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Abstract

Background: The cellular signaling pathway (network) is one of the main topics of organismic
investigations. The intracellular interactions between genes in a signaling pathway are considered
as the foundation of functional genomics. Thus, what genes and how much they influence each
other through transcriptional binding or physical interactions are essential problems. Under the
synchronous measures of gene expression via a microarray chip, an amount of dynamic information
is embedded and remains to be discovered. Using a systematically dynamic modeling approach, we
explore the causal relationship among genes in cellular signaling pathways from the system biology
approach.

Results: In this study, a second-order dynamic model is developed to describe the regulatory
mechanism of a target gene from the upstream causality point of view. From the expression profile
and dynamic model of a target gene, we can estimate its upstream regulatory function. According
to this upstream regulatory function, we would deduce the upstream regulatory genes with their
regulatory abilities and activation delays, and then link up a regulatory pathway. Iteratively, these
regulatory genes are considered as target genes to trace back their upstream regulatory genes.
Then we could construct the regulatory pathway (or network) to the genome wide. In short, we
can infer the genetic regulatory pathways from gene-expression profiles quantitatively, which can
confirm some doubted paths or seek some unknown paths in a regulatory pathway (network).
Finally, the proposed approach is validated by randomly reshuffling the time order of microarray
data.

Conclusion: We focus our algorithm on the inference of regulatory abilities of the identified
causal genes, and how much delay before they regulate the downstream genes. With this
information, a regulatory pathway would be built up using microarray data. In the present study,
two signaling pathways, i.e. circadian regulatory pathway in Arabidopsis thaliana and metabolic shift
pathway from fermentation to respiration in yeast Saccharomyces cerevisiae, are reconstructed using
microarray data to evaluate the performance of our proposed method. In the circadian regulatory
pathway, we identified mainly the interactions between the biological clock and the photoperiodic
genes consistent with the known regulatory mechanisms. We also discovered the now less-known
regulations between crytochrome and phytochrome. In the metabolic shift pathway, the casual
relationship of enzymatic genes could be detected properly.
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Background

Biological phenomena at different organismic levels have
revealed some sophisticated systematic architectures of
cellular and physiological activities implicitly. These
architectures were built upon the biochemical processes
before the emergence of proteome and transcriptome [1-
3]. Under the molecular machinery, the biochemical proc-
esses are mostly interpreted as frameworks of connectivity
between biochemical compounds and proteins, which are
synthesized from genes to function as transcription fac-
tors binding to regulatory sites of other genes, as enzymes
catalyzing metabolic reactions, or as components of signal
transduction pathways [4-6]. This implies that, in order to
understand the molecular mechanism of genes in the con-
trol of intracellular or intercellular processes, the scope
should be broadened from DNA sequences coding for
proteins to the systems of genetic regulatory pathways
determining which genes are expressed, when and where
in the organism and to which extent [7]. In the experience
of engineering field, the systematic architecture and
dynamic model could investigate the characteristics of sig-
naling regulatory pathways [8]. Therefore, how to con-
struct the dynamic model of a signaling pathway from the
system structure point of view might be the first key to the
door of system biology. Most biological phenomena
directly or indirectly influenced by genes such as metabo-
lism, stress response, and cell cycle are well studied on the
molecular basis. Thus, identification of a signal transduc-
tion pathway could be traced back to the genetic regula-
tory level. The rapid advances of genome sequencing and
DNA microarray technology make possible the quantita-
tive analysis of signaling pathway besides the qualitative
analysis. More particularly, the embedded time-course
feature of microarray data would promote the system
analysis of signal regulatory pathways as well, which is
very mature in the field of engineering.

In addition to northern blots and reverse transcription-
polymerase chain reaction (RT-PCR), which study a small
number of genes in a single assay, the transcriptome anal-
ysis has, via DNA microarray technology [9], managed to
achieve high-throughput monitoring of the almost
genome-wide mRNA expression levels in living cells or tis-
sues. Two types of available microarrays, the spotted
c¢DNA and in situ synthesized oligonucletide [10] chips,
which permit the spatiotemporal expression levels of
genes to be rapidly measured in a massively parallel way,
are used in different experimental requirements and
stocked in the databases on net, such as Stanford Microar-
ray Database (SMD) [11], Gene Expression Omni-
bus(GEO) [12] in NCBI, and ArrayExpress [13] in EBI.
Microarray experiments are now routinely used to collect
large-scale time series data that facilitate quantitative
genetic regulatory analysis while qualitative discussion is
the traditional thinking [14-17].
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Several analytic methods have been proposed to infer
genetic interrelations from gene expression data. In the
coarse-scale approach of clustering, the underlying con-
jecture is that co-expression is indicative of the co-regula-
tion, thus clustering may identify genes that have similar
functions or are involved in the related biological proc-
esses. The most widely used method is the unsupervised
hierarchical clustering [18]. This approach has an increas-
ing number of nested classes by similarity measurement
and resembles a phylogenetic classification. If we know
the number of clusters in advance, the k-means clustering
[19] could assign gene elements into a fixed number k of
clusters in a way to minimize the overall Pearson or Eucli-
dean distances of each member internally in the same
cluster. Other algorithms such as the neural-network-
based self-organizing maps (SOM) [20], singular value
decomposition (SVD) or principal component analysis
(PCA) [21], and fuzzy clustering methods [19] also have
their own advantages and limitations. Alternative super-
vised clustering algorithm of support vector machine [22],
which uses prior biological information of cluster for
training, would enhance the accuracy of clustering. How-
ever, the nature of clustering algorithms apparently can-
not uncover the causal interactions between genes just by
grouping. Regarding the causality of pathways, the cluster-
ing analysis needs to cooperate with sequence motif
detection [23]. It is also important to note that models
using clustering analysis are static and thus can not
describe the dynamic evolution of gene expression, even
in the type of time-course microarray data.

A statistical model of Bayesian network [24] was proposed
to model genetic regulatory networks. Basically, the tech-
nique uses a probabilistic score to evaluate the networks
with respect to the expression data and searches for the
network with the optimal score. The dynamic Bayesian
network [25] was proposed to learn the network structure
and parameters by maximizing the posterior probability
via Bayes rule of prior probability and marginal likeli-
hood. Another algorithm of Boolean networks [26] can
also be employed to model the dynamic evolution of gene
expression, where the state of a gene can be simplified to
being either active (on, 1) or inactive (off, 0). The proba-
bilistic nature of Bayesian networks is capable of handling
noise inherent in both the biological processes and the
microarray experiments. This makes Bayesian networks
superior to Boolean networks, which are deterministic in
nature. The validity of dynamic Bayesian networks is eval-
uated by the sensitivity-specificity score ratios [25], which
depend on the training size, the degree of accuracy of prior
assumption. A genetic regulatory network based on the
first order differential equation with given decay rates was
discussed in [27].
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In this study, the dynamic system approach could be
employed to model how a target gene's expression profile
is regulated by its upstream regulatory genes from the sys-
tem causality point of view. Then, with the causal
dynamic model, the upstream regulatory function can be
extracted from the expression profile of the target gene by
the optimal estimation method, i.e. maximum likelihood
estimation. Since merely the second-order differential
equation is employed to model the dynamic evolution of
the target gene, only a few parameters need to be esti-
mated. Furthermore, the derived regulatory function is
closely related to the causal upstream information of the
pathway and will create a basis for inferring the regulatory
pathway from the system biology point of view.

In either eukaryote or prokaryote, signaling regulatory
pathways are considered as responses to the physiological
activities or the deviation from homeostasis, which would
affect the normal states of an organism. Among these sig-
naling regulatory pathways, cell cycle [17] is one of the
most conspicuous features of life which plays an impor-
tant role in growth and cellular differentiation in all
organisms. In plants, the stress-induced pathways [28] are
very important to survivability under the abiotic environ-
mental treatment such as drought, salinity and cold[29].
If these critical pathways can be identified from quantita-
tive analysis in silico, the defect of biological processes
would be predicted and corrected before hand. Our aim is
to construct signaling regulatory pathways quantitatively
by the system inference approach with a dynamic model
and microarray data.

In this study, a second-order differential equation, which
has been widely used to model many physical dynamic
systems with good characteristics, is proposed to model
the time-profile evolutional behavior of a target gene. The
regulatory function is taken as the driving input of the
dynamic equation of the target gene. Using the dynamic
equation and microarray data, we first extract the regula-
tory function for each target gene. According to the
extracted regulatory function, we deduce their upstream
regulators to trace back upstream signaling pathways.
Then, upstream regulatory genes are taken as target genes
to trace back their upstream regulatory genes. Iteratively,
we can construct the whole regulatory pathway to the
genome wide using the dynamic regulatory model and
microarray data from the system biology point of view.
Finally, we give some independent validation of our
approach by repeating the analysis with randomly reshuf-
fling the time order of microarray data and see if the pro-
posed pathways are destroyed.

We have applied our dynamic system approach to two
genetic regulatory pathways with microarray data sets
publicly available on net [15,30]. One is the circadian reg-
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ulatory pathway in Arabidopsis thaliana [31,32], and the
other is the metabolic shift pathway from fermentation to
respiration in yeast Saccharomyces cerevisiae [33]. The circa-
dian system is an essential signaling pathway that allows
organisms to adjust cellular and physiological processes
in anticipation of periodic changes of light in the environ-
ment [34-38]. According to the synchronously dynamic
evolution of microarray data, we have successively identi-
fied the core signaling transduction from light receptors to
the endogenous biological clock [39,40], which is cou-
pled to control the correlatively physiological activity with
paces on a daily basis. On the other hand, the diauxic shift
[41] from the exhausted fermentable sugar of anaerobic
metabolism to aerobic growth is correlated with wide-
spread changes in the expression of genes involved in fun-
damental cellular processes such as carbon metabolism,
protein  synthesis, and  carbohydrate  storage.
[28,31,32,42-47] The architecture of the signaling path-
way correlative to glycolysis or gluconeogenesis during
the diauxic shift is properly built up. With the dynamic
system approach, not only the regulatory abilities
between causal genes could be derived, but also the delays
of regulatory activity are specified. These quantitative
characteristics will help determine the intrinsic frame-
works of connectivity in the above interesting pathways
from the system biology point of view.

Results

The proposed methods in this study would be divided
into four steps. In the first step, a dynamic model using
the second-order differential equation is developed to
describe the expression profile data as output and the reg-
ulatory function as input to denote the implicit character-
istics of each gene with some parameters. With the help of
the second-order dynamic model, we would then extract
the upstream regulatory function from the expression pro-
file of the target gene using the optimal estimation
method. In the third step, the regulatory function esti-
mated will help seek the correlative regulatory signals
from the upstream paths. Iteratively, we can reconstruct
the whole signaling regulatory pathway by linking up the
upstream regulatory paths. Finally, some biological filters
using available biological knowledge are employed to
prune the constructed signaling regulatory pathway to
improve the accuracy of the proposed method.

I. Dynamic system description of signaling regulatory
model

The second-order differential equation is well used in the
description of dynamic system evolved from the causality
of gene regulatory function. Let X; (t) denote the expres-
sion profile of the i-th gene at time point t. The following
second-order differential equation is proposed to model
the expression level of the i-th gene,
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X;i(t) +a; X; () +b;X;(1) = Gi(r) +&;(1) 1.1)
where G,(t) is the upstream regulatory function to influ-
ence the expression profile X,(t) of the i-th gene while a;,
and b;are the parameters that characterize the dynamic
inherent property of the gene like degradation and oscil-
lation, and &(t) is the noise of current microarray data or
the residue of the model. In general, the second-order dif-
ferential equation has been widely used to model
dynamic systems to characterize efficiently the dynamic
properties of damping and resonance of systems in phys-
ics and engineering.

Obviously, the clue of upstream regulatory pathways is in
G;(?). Thus, the first step is to detect the upstream regula-
tory function G,(t) from both dynamic equation in (1.1)
and microarray data. However, to detect the input regula-
tory function G,(t) from both equation (1.1) and microar-
ray data directly is not easy. In this situation, a Fourier
decomposition technique is employed to decompose
G;(t) as a synthesis of some harmonic sinusoid functions
so that the signal detection problem of G,(t) is reduced to
a simple parameter estimation problem.

Accordingly, we can decompose G;(t) by the following
Fourier series,

N
Gi(t) = Y [ay cos(nwt) + B, sin(nax)]
n=0

Then the detection of G;(t) becomes how to estimate the
Fourier coefficients of a, and 8, which are the magni-
tudes of different harmonics of cos(nax) and sin(nax), for
n =0,..., N in equation (1.2), respectively. In science and
engineering, the Fourier series has been widely employed
to synthesize any continuous functions with finite energy.
The estimation of a,, 5, and the detection of G,(t) in equa-
tion (1.2) are given in Methods in the sequel.

(1.2)

As a result of parameter estimation in Methods, the detec-

tion é\l (t) of regulatory function G,(t) could be derived as
follows,

N
Gi(t) =Y Hon cos(net) + B, sin(ne) (1.3)
n=0
Since the input regulatory function G,(t) of a target gene is
usually due to the transcriptional binding or some physi-
cal interactions from the upstream regulatory genes, in the
following, we would trace back to the corresponding reg-

ulatory genes from input regulatory function é\i(t) of the
target gene.
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Il. Inference of the regulatory pathway via é\l(t)
Apparently the input regulatory function G,(t) in equation

(1.1) contains the driving information for the target
gene's expression from the upstream regulatory genes. The

identified regulatory function é\l (t) from equation (1.3)
could be interpreted as the regulatory connectivity
through transcriptional binding or protein-protein inter-
action imposed on the i-th target gene. Nevertheless, the
expression data of protein type which should be consid-
ered directly in practice are by now unavailable and unre-
liable to trace back upstream regulatory genes. Instead, the
expression data on mRNA level which is now widely avail-
able from microarray assays would make tracing back the
upstream regulatory pathway possible under proper
assumptions. All along the paper we assume that the
expression levels of mRNA transcripts are proportional to
the actual number of corresponding proteins in the cell.
This assumption is indeed a strong approximation since
post-transcription is known to play a very important role
in down regulating the number of the transcription factor
in the cell.

Before the inference of upstream regulatory genes, it is rea-
sonable to confine the effect of the regulatory genes on the
regulated target gene. The saturated activity of expression
level reveals that the regulatory ability cannot extend
unlimitedly. The sigmoid function is often chosen to
express the nonlinear saturation with proper parameters.
Here, we apply the sigmoid transformation to represent
the 'on' and 'off activities of the regulatory genes on bind-
ing or not to motifs of the target gene. So the regulatory

signal 5(7 (t —=7;) shown below with the parameter set of

8= {y M; r} is the sigmoid transformation of X;(t), the
expression profile of the j-th regulatory gene.

1
" e_y(Xj(t_Tj)_Mj)

)’(j(t—rj):1 (2.1)

where yis the transition rate, M]- is the mean expression of

the j-th regulatory gene's profile, and 7 is the correspond-
ing signal transduction delay.

The delay activity should be considered in order to
describe the signal transduction delay 7; from the j-th reg-

ulatory gene to the target gene. The delay 7;would be com-
puted by statistical correlation between the regulatory

signal ij(t—rj) transformed from the j-th regulatory
gene and the identified regulatory function é\i(t) of the

target gene. The delay 7; is determined by the following
maximum correlation criterion,
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(2.2)

Tj = mrax{ 17 %(t —Tj),é;(t)%

where r_is the correlation between XNJ (t—1;) and G(t)

under variable delay 7. If there are many 7 to achieve the

maximum correlation in (2.2), then only the smallest one
is chosen.

Using the correlation method, we trace back R, regulatory

genes whose regulatory signals X;(¢ —7;) are most corre-

lated with the regulatory function é\l (t) of the ith target
gene, i.e. choose R; genes with maximum correlation but
with smaller 7 in (2.2). The determination of number R;
will be discussed later. Then, we construct the regulatory
pathway by tracing back R, regulatory genes from the iden-

tified regulatory function é\l (t) of the target gene as the
following kinetic relationship,

GO =cio+ Y Xt =1)) +e;(0) (2.3)

JUR;

where ¢;; is the pathway kinetic parameters from the regu-
latory gene j to the target gene i, R; are the searched
upstream regulatory genes, the constant c;, represents the
basal level to denote the regulatory function other than
upstream regulatory genes, and e,(t) is the residue of the
model.

Furthermore, to estimate the pathway kinetic parameters
¢; equation (2.3) for m time points should be written in
the following regression form,

G = BQ; +V,; (2.4)
where
0Gi(t) 5 D&m 7) Xp (1 ~1g) O
—~ EC t : . : O
G = (2) 10 = D : 5 .0
. . o . D
%wﬁ $m1 X (tn =T H
ECiO 0 Ce;(1) O
t
,Q = 511 EI nd Vv, = Egl(.Z)E'
giR,- Q Bfi(tm)D

We assume that each element in the error vector, e;(t;), k =
{1,..., m}, is an independent random variable with a nor-
mal distribution with zero mean and variance ¢2. By max-

http://www.biomedcentral.com/1471-2105/6/44

imum likelihood parameters estimation method (see
Methods), the estimates of ¢2 and Q, are given as follows,
which is solved as

zzigg BQIETBE BQ; H

and

(2.5)

Q; =(B/B)"'B/ G (2.6)
It should be noted that with the combination of biologi-
cal knowledge about the transcriptional factors, protein
phosphorylation, post-transcriptional and  specific
enzyme regulation of target genes, lots of putative and ver-
ified genes correlated with the target genes are pruned by
this biological filter for the more efficient and accurate
searching of R; upstream regulatory genes in equation
(2.3). For example, suppose the expression profile of gene
j has a high correlation with regulation function G;(t) of
target gene i. However, if gene j is not a transcription fac-
tor, protein phosphorylation, post-transcription or spe-
cific enzyme of target gene i, it will be deleted from the
candidates of R; upstream regulatory genes because it may
be only a co-expressed gene with the target gene corregu-
lated by the other gene. On the contrary, a verified regula-
tory gene should be recruited into the candidates even
with small correlation with G,(t).

Finally, we take the well-known Akaike Information Cri-
terion (AIC) into account for determining the number R;

of regulatory signal XN](t -T1;) [42],

AIC =2logo + 2R 2.7
m

The first term in AIC is the residual variance and the sec-
ond term R; is the number of regulatory genes. AIC
includes both the estimated residual variance and model
complexity in one statisticc which decreases as ¢2
decreases and increases as R; increases. AIC has been
widely employed to determine the complexity of system
modeling science and engineering [42]. The optimal
number R; of the upstream regulatory genes will be deter-
mined by the minimization of the AIC value in
equation(2.7).

Now, for the selected target genes in the interesting path-
way, we could search for the optimal R; upstream regula-
tory genes by AIC in equation (2.7) after the biological
filtering and determine their pathway kinetic parameters
¢; of regulatory signal by equation (2.6). After biological
filter pruning, if the number of candidates of regulatory
genes is still less than R; determined by AIC, then some
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genes, which are highly correlative to G,(t) but not of tran-
scription factors or signaling proteins of target gene i,
should be recruit into candidates to uncover regulatory
relationships that were not suspected to be connected.
After the combination of equations (2.3) and (1.1), the
whole regulatory pathway is obtained as

http://www.biomedcentral.com/1471-2105/6/44

Xi(0) = =a;Xi(0) =0 X;(1) +ci + Y ci X;(t =T;)
JHR;

(2.8)

fori={l, 2,..., L}, and L is the number of target genes in
the pathway. The sub-paths related to the i-th target gene
in the interesting pathway could be detected by the infer-
ence algorithm. Then, it is natural that the whole regula-
tory pathway would be constructed by the links of all the
sub-paths. We also outline the whole flowchart of our
dynamic inferring algorithm as shown in Figure 1 for an
overview.

Discussion

Data set of analysis

The two famous modeling organisms, Arabidopsis thaliana
and yeast Saccharomyces cerevisiae, have been well studied
biologically and their microarray assays are abundant.
Thus, we chose different types of pathways, one is the
plant behavior under environmental variation and the
other is the cellular metabolism in response to exhaustion
of external source, as examples in this study. In other
words, two signaling pathways, i.e. circadian regulatory
pathway in Arabidopsis thaliana and metabolic shift path-
way from fermentation to respiration in yeast Saccharomy-
ces cerevisiae, are constructed from microarray data to
confirm the accuracy of our proposed method.

For cells grown in the light/dark cycle according to circa-
dian rhythm, Harmer and colleagues [15] used highly
reproducible oligonucleotide-based arrays representing
about 8200 different genes to determine steady-state
mRNA levels in Arabidopsis thaliana that are measured in
replicate hybridization of 12 samples harvested every 4
hours over 2 days. With their investigation on the circa-
dian regulatory system, Harmer et al. have provided an
abundance of correlated genes for the regulatory pathway
inference.

As for the metabolic pathway, an cDNA microarray assay
from DeRisi et al. [30], containing approximately 6400
distinct expression sequence tags (ESTs) in yeast Saccharo-
myces cerevisiae, is harvested at seven successive 2-hour
intervals after an initial nine hours of growth under the
diauxic shift. Adoption of the diauxic shift data set would
make possible the inference of metabolic shift pathways.

Process of raw microarray data

With the second-order equation and the optimal estima-
tion method, the dynamic model should be developed
first for the regulatory scheme of target genes in the sign-
aling regulatory pathway. Because the raw microarray data
sample of the biological assays that will be analyzed is
small with less than 15 data points for an individual gene,
the cubic spline method is used to interpolate the
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and PGl I, PGM2 (metabolic shift pathway of yeast Saccharomyces cerevisiae) on the right-hand side. The red open triangles are
the raw microarray data, and the blue dotted points are the interpolation data.

observed data to increase the data points of each gene's
time-course microarray data. As shown in Figure 2, the
expression profiles of Cryl (CRYTOCHROME 1) and PhyA
(PHYTOCHROME A) genes in the circadian regulatory
pathway of Arabidopsis thaliana are interpolated by the
cubic spline method among raw data points on the left-
hand side. Similarly, Pgi1 (PHOSPHOGLUCOSE ISO-
MERASE 1) and Pgm2 (PHOSPHOGLUCOMUTASE 2)
genes in the metabolic shift pathway of yeast Saccharomy-
ces cerevisiae are on the right-hand side. After the expres-
sion profiles are smoothed by the cubic spline technique,

we can obtain the data of the first derivative X;(t) and the

second derivative Xi(t) more accurately and abundantly.

Extraction of regulatory information

After data expansion by the cubic spline method, we
would have enough data to estimate the parameters of the
regulatory dynamic model of the target gene from equa-
tion (2.4). Following the dynamic model in equation
(3.1), the parameters which characterize the dynamic reg-
ulatory mechanism are estimated successfully for each tar-
get gene in the pathway. By dynamic model fitting, the
expression profiles of the mentioned genes in Figure 2 can
be reconstructed in Figure 3 with time progression again.

Hence, we not only could predict the dynamic evolution
of the target gene's expression profile accurately, but also

deduce the regulatory function é\l (t) simultaneously as
the scheme of Figure 4. The regulatory information
between target genes and their upstream genes can be
extracted properly with this method.

Inference of the regulatory pathway

For illustrations, the inferring strategy is applied to the
selected core genes (X;~X;; and Y,;~Y;;) in two pathways
of the circadian regulatory system in Arabidopsis thaliana
and the metabolic shift pathway in yeast Saccharomyces
cerevisiae to recognize their upstream regulatory genes,
respectively. Their regulatory abilities with signal trans-
duction delays are shown in the form of dynamic equa-
tion in Table 1 and Table 2, respectively. These regulatory
abilities implying different degrees of influence are con-
verted into a red-colored line as positive regulation (acti-
vation) and a blue-colored line as negative regulation
(inhibition) for each target gene. Then, according to the
dynamic regulatory equations in Table 1 and Table 2, the
pathways of the circadian regulatory system and the met-
abolic shift pathway are described in Figure 5 and Figure
6, respectively.
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cubic spline interpolations of microarray data, and the red dashed lines are the estimated dynamic evolution of expression data.

a. Pathway of circadian regulatory system

The circadian rhythm controls processes ranging from
cyanobacteria cell division to human wake-sleep cycles. In
plant, especially for Arabidopsis thaliana, the growth and
development have adapted to the diurnal cycling of light
and dark [28,31,32,42,44,46-49]. The ability of plants to
respond to light is achieved through some photorecep-
tors. Two classes of photoreceptors are well known to
form the photo-transduction pathway under the circadian
regulatory system in Arabidopsis thaliana [50]. One is the
crytochrome of blue-light photoreceptors, containing
Cryl and Cry2. The other is the phytochrome of mainly
red-light photoreceptors, including PhyA, PhyB, PhyD and
PhyE.

In the photo-transduction related genes (Table 1 and Fig-
ure 5), containing both crytochrome (Cry1 and Cry2) and
phytochrome (PhyA, PhyB, PhyD and PhyE), Cry1 [X;] and
Cry2 [X,,] are commonly regulated by Lhy [X;] (LATE
ELONGATED HYPOCOTYL) in reciprocal ways with sig-
nificant values (0.7569 in Eq.(6) and -1.8773, Eq.(10) of
Table 1, respectively), implying the essentially regulatory
role of Lhy on crytochrome genes. In addition, from

Eq.(10) in Table 1, we further observe that Ccal [X,] (CIR-
CADIAN CLOCK ASSOCIATED 1) has the greatest posi-
tive regulation (2.3465) on Cry2, meaning that Cry2 is
jointly regulated by Lhy and Ccal. Because the binding
sites of Lhy and Ccal found in the promoter regions of
Cry2 |51] are consistent with our inference, the transcrip-
tional binding might be the mechanism of Cry2 affected
by both Lhy and Ccal. In addition, the mutual activations
of phosphorylation between Cryl [X;] and PhyA [X,] in
Eq.(6) and Eq.(7) of Table 1 are specifically identified
consistent with the previous work [52]. At present, little is
known about the nature of interactions between these two
classes of photoreceptors. From Eq.(10) in Table 1, Cry2
[X0] is also positively regulated by PhyA [X,] with 0.5-hr
activation delay similar to that in Cry1 (Eq.(6) in Table 1).
Therefore, PhyA is considered as a post-transcriptional reg-
ulator of phosphorylation to crytochrome within 1.0-hr
after transcription. On the other hand, PhyB [X,;] down-
regulates Cry2 with a significant effect (-0.7141) while
Cry2 [X,,] up-regulates PhyB (0.0511) weakly by feedback
(see Egs.(10), (11) in Table 1.). The mutual interactions
between Cry2 and PhyB in nuclear speckles that are
formed in a light-dependent fashion are also confirmed

Page 8 of 19

(page number not for citation purposes)



BMC Bioinformatics 2005, 6:44

Circadian System

Cryt

15

J_’_._/
\/ .
|

of p .

%
8 0 - ..
-a‘ 0 5 10 15 220 25 30 35 40 44
Q
g PhyA
Z 15 r v
¢
7N\
1 \ 4
0.5 / \ / /\
/ \
0 . P e L . L .
0 5 10 15 20 25 30 35 40 44
Time {hrs)
Figure 4

Regulatory Level

http://www.biomedcentral.com/1471-2105/6/44

Metabolic Shift

PGI1
08 . .
osf
04f
o \ /\
0 ; \ . . .
0 2 4 6 8 10 12 14
PGM2
08
o6}
04
02 \
5 . : . . . .
0 2 4 6 ) 10 12 14

Time (hrs)

The extracted upstream regulatory functions of pathway genes. The upstream regulatory function a(t) extracted

from expression profiles of corresponding target genes Cryl, PhyA (pathway of circadian regulatory system of Arabidopsis
thaliana) on the left-hand side, and PGl I, PGM2 (metabolic shift pathway of yeast Saccharomyces cerevisiae) on the right-hand

side.

by Mas et al. [48]. Because Cryl and Cry2 are both nega-
tively co-regulated by PhyD [Xg] and PhyE [Xi,]
significantly (see Eqs.(6), (10) in Table 1), PhyA has
apparently different behavior from PhyB, PhyD, and PhyE
in activating crytochrome. This might suggest the mecha-
nism that PhyA mediates the blue light by up-regulating
Cry1 and Cry2, whilst PhyB, PhyD, and PhyE would medi-
ate the red light by inhibiting blue photoreceptors
[53,54].

In the mainly red-light photoreceptors of phytochrome
(PhyA, PhyB, PhyD and PhyE) in Figure 5, undoubtedly Lhy
[X5] and Ccal [X,], well-known biological clock genes in
the circadian system [40,46], are core regulators involved
in the transcriptions of both phytochrome (see Egs.(7),
(8), (11), and (12) in Table 1) and crytochrome (see
Egs.(6), (10) in Table 1) via feedback transcriptional
binding. Similarly, Gi [X,5] (GIGANTEA) in Figure 5 has
been identified as a manifested regulator to all the phyto-
chromes (also see Eqs.(7), (8), (11), and (12) in Table 1),
although Gi sequence lacks any motifs suggesting that it is
a transcription factor of phytochromes [55]. Hence, Gi
might be a post-transcriptional regulatory factor. How-
ever, there is another gene Elf3 [X;,] (EARLY FLOWERING
3) opposite to Gi on phytochrome, especially for PhyA,

PhyB and PhyE (Egs.(7), (11) and (12) in Table 1).
Because of lower regulatory ability than transcription fac-
tor Lhy or Ccal, EIf3 might play the same role as Lhy and
Ccal. Just as expected, Elf3 contains glutamine-rich motif
suggesting that it is a transcription factor [56].

Before entrance of the biological oscillator of the circadian
system formed by Tocl, Lhy, and Ccal, a crucial gene of
Pif3 [X,] (Figure 5) is mediated significantly by PhyA [X,]
(-0.7631) and PhyB [X;] (0.1223) (see Eq.(9) in Table 1).
This is consistent with the post-transcriptional interac-
tions of Pif3-PhyA and Pif3-PhyB complexes. As a core
gene in the biological oscillator, Tocl [X;5] is transcrip-
tionally regulated by Lhy [X;] (0.7009) and Ccal [X,] (-
1.4704) whilst Pif3 [X;4] (-0.1698) is presumably consid-
ered as the bridge between Tocl and phytochrome
(Eq.(13), Table 1). From Lhy and Ccal point of view, they
are both positively affected simultaneously by Pif3 imply-
ing the regulation on the transcriptional level [57]. In
addition, Tocl inhibits both Lhy and Ccal to form the
structure of mutual transcriptional regulation (please
compare Egs.(3), (4) with Eq.(13) in Table 1). So we con-
clude that Lhy and Ccal function as principal transcription
factors.
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Table I: The dynamic equation set of the identified upstream regulators and their regulatory relationships to the specific target genes
in the pathway of circadian regulatory system of Arabidopsis thaliana.

(1) X, (1) = —0.4270X, (£) —1.2630X; (t) +0.3690 —0.1033 [X,(t —2.5)—0.2231[X;5(t —3.5)
(2) X,(t) = =0.3951X, () ~1.3000X, (t) +0.6585 +10.4196 X, (t —6.0) - 0.6226 [X,5(t —3.0) —9.4639 [X5(t —6.5)
(3) X5(t) = -0.3696X5(1) —1.1202X5(t) +0.5962 +0.8880 Xy (¢ —3.5) - 0.2503 [X (¢ —7.0) —0.3263 [X5(t —0.5)
(4) X4(r) = 0.3757X, (1) —1.3057X,(t) +0.3627 +0.7002 (Xo(t ~0.5) - 0.3049 [X;5(t —1.0) —0.5689 [X5(t —0.5)

(5) Xs(£) = —0.2034X5(t) ~1.0242X5() +0.3691 +2.7078 [X, (¢ ~6.0) - 0.0455 (X (¢ —3.5) —0.1218 [X5(t —2.5) —2.3586 [X;(t ~7.0)

(6) Xg(r) = —0.3307X4(r) —0.9893X4(1) +0.1251 +0.7569 X3(1 ~2.0) +0.2358 X;(t ~1.0) ~0.2020 (X, (t —0.5) —0.2116 X, (1 ~1.5)~0.3788 K(t ~7.0)
(7) X;(t) = 0.3465X;(1) =1.0682X5 (1) +0.0718 +0.5392 [X3(t =4.5) +0.3095 [X5(t =0.5) 0.2997 [Xg(t ~3.5) =0.2098 (Xy5(t ~2.0)=0.7631 X, (t ~4.5)
(8) Xs(t) = 0.2194Xg(r) ~1.1127X5(r) +0.1881 +0.3434 X5(t ~1.0) +0.1719 X, 5(t - 6.0) ~0.0626 [Xy4(t ~7.0) ~0.0124 Xg(t ~2.0) - 0.1474 X4 (r ~1.0) ~0.3037 X,(t ~1.0)
(9) Jo(1) = 01457, (1) ~0.9994X,(1) +0.3943 +0.1223 [y (¢ -1.5) +0.0779 Ky (1 =3.5) ~0.0593 Kot ~2.0) ~0.0514 Fe(t ~6.0) ~0.0485 Ky (¢ ~0.5) ~0.1001 Tt -1.5)
(10) (1) = -0.2859%,0(0) ~0.8381X;(1) +0.9862 +2.3465 (¥, 1 ~5.5) +0.3928 (K, (¢ ~0.5) ~0.0124 Oy ¢ ~6.0) -0.4084 (5,3 (¢ =7.0) ~0.6551 (e ~7.0) ~0.7141 ;¢ ~L5) -1.8773 (1 -65)
(11 54,0 = ~0.15815,,() ~0.8327X,() +0.1857 +0.2978 (Xt ~5.0) +0.1142 X0 ~0.5) +00511 Kyg(t ~6.5) #0.0021 g(t~1.5) ~0.0905 Kyg(t ~3.0) ~0.1199 Byt ~3.5) ~0.1648 Ky (1=5.5)
(12) K120) = 0.147715(0)~1.0848,5(6)+1.1463 +29121 (X3 (¢ ~7.0)+0.4623 Xy (¢ ~0.5) 40.4572 Dy -1.0) +0.2104 Tiolt ~0.5) +0.0326 (s ~5.0) ~0.3324 Fie(t ~5.5) 33699 Ts1=7.0)
(13) Xi3(t) = 0.1163%,5(1) ~0.8416X,5(1) +0.4262 +0.7009 (Xs(t - 4.5) +0.3677 X, (1 ~7.0) +0.2575 Xy (¢ =7.0) +0.1284 Xyt =1.5) =0.1698 (X (1 =7.0) ~0.2247 Xyt ~7.0) ~1.4704 (X, (¢ ~4.0)
Target Genes X, X, X, X4 Xs Xe X, Xg
Papl* Co Lhy* Cecal* Chs Cryl PhyA PhyD
Xy Xio X X2 X3
Pif3 Cry2 PhyB PhyE Tocl*
Other Genes X4 Xis Xie
Fkfl Gi EIf3

We also infer some downstream pathways of Chs [Xs]
(CHALCONE SYNTHASE), Papl [X,], and Co [X,]
(CONSTANS) in Figure 5. Chs is known as correlated with
UV-B protection. It seems that Ccal and Lhy have greater
effect (2.7078, -0.7631, respectively) on Chs than Pap1 (-
0.0455) as a transcription factor (Eq.(5) in Table 1). This
might mean that Chs is regulated by Pap1 in a small scale
with amplifying effect on the cis-regulatory level. Co is rec-
ognized as a pivotal gene of photoperiodic regulation of
flowering. Indeed, strong regulations from Ccal and Lhy
are identified to show that Co is regulated with a large-
scale attenuation effect on the cis-regulatory level (Eq.(2)
in Table 1).

In the overview of the circadian system in Figure 5, most
red lines of activating regulation are found in the photo-
transduction pathway between phytochrome (light blue
ovals) and crytochrome (light yellow ovals) implying the
chain interactions after the external light input. By the
feedback regulations of Lhy and Ccal (orange ovals), rep-
resented by black lines with more linking to upstream
genes, the photo-transduction pathways are stabilized to
provide oscillation. On the other hand, more blue lines of

inhibitive interactions are revealed in the biological-clock
regulatory pathways relevant to Co, Pap1, and Chs (light
green ovals) underlying the anti-phase functional regula-
tion between these output pathways and the oscillator. In
addition, the essential signal transduction factors of Fkf1,
Gi, Elf3, and Pif3 (gray ovals) make some critical links
between the functional blocks mentioned above in the
circadian system|[58]. Finally, in order to validate the pro-
posed approach, an independent validation is also given
by randomly reshuffling the time order of microarray
experiment [see Additional file 2] but with the same
choices of target gene and regulatory genes, as shown in
Figure 7. It is seen that the proposed circadian regulatory
pathway in Figure 5 is destroyed by reshuffling the exper-
imental data.

b. Metabolic shift pathway

Sugars, such as glucose and sucrose, are excellent carbon
sources for yeasts and almost all of the energy require-
ments of the cell can be satisfied by glycolysis [6,45,59-
61,63-66]. Saccharomyces cerevisiae can switch from
fermentatioon at high levels of glucose to respiration at
low levels of glucose with major changes in metabolic
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Table 2: The dynamic equation set of the identified upstream regulators and their regulatory relationships to the specific target genes

in the metabolic shift pathway of yeast Saccharomyces cerevisiae.

(1) Yy (£) = —1.3288Y, (t) —7.8425Y; () +2.5833 —0.3284 ¥, (¢ -1.50) —1.9639 [¥;, (¢ - 0.25)

(2) Y, (£) = —1.6388Y, () =10.7990Y, (£) +1.2717 +0.2147 V3, (t —4.00) - 0.7195 [Y,(t —0.25)
(3) Y5(t) = —1.5344Y;(t) —8.6412Y3(t) —0.0085 +1.0746 [V (t ~0.25) —1.536 [Y30(t —4.00)

(4) Y, (£) = -1.6373Y4 (£) —10.5480Y, (t) +0.7200 +5.9829 [¥;5(t —0.25) = 5.8763 [Yy4(t —0.25)
(5) Y5(1) = ~1.7960V5(t) =10.5470Y5(t) +1.5690 +0.3532 (¥,7(t —2.25) +0.2417 [Yag(t =0.75) =0.5770 (Vo (t ~3.50) —0.8506 ¥y (t —0.25)
(6) Yg(r) = ~1.5074Y () ~10.4820Y4 (1) +0.4572 +3.1295 [V (¢ ~0.25)+0.1164 [¥y7(t =1.00) —0.0932 [Y(t —0.25) =2.5615 [¥;5(t = 0.25)
(7) Y5 (t) = =1.8942Y;(1) =7.1791Y;(t) +0.3671 +0.8011 (V5 (t —4.00) +0.5045 [¥3(t —0.25) +0.3484 [V (¢ ~1.25) +0.2292 [V, (¢ — 2.00) ~1.3287 Yy (t ~1.75)
(8) Yg(r) = =1.5560Y(1) —11.8410Y5(1) +0.3077 +5.3057 [V, (t ~0.25) +5.2530 [V, 4 (t —2.50) +0.3503 ¥y (¢ ~1.25) =5.0414 [¥;4(t = 0.25) = 5.1767 [Y5(t —4.00)
(9) 1) = 1734475 6) ~10.0450Vy(1) +1.0756 +4.768 Gy (¢ ~2.75) +1.1252 (Fy5 (1 ~4.25) +0.3681 (T3 (¢ ~0.25) 0.3320 (1 - 4.25) ~0.4213 (Tt ~0.25) ~5.4206 (Fy (¢ ~3.00)
(10) Fo0)= 119030790 ~120970%,(0) +03121 +9.9312 F5{¢ ~0.25)+ 27883 (T3, ~0.29) +0.3995 i ~200) 40108

7 sl -0.75) 00288 Byt ~.50) 59365 Byt 025) 65499 Ti5(1-025)

(11400 = 1635310 12.1860%, () ~0.1356 39,3529 (Tt -0.25)+27954 (i1 ~5.00) +2.2388 (Fg{e ~3.50) +0.57581Fp (1 129 42732 (Tt -5.00) 90430 Tt ~0.25) 144732 (s -0.25)~15.9251 (Fjs ~0.25)

Target Genes Y Y, Y, Y, Ys Ye Y, Y
Fbpl Eno2 Adh2 Pykl Pgm?2 Pdcl Adhl Gpml
Yo Yio Yo
Pgil Tpil Fbal
Other Genes Y2 Y3 Y4 Y5 Yie Y7 Yis Y9
Tdhl Tdh2 Tdh3 Gerl* Ger2* Rap1* Abfl* GrflO*
Y20 Yy Yn Yy You Yas Y Yo7
Ino4* Pgkl Pfk2 Hsfl* Pdc5 Pdcé Pckl Gkl
Yag Y5 Y30 Y3
Hxkl Hxk2 Sfpl* Stp2*

activity (diauxic shift). In their experiment on the diauxic
shift [30], DeRisi et al. inoculated cells from an exponen-
tially growing culture into fresh medium and grew them
at 30 for 21 hrs. This offers a resource to infer the possible
allosteric regulation of enzymatic activities, protein mod-
ification and transcriptional regulation as shown in Table
2. In addition, the scheme of the corresponding inferred
pathway is shown in Figure 6. In the overview of the infer-
ring relationships in Table 2, the gluconeogenesis from
Pykl to pgm2 and the partial fermentation from Pykl
(PYRUVATE KINASE 1) to Adhl and Adh2 (ETHANOL
DEHYDROGENASE ISOZYME 1, 2) are unraveled as a
result of the diauxic shift, so two sub-pathways in oppo-
site directions are concluded.

In the fermentation direction, Pykl [Y,] encoding an
enzyme, which catalyzes PEP (Phosphoenolpyruvate) to
pyruvate, is negatively regulated (-5.8763) by Pckl [Y,¢]
(Eq.(4) in Table 2). Pckl could be intepreted here as an
indirect upstream transcription factor or regulatory gene
for Pyk1 due to its function of decarboxylation and phos-
phorylation of oxalacetat in the presence of a nucleoside
triphosphate and a divalent metal ion to yield PEP.
Another Gcrl [Y5] gene is also identified as the strongest

positive regulation (5.9829) to Pykl (also see Eq.(4) in
Table 2), which is putatively considered as a transcription
factor. This candidate transcription factor Gerl of Pdcl Y]
(PYRUVATE DECARBOXYLASE ISOZYME 1) plays a more
essential role (-2.5615, Eq.(6) in Table 2) than Rap1 [Y,,]
(0.1164), and Pyk1 [Y,] is an upstream regulatory factor
coding an enzyme with the most positive effect (3.1295)
on Pdc1 according to the production of acetaldehyde from
pyruvate. In the last kernel of the fermentation, Adh1 [Y,]
and Adh2 [Y;] are involved in the ethanol metabolism of
carbohydrate storage. Adh2 is implicated to up-regulate
Adhl (0.5145, Eq.(7) in Table 2) under the catabolism
from ethanol to acetaldehyde and is significantly up-regu-
lated by Adh1 (1.0746, Eq.(3) in Table 2) to produce eth-
anol reversely. The mutual regulations of these two
isozymes are within a tiny activation delay of 0.5-hr
implying their close relationship. In addition, Ger2 [Y;¢]
and Sfp1 [Y5,] with consistently dominant negative influ-
ences on Adh2 and Adh1 respectively would be at the tran-
scriptional level presumably (see Eqs.(3), (7) in Table 2).

In the sub-pathway of glyconeogenesis, Eno2 [Y,] (ENO-
LASE ISOZYME 2) is regulated by Pck1 [Y,] (-0.7195) in
the same way as Pyk1 while the main transcription factor
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is Stp2 [Y5,] with significantly positive regulation (0.2147,
see Eq.(2) in Table 2). As seen in Table 2, a causal cascade
of Eno2, Gpm1 [Yg] (PHOSPHOGLYCERATE MUTASE 1),
Tpil [Y,,] (TRIOSE-P ISOMERASE 1), Fbal [Y,,] (ALDO-
LASE 1), and Pgil [Y,] (PHOSPHOGLUCOSE
ISOMERASE 1) indicates the construction of a trunk of the
glyconeogenesis (see Egs.(8), (9), (10), and (11) in Table
2). Among them, Rapl [Y,,] and Gerl [Y,5] are the com-
mon regulators of Gpm1, Pgil, and Tpil. This means that
Rap1 and Gcerl might be the most important regulators in
the glyconeogenesis pathway by the transcriptional bind-
ing. Finally, Pgm2 [Y;] (PHOSPHOGLUCOMUTASE 2)
co-regulated by Glkl [Y,;,] (GLUCOKINASE 1), Hxkl
[Y,s], and Hxk2 [Y,,] (HEXOKINASE 1, 2) significantly
confers another pathway leading to the synthesis of UDP-
GLU from Glucose-6-P (see Eq.(5) in Table 2).

In the overview of the metabolic shift pathway in Figure 6,
extremely significant regulations 