolution: (i) casposons that gave rise to

the adaptation module, (ii) group II introns that donated the

RT to a distinct variety of type III adaptation modules, (iii)

non-autonomous IS605-like transposons, the ancestors of

type II and type V effectors, and (iv) a TA module that appar-

ently contributed Cas2.

The evolution of class 2 CRISPR-Cas systems clearly

involved multiple acquisitions of ancestral MGE genes encod-

ing nucleases that subsequently evolved into CRISPR-Cas

effectors. In all likelihood, these genes were captured as a
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result of chance insertion of the respective MGE into pre-

existing CRISPR-cas loci or next to orphan CRISPR arrays

[43,137]. A puzzling aspect of this part of CRISPR-Cas evol-

ution is the switch of the pre-crRNA processing from the

Cas6-mediated mechanism characteristic of class 1 to the

effector-catalysed and tracrRNA-dependent mechanisms in

class 2. The tracrRNA which is required to recruit RNase III

for processing apparently evolved on multiple occasions in

different type II and type V systems [145], suggesting that the

autonomous, effector-dependent processing is ancestral in class

2. The provenance of this mechanism remains an enigma on

which the detailed study of the ancestral MGE-encoded

nucleases might shed light.

Importantly, the evolutionary link between CRISPR-Cas

and MGE is a two-way street: complete CRISPR-Cas loci,

their reduced versions or individual components were

repeatedly recruited by various MGE and adopted for antide-

fence as well as, apparently, for other, still uncharacterized

functions.

When the evolution of class 1 effector modules is con-

sidered, the second key theme comes up, namely, serial

duplication of ancestral genes followed by extreme diversifi-

cation (figure 3). The ancestral unit is the RRM domain.

The expansive RAMP superfamily undoubtedly evolved via

a series of RRM duplications. We postulated that the founder

of this superfamily also emerged through a duplication of the

ancestral, enzymatic RRM domain in the evolutionary pro-

genitor of Cas10, but this connection remains tenuous. The

core of the ancestral effector complex could have been a sig-

nals transduction system consisting of the ancestor of Cas10

(a cOA polymerase) and a CARF–HEPN effector that trig-

gered dormancy or PCD in response to infection or other

forms of stress. This part of the CRISPR-Cas evolution
scenario is, admittedly, the weakest and requires the most

effort in genome mining and structural comparison to com-

plete the reconstruction convincingly.

The third major trend is the reductive evolution of

CRISPR-Cas systems which led to defective variants that

apparently were recruited for functions other than adaptive

immunity. Notably, many if not most of such variants

reside in MGE [137] and, presumably, contribute to the

reproduction of those elements, although the mechanisms

involved remain enigmatic.

On a more general plane, the contributions of MGE to the

evolution of an adaptive immunity system and, conversely,

the recruitment of defence systems or their components by

MGE for antidefence (as in some bacterial viruses that

encode complete CRISPR-Cas systems) or other functions

(as in the case of defective systems discussed here) fits the

‘guns for hire’ concept [146]. Within this framework,

enzymes are shuttled between defence systems and MGE,

going to the ‘highest bidder’ (the elements providing the

highest reproductive benefit to the respective genes), given

that the activities involved, such as those of transposase,

site-specific or promiscuous (in the case of TA) nuclease, heli-

case or RT, are closely analogous if not identical. This concept

is applicable far beyond CRISPR-Cas: for example, different,

unrelated transposons were the ancestors of key components

of the adaptive immunity system in vertebrates [41] and

DNA diminution system in ciliates [147].
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